
6	 Copublished by the IEEE CS and the AIP	 1521-9615/13/$31.00 © 2013 IEEE� Computing in Science & Engineering

B o o k s

Editors: Larry Engelhardt, lengelhardt@fmarion.edu

Stephen P. Weppner, weppnesp@eckerd.edu

“S erial program-
ming is dead.”
This is the peg

and main theme of this
Compute Unified Device

Architecture (CUDA) textbook, and
once you start reading, the author
relentlessly guides you through the
transition from serial (CPU) pro-
gramming, which almost all of us
grew up with, to massively parallel
programming of GPUs. It’s no se-
cret that CPUs reached some physi-
cal limitations and haven’t gotten
much faster over the last several years.
Consequently, if we want to make
progress, we have no option but to go
parallel in some way; and GPU pro-
gramming using CUDA has turned
out to be a promising option.

There aren’t that many, but this
is the most comprehensive textbook
about CUDA programming I’ve
seen so far. The 563-page book is
highly detailed (sometimes maybe
a little too much so), up-to-date,
and provides both straightforward
help for CUDA beginners and ad-
vanced topics for experienced GPU
programmers concerning tuning
or optimization. It isn’t a pure “in-
troduction to” or guide to playing
around with GPUs, nor is it a ref-
erence work for finding quick infor-
mation. Rather, it’s a textbook for
someone at the early stage of the
transition to parallel GPU comput-
ing who seriously wants to dive into
that world. In this regard, it quite
nicely complements other publica-
tions like the GPU: Computing Gems

series or CUDA by Example (both
reviewed in earlier issues of CiSE1,2).
In any case, as the subtitle suggests,
the book addresses developers of
some kind. That is, the author ex-
pects a solid background and knowl-
edge in serial programming as well
as basic understanding of hardware
architectures.

Topics Covered
In the first chapters the author takes
some time to set the stage, begin-
ning with a nicely written review
of the history of supercomputing.
He then discusses parallelism with
GPUs, why it might be useful or even
far superior to CPU programming,
and why you would use CUDA in
the first place. (The author talks ex-
clusively about CUDA in this book.
Don’t expect anything else.) At the
end of the introductory section, he
gives an overview about the differ-
ent GPU hardwares and compute
levels and guides the reader through
the actual installation of CUDA
under different operating systems
(Windows, Linux, and Mac). Mas-
sive parallelization on GPUs isn’t
always as straightforward as prob-
lem-based parallelization using
“only” a couple of cores on CPUs
or CPU clusters, and there are a lot
of concepts which might also not be
completely straightforward to un-
derstand for “serial programmers.”
Hence, in the following the author
introduces and clarifies basic GPU
programming terminologies (such
as threads, warps, and blocks) and

parallelization approaches. He pres-
ents a first basic common example
(filling a histogram), demonstrating
this challenge and analyzing dif-
ferent programming strategies in
detail.

When engineers or scientists use
computers for their calculations,
they naturally care about their spe-
cific problems rather than computer
science. It is, of course, a dream that
we can abstract from all hardware
details and still write well perform-
ing code—that is, let compilers do
all of the optimization and memory
handling work. It’s highly likely,
though, that this dream will stay a
dream for quite a while, and con-
sequently the author devotes the
entire next chapter to the problem
of memory handling, which is even
more complex on GPUs than on
CPUs. This chapter is the second
largest in the book, another indica-
tion of the author’s priorities and
intentions. In contrast to how code
often evolves—in a “top to bot-
tom” way, where a correctly run-
ning but poorly performing code
will be successively optimized—
he chooses the other way, where
memory-optimized (and hence
speed-optimized) code is developed
from the beginning. That is, right
from the start problems are laid out
to efficiently use registers, shared
memory, and global memory. Even
though we might not always follow
that approach in daily work for sev-
eral reasons, it provides an insight-
ful perspective. Everyday problems

All the Way to CUDA
By Thomas Vogel

Shane Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs,
Morgan Kaufmann, 2012, ISBN: 978-0124159334, 563 pp.

CISE-15-5-Books.indd 6 23/10/13 11:48 AM

September/October 2013 � 7

like sorting are analyzed in detail in
this context.

In chapter 7, a couple of examples
of specialized uses of GPUs are dis-
cussed, for example how to imple-
ment AES encryption. Even though
these specific topics might not be
particularly relevant for engineers
or scientists, they again provide
insight into the differences of code
design for GPUs versus CPUs. The
next chapter, however, is of particu-
lar interest as it touches on a prob-
lem that any scientific GPU user
will encounter sooner or later: If I
have multiple GPUs available, how
do I make good use of them? This
chapter contains a lot of example
source code and emphasizes inho-
mogeneous environments where
GPUs of different generations work
together.

