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Exascale Computing

T he history of high-performance com-
puting (HPC) spans almost seven 
decades, and has seen a factor of 
10 trillion increase in speed since 

the first-generation vacuum-tube-based von 
Neumann computers of the late 1940s. This 
extraordinary advance greatly exceeds that of 
any other human technology. And it’s not that 
we initially got it wrong and then later finally 
got it right. Rather, each decade saw a perfor-
mance gain of at least two orders of magnitude, 

steadily harnessing the accumulating advances 
of the basic enabling device technologies in 
logic, memory, and data communication. De-
spite this apparent consistency of progress, the 
technologies driving performance growth as 
well as the innovations in programming models 
and operational methods that have delivered it 
have changed markedly and repeatedly to sus-
tain this growth.

In the most recent epoch, after 20 years of im-
provements to the multiprocessor, distributed-
memory message-passing strategy, significant 
changes are taking place, again driven by tech-
nological change. Teraflops were achieved in 
1997 and Petaflops in 2008. This last milestone 
was accomplished without significant disrup-
tion to programmers employing conventional 
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methods, despite a dramatic change occurring 
in 2004/2005, in which the speed of the individ-
ual processor core flat-lined due to limitations 
in power consumption. However, it was clear, 
even then, that scaling current technologies 
to exaflops through incremental extensions of 
past practices would consume much too much 
power to be practical. This special issue of CiSE 
addresses the deep questions of the challenges 
currently facing sustained performance growth 
to exascale and beyond, the opportunities to 
do so, the new architecture designs that might 
make it possible, and the programming models 
and support software methods that will employ 
it for future applications in science, technology, 
commerce, and defense.

What the Future Holds—and Still Needs
The advent of multicore sockets and GPU ac-
celerators offer possible performance growth 
through raw semiconductor technology improve-
ments, but also impose unprecedented challenges 
in efficiency, scaling, power, and reliability, as well 
as programmer productivity. Achieving exaflops 
speed will require new programming techniques, 
but what of the billions of dollars of investment 
in past software development and mainstream 
markets? How will the field of HPC continue 
to leverage the strength of COTS technolo-
gies and the economy of scale of mass-produced 
computing and memory components if exascale 
may need something different? Will the highest-
end systems become increasingly limited in the 
classes of problems they can serve, or will new ex-
ecution models, architectures, and programming 
techniques evolve to meet these challenges? This 
special issue of CiSE brings together expert views 
to illuminate the possible approaches.

Before we get more deeply into the challeng-
es of exascale computing, we should talk brief-
ly about the need. From November 2008 to 
 October 2009, there was a series of eight Scien-
tific Grand Challenges Workshops (sponsored 
by the US Department of Energy Office of 
Advanced Scientific Computing Research and 
coordinated by Paul Messina) that asked scien-
tists to assess their need for exascale  computing. 
The workshops covered climate science, high-
energy physics, nuclear physics, fusion en-
ergy, nuclear energy, biology, material science 
and chemistry, and national security. The work-
shop reports (http://science.energy.gov/ascr/ 
news-and-resources/workshops-and-conferences/ 
grand-challenges) detail what could be done 
with exascale computers.

In December 2009, Rick Stevens and Andy 
White led a workshop on architectures and 
technology for extreme-scale computing that 
brought together scientists and computer sci-
entists from industry, national laboratories, and 
universities to examine the challenges, some of 
the potential solutions, and the research that 
would need to be done to achieve exascale com-
puting by 2018. A key concept is the codesign 
of the hardware, system software, and applica-
tions software to assure that they all work to-
gether. Three codesign teams have been funded 
to study materials in extreme environments, ad-
vanced reactors, and combustion in turbulence 
(http://science.energy.gov/ascr/research/scidac/
co-design). There’s also an ongoing internation-
al effort in software design (www.exascale.org).

If you don’t expect to be computing at the 
exascale level, is there a reason for you to be 
interested in the current issue? We think so—
because the technology that will be needed for 
exascale will require great improvements in 
energy efficiency and cost-effectiveness at the 
node level, this technology might also wind up 
on your desktop, and departmental systems at 
the petaflop/s level might become affordable. 
Although your level of concurrency might be 
smaller than required for exascale, it will be 
much higher than what’s required on today’s 
desktops.

Contributions to This Special Issue
We kick off this issue with “Exascale Comput-
ing Trends: Adjusting to the ‘New Normal’ 
for Computer Architecture,” by Peter Kogge 
and John Shalf. Kogge chaired a 2008 DAR-
PA-funded study on technology challenges of 
building exascale systems (www.cse.nd.edu/ 
Reports/2008/TR-2008-13.pdf). Kogge and 
Shalf detail why the single-processor speed in-
creases we’ve seen in the past won’t continue, 
and how the key to exascale computing is a 
vastly increased level of parallelism and much 
greater attention to data movement. They also 
discuss how many picojoules a floating-point 
operation or a dynamic RAM (DRAM) access 
cost now and in the future.

