
G u e s t E d i t o r s ’
I n t r o d u c t i o n

12 Computing in SCienCe & engineering

Exascale Computing

T he history of high-performance com-
puting (HPC) spans almost seven
decades, and has seen a factor of
10 trillion increase in speed since

the first-generation vacuum-tube-based von
Neumann computers of the late 1940s. This
extraordinary advance greatly exceeds that of
any other human technology. And it’s not that
we initially got it wrong and then later finally
got it right. Rather, each decade saw a perfor-
mance gain of at least two orders of magnitude,

steadily harnessing the accumulating advances
of the basic enabling device technologies in
logic, memory, and data communication. De-
spite this apparent consistency of progress, the
technologies driving performance growth as
well as the innovations in programming models
and operational methods that have delivered it
have changed markedly and repeatedly to sus-
tain this growth.

In the most recent epoch, after 20 years of im-
provements to the multiprocessor, distributed-
memory message-passing strategy, significant
changes are taking place, again driven by tech-
nological change. Teraflops were achieved in
1997 and Petaflops in 2008. This last milestone
was accomplished without significant disrup-
tion to programmers employing conventional

1521-9615/13/$31.00 © 2013 ieee

CopubliShed by the ieee CS and the aip

Steven Gottlieb and Thomas Sterling
Indiana University

CISE-15-6-Gei.indd 12 05/12/13 7:44 PM

november/deCember 2013 13

methods, despite a dramatic change occurring
in 2004/2005, in which the speed of the individ-
ual processor core flat-lined due to limitations
in power consumption. However, it was clear,
even then, that scaling current technologies
to exaflops through incremental extensions of
past practices would consume much too much
power to be practical. This special issue of CiSE
addresses the deep questions of the challenges
currently facing sustained performance growth
to exascale and beyond, the opportunities to
do so, the new architecture designs that might
make it possible, and the programming models
and support software methods that will employ
it for future applications in science, technology,
commerce, and defense.

What the Future Holds—and Still Needs
The advent of multicore sockets and GPU ac-
celerators offer possible performance growth
through raw semiconductor technology improve-
ments, but also impose unprecedented challenges
in efficiency, scaling, power, and reliability, as well
as programmer productivity. Achieving exaflops
speed will require new programming techniques,
but what of the billions of dollars of investment
in past software development and mainstream
markets? How will the field of HPC continue
to leverage the strength of COTS technolo-
gies and the economy of scale of mass-produced
computing and memory components if exascale
may need something different? Will the highest-
end systems become increasingly limited in the
classes of problems they can serve, or will new ex-
ecution models, architectures, and programming
techniques evolve to meet these challenges? This
special issue of CiSE brings together expert views
to illuminate the possible approaches.

Before we get more deeply into the challeng-
es of exascale computing, we should talk brief-
ly about the need. From November 2008 to
 October 2009, there was a series of eight Scien-
tific Grand Challenges Workshops (sponsored
by the US Department of Energy Office of
Advanced Scientific Computing Research and
coordinated by Paul Messina) that asked scien-
tists to assess their need for exascale computing.
The workshops covered climate science, high-
energy physics, nuclear physics, fusion en-
ergy, nuclear energy, biology, material science
and chemistry, and national security. The work-
shop reports (http://science.energy.gov/ascr/
news-and-resources/workshops-and-conferences/
grand-challenges) detail what could be done
with exascale computers.

In December 2009, Rick Stevens and Andy
White led a workshop on architectures and
technology for extreme-scale computing that
brought together scientists and computer sci-
entists from industry, national laboratories, and
universities to examine the challenges, some of
the potential solutions, and the research that
would need to be done to achieve exascale com-
puting by 2018. A key concept is the codesign
of the hardware, system software, and applica-
tions software to assure that they all work to-
gether. Three codesign teams have been funded
to study materials in extreme environments, ad-
vanced reactors, and combustion in turbulence
(http://science.energy.gov/ascr/research/scidac/
co-design). There’s also an ongoing internation-
al effort in software design (www.exascale.org).

If you don’t expect to be computing at the
exascale level, is there a reason for you to be
interested in the current issue? We think so—
because the technology that will be needed for
exascale will require great improvements in
energy efficiency and cost-effectiveness at the
node level, this technology might also wind up
on your desktop, and departmental systems at
the petaflop/s level might become affordable.
Although your level of concurrency might be
smaller than required for exascale, it will be
much higher than what’s required on today’s
desktops.

Contributions to This Special Issue
We kick off this issue with “Exascale Comput-
ing Trends: Adjusting to the ‘New Normal’
for Computer Architecture,” by Peter Kogge
and John Shalf. Kogge chaired a 2008 DAR-
PA-funded study on technology challenges of
building exascale systems (www.cse.nd.edu/
Reports/2008/TR-2008-13.pdf). Kogge and
Shalf detail why the single-processor speed in-
creases we’ve seen in the past won’t continue,
and how the key to exascale computing is a
vastly increased level of parallelism and much
greater attention to data movement. They also
discuss how many picojoules a floating-point
operation or a dynamic RAM (DRAM) access
cost now and in the future.

The second article—“Programming for Ex-
ascale Computers,” by Bill Gropp and Marc
Snir—deals with the quite significant chal-
lenges ahead for application developers who
want to know whether their codes will need to
be completely rewritten. At this point, the an-
swer isn’t completely clear, but Gropp and Snir
summarize what programmers will be dealing

CISE-15-6-Gei.indd 13 05/12/13 7:44 PM

14 Computing in SCienCe & engineering

with, what approaches will be feasible, and the
pros and cons of trying to evolve current code
to exascale hardware.