Chapter 9 is the heart of the book.
For more than 130 pages it discusses
the main paths to optimize CUDA
performance. The author now as-
sumes that all previous chapters
have been read and uses a strategic,
step-by-step approach rather than a
collection of examples. It starts off
with strategies to break down the
problem, setting design goals and
finding serial bottlenecks and sourc-
es of limits. Based on that, consid-
erations for memory organization
are made and data transfer is dis-
cussed. An extremely useful aspect
here is timing on GPUs—that is,
how to actually measure GPU per-
formance. The next steps include
compiler optimizations and the use
of dedicated hardware to evalu-
ate trigonometric and other costly
functions, before talking about se-
lecting the best algorithms for cer-
tain problems. The point is that the
best CPU algorithms are generally
not efficient on GPUs (quicksort is

an example of this), and vice versa.
Then, more technically, the author
discusses external analysis tools to
identify bottlenecks. In particular,
he introduces Nvidia Visual Profiler
and Parallel Nsight. Finally, self-
tuning strategies are mentioned,
where a code first analyzes the avail-
able hardware and then “adapts” to
make best use of it.

Very useful for scientific appli-
cations is the next chapter, which
starts with a discussion of existing
CUDA libraries—such as Nvidia
Performance Primitives (NPP),
thrust, CuRand, and CuBLAS
(BLAS stands for Basic Linear Al-
gebra Subprograms). The chapter is
more example-based and contains a
lot of source code. A nice feature is
the links to relevant examples in the
software development kit (SDK).
A few examples from the SDK are
discussed in detail. Finally, direc-
tive-based programming is men-
tioned—not in great detail, more as
a rough introduction of how to use
GPUs in the “openMP style,” but
definitely something which is “good
to know.”

The book ends with consider-
ations and tips regarding the ac-
tual building and configuration of a
GPU-based system, including such
fundamental issues as proper cool-
ing or power supply and a chapter
about common problems and their
solutions, which mainly includes
general thoughts on finding and
avoiding errors. Both chapters feel
somehow “attached” rather than
“included,” but still round up the
volume nicely.

Key Strengths and Concerns
“If you just want to write code
and don’t care about performance,
parallel programming is actually

quite easy.” The author notes this
fact on p. 43, but he goes the other
way in his treatment of the subject:
throughout the book, he sets value
on understanding the underlying
hardware and performance, how-
ever, knowing that GPU hardware
in particular is rapidly evolving and
changing. Consequently, the chap-
ter “Optimizing Your Application”
is the largest single chapter in the
book.

The chapters are well balanced
and mostly build on top of each oth-
er. The author touches all relevant
aspects of GPU programming, and
everything is explained in suffi-
cient detail, mainly without getting
bogged down. A useful feature is
the connections to CPU program-
ming that are embedded throughout
the book, facilitating the read-
ing for “CPU programmers.” The
book is full of examples and source
code, and it’s quite up to date. Each
chapter ends with brief-but-helpful
conclusions wrapping up the in-
formation given in the chapter and
providing a measure for the reader
to check if he’s still on the same page
as the author.

Overall, this is a nice and enjoy-
able read. Besides some typesetting
flaws, which might bother some
readers at times, it is—compared to
other programming books—quite
refreshing and never dry, even while
covering a technically ambitious
topic. However, the book could have
been useful as a reference as well, if
the index were better organized.

I would recommend this book to
anyone who is familiar with serial

programming and seriously wants to
make the transition to massively paral-
lel programming on GPUs, with all its

CISE-15-5-Books.indd 7 23/10/13 11:48 AM

B o o k s

8� Computing in Science & Engineering

consequences. The author is doubtless-
ly an acknowledged expert in the field
and left me with the overall question:
How can such a complete, detailed, and
profound book even be written about
such a rapidly changing subject?

However, this book might not be
the best choice for everyone inter-
ested in GPU programming. If you
just want to play around a little to
get a feeling for GPU programming,
this book might be too complex (but
CUDA by Example2 might be worth

a look); and if you are already an
expert GPU programmer looking
for a reference, online resources are
probably more useful by now.�

References
1.	 M. Weigel, “The GPU Revolution at

Work,” Computing in Science & Eng.,

vol. 13, no. 5, 2011, pp. 5–6.

2.	 M. Tiglio, “Teaching Yourself CUDA:

Learn to Walk While You Run,” Comput-

ing in Science & Eng., vol. 13, no. 6,

2011, pp. 6–9.

Thomas Vogel is a postdoctoral fellow at Los

Alamos National Laboratory. He uses Monte

Carlo and molecular dynamics methods to

study soft matter systems and material de-

fects. Vogel has a doctorate degree in phys-

ics from the University of Leipzig, Germany.

Contact him at tvogel@lanl.gov.

Selected articles and columns from
IEEE Computer Society publica-

tions are also available for free at http://
ComputingNow.computer.org.

CISE-15-5-Books.indd 8 24/10/13 10:21 AM