The second article—“Programming for Ex-
ascale Computers,” by Bill Gropp and Marc 
Snir—deals with the quite significant chal-
lenges ahead for application developers who 
want to know whether their codes will need to 
be completely rewritten. At this point, the an-
swer isn’t completely clear, but Gropp and Snir 
summarize what programmers will be dealing 
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with, what approaches will be feasible, and the 
pros and cons of trying to evolve current code 
to exascale hardware.

Finally, in “PaRSEC: Exploiting Heteroge-
neity to Enhance Scalability,” George Bosilca 
and his colleagues describe a runtime system 
and technique for programming that help the 
application programmer spend less time con-
centrating on the details of the hardware and 
how the data needs to be distributed among 
the processors. This approach to program-
ming should be a real help when dealing 
with heterogenous compute nodes, and can be 

tested and used well before the dawn of exas-
cale hardware.

W e hope that you enjoy this is-
sue, and we can assure you 
that you’ll be hearing about 
exascale computing for quite 

some time. Although the authors for this spe-
cial issue topic are currently working in the 
US, the effort to produce hardware and soft-
ware for computing at the exascale level is an 
international one. We wouldn’t be surprised 

ExascalE systEm shift to 
RuntimE tEchnologiEs

A s Exascale systems emerge around the end of this 
decade, two distinct forms are likely to be devel-

oped: an incremental extension of conventional hetero-
geneous systems and a new class of architectures with 
lightweight cores and tightly integrated networking 
supporting some form of global address space. The 
first class will provide important extensions in support 
of continuity and legacy codes and skill sets. The latter 
class will incorporate and integrate innovative structures, 
semantics, and mechanisms to achieve greater scalabil-
ity, efficiency, generality, portability, and user produc-
tivity. It will also embody new principles for superior 
reliability and power consumption. But both classes of 
computing systems are likely to share one major innova-
tion in common—the shift from pure static resource 
management and task scheduling to dynamic adaptive 
control. Currently, many complex applications measur-
ing performance may exhibit poor efficiencies. Runtime 
software can support introspection to use continuing 
information about system execution to guide its control 
and improve operation.

Runtime system software provides a layer of dynamic 
execution control between the application programming 
interface (and its compiler) and the physical computing 
platform as represented by the operating system. While 
runtime systems have a long history of yielding high-level 
system abstractions for many programming models, with 
a few exceptions it hasn’t found favor in high-performance 
computing. This is due to inherent overheads and the 
assumption that adding more work (the runtime actions) 
to reduce time to solution is contradictory. However, 
recent evidence associated with some classes of applica-
tion algorithms has suggested that opportunities exist in 
which runtime systems may in fact be capable of improv-
ing overall performance. It’s noted that while well-tuned 
benchmarks may deliver high performance efficiencies 

such as High Performance Linpack (HPL), many real-world 
applications will deliver less than 10 percent floating-point 
efficiency.

Although a runtime system might add some additional 
work, this could be much less than the potential perfor-
mance advantage gained through its use. Global barri-
ers, especially within the Bulk Synchronous Parallel (BSP) 
modality, permit progress in computation to proceed 
at the rate of the slowest thread at each stage. Yet in 
many cases, any single task in the following stage is only 
dependent on a small part of the work preceding it; its 
precedence constraints. There are complicated interrela-
tionships among the latencies of remote access, the over-
heads of thread scheduling and context switching, the 
management of locality both laterally (across nodes) and 
vertically (through the memory hierarchy), the control of 
addressing, and the order of thread scheduling. Ideally, 
the critical path of execution (the longest single sequence 
of operations from start to culmination) will receive high-
est priority of resource access. The management and jug-
gling of all these operational variables is the venue of the 
runtime system and the performance opportunity space 
in which it controls system execution in support of user 
applications.

It might not be easy to schedule applications which 
exhibit varying resource demands per local task at compile 
(or load) time. Such dynamic problems require adaptive 
methods to schedule tasks and resources on demand to 
achieve higher efficiency. Early methods of load balancing, 
over subscription, work stealing, and inspector-executor 
approaches have explored this space with some success 
for specific problems. Charm++ is another early effort, 
 embodying even more adaptive mechanisms, with par-
ticular focus on molecular dynamics. More recently, there 
has been an increasing interest in the development and 
use of runtime software packages. Examples include Cilk, 
Thread Building Blocks (TBB), High-Performance ParalleX 
(HPX), Open Common Runtime (OCR), and X10 runtime, 
among others.
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to see the first exascale computer produced 
 outside the US. 
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