Finally, in “PaRSEC: Exploiting Heteroge-
neity to Enhance Scalability,” George Bosilca
and his colleagues describe a runtime system
and technique for programming that help the
application programmer spend less time con-
centrating on the details of the hardware and
how the data needs to be distributed among
the processors. This approach to program-
ming should be a real help when dealing
with heterogenous compute nodes, and can be

tested and used well before the dawn of exas-
cale hardware.

W e hope that you enjoy this is-
sue, and we can assure you
that you’ll be hearing about
exascale computing for quite

some time. Although the authors for this spe-
cial issue topic are currently working in the
US, the effort to produce hardware and soft-
ware for computing at the exascale level is an
international one. We wouldn’t be surprised

ExascalE systEm shift to
RuntimE tEchnologiEs

A s Exascale systems emerge around the end of this
decade, two distinct forms are likely to be devel-

oped: an incremental extension of conventional hetero-
geneous systems and a new class of architectures with
lightweight cores and tightly integrated networking
supporting some form of global address space. The
first class will provide important extensions in support
of continuity and legacy codes and skill sets. The latter
class will incorporate and integrate innovative structures,
semantics, and mechanisms to achieve greater scalabil-
ity, efficiency, generality, portability, and user produc-
tivity. It will also embody new principles for superior
reliability and power consumption. But both classes of
computing systems are likely to share one major innova-
tion in common—the shift from pure static resource
management and task scheduling to dynamic adaptive
control. Currently, many complex applications measur-
ing performance may exhibit poor efficiencies. Runtime
software can support introspection to use continuing
information about system execution to guide its control
and improve operation.

Runtime system software provides a layer of dynamic
execution control between the application programming
interface (and its compiler) and the physical computing
platform as represented by the operating system. While
runtime systems have a long history of yielding high-level
system abstractions for many programming models, with
a few exceptions it hasn’t found favor in high-performance
computing. This is due to inherent overheads and the
assumption that adding more work (the runtime actions)
to reduce time to solution is contradictory. However,
recent evidence associated with some classes of applica-
tion algorithms has suggested that opportunities exist in
which runtime systems may in fact be capable of improv-
ing overall performance. It’s noted that while well-tuned
benchmarks may deliver high performance efficiencies

such as High Performance Linpack (HPL), many real-world
applications will deliver less than 10 percent floating-point
efficiency.

Although a runtime system might add some additional
work, this could be much less than the potential perfor-
mance advantage gained through its use. Global barri-
ers, especially within the Bulk Synchronous Parallel (BSP)
modality, permit progress in computation to proceed
at the rate of the slowest thread at each stage. Yet in
many cases, any single task in the following stage is only
dependent on a small part of the work preceding it; its
precedence constraints. There are complicated interrela-
tionships among the latencies of remote access, the over-
heads of thread scheduling and context switching, the
management of locality both laterally (across nodes) and
vertically (through the memory hierarchy), the control of
addressing, and the order of thread scheduling. Ideally,
the critical path of execution (the longest single sequence
of operations from start to culmination) will receive high-
est priority of resource access. The management and jug-
gling of all these operational variables is the venue of the
runtime system and the performance opportunity space
in which it controls system execution in support of user
applications.

It might not be easy to schedule applications which
exhibit varying resource demands per local task at compile
(or load) time. Such dynamic problems require adaptive
methods to schedule tasks and resources on demand to
achieve higher efficiency. Early methods of load balancing,
over subscription, work stealing, and inspector-executor
approaches have explored this space with some success
for specific problems. Charm++ is another early effort,
 embodying even more adaptive mechanisms, with par-
ticular focus on molecular dynamics. More recently, there
has been an increasing interest in the development and
use of runtime software packages. Examples include Cilk,
Thread Building Blocks (TBB), High-Performance ParalleX
(HPX), Open Common Runtime (OCR), and X10 runtime,
among others.

CISE-15-6-Gei.indd 14 09/12/13 7:13 PM

november/deCember 2013 15

to see the first exascale computer produced
 outside the US.

Steven Gottlieb is a distinguished professor of physics
at Indiana University, where he directs the PhD
minor in scientific computing. He’s also the Associ-
ate Editor in Chief of CiSE. His research is in lattice
 quantum chromodynamics (QCD). Gottlieb has a
PhD in physics from Princeton University. Contact
him at sg@indiana.edu.

Thomas Sterling is a professor of informatics and
computing at Indiana University. He also serves as
the executive associate director of the Center for Re-
search in Extreme-Scale Technologies (CREST) and
as its chief scientist. He has conducted research in
parallel computing systems in industry, academia,

and government centers, and currently leads a
team of researchers at Indiana University to derive
the advanced ParalleX execution model and devel-
op a proof-of-concept reference implementation to
 enable a new generation of extreme-scale comput-
ing systems and applications. Sterling has a PhD in
computer science from MIT. He’s the recent inaugu-
ral winner of the Exascale Vanguard Award. Contact
him at tron@indiana.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

KEEP YOUR
COPY OF
IEEE SOFTWARE
FOR YOURSELF!

Give subscriptions

to your colleagues

or as graduation or

promotion gifts—

way better than a tie!

IEEE Software

is the authority on

translating software

theory into practice.

www.computer.org/

software/subscribe

www.computer.org/software

cyber Dumpster Diving // 9

the airbus a380’s cabin software // 21

programming with ghosts // 74

January/february 2013

www.computer.org/software

from minecraft to minds // 11

Landing a spacecraft on mars // 83

Design patterns: magic or myth? // 87

marcH/aprIL 2013

www.computer.org/software

storytelling for software
professionals // 9

In Defense of Boring // 16

Beyond Data mining // 92

may/June 2013

CISE-15-6-Gei.indd 15 05/12/13 7:44 PM

