
F r o m
T h e E d i t o r s

4	 Copublished by the IEEE CS and the AIP	 1521-9615/13/$31.00 © 2013 IEEE� Computing in Science & Engineering

F r o m
T h e E d i t o r s

I recently participated in a federal agency workshop to

identify ways to improve the productivity of science-based

high-performance computing (HPC) software applications. The

agency is concerned that HPC applications will not be available

to utilize next-generation high-performance computers—
in the exascale range (approximately 1018 floating-
point operations [FLOPs] per second). The computing
power now becoming available (1015−1018 FLOPs) will
give society the unprecedented capability to use HPC
to solve some of the hardest technical problems fac-
ing the world today. This computing power will let us
simultaneously

•	 utilize highly accurate solution methods,
•	 include all of the scientific effects we know to be

important,
•	 validate the correctness of the models for those effects

and quantify their uncertainties,
•	model full-scale systems, and
•	 achieve reasonable problem turnaround times.

Over the next few years, the lower end of this comput-
ing power will become available to the general scientific
and engineering community, not just to a handful of
major research centers.

The impact of HPC is already being felt. It’s
enabling major advances in scientific research and
engineering and bringing about a paradigm shift in
research and engineering methods. To name a few,
science-based HPC applications are beginning to be
able to

•	 predict the weather with greater accuracy than before
(including the unusually complex path of major storm
systems such as Hurricane Sandy);

•	 improve automotive safety through crash simulations;
•	 increase the fuel efficiency and reduce the noise of new

commercial aircraft (for example, the Boeing 787 versus
the 777), and

•	 analyze data from large telescopes and satellites to iden-
tify planets orbiting other stars.

These applications, together with high-performance
computers, are enabling significant advances in scientific
research and engineering design. For example, theoreti-
cal chemistry is now done with large-scale HPC computer
applications such as the General Atomic and Molecu-
lar Electronic Structure System (GAMESS; www.msg.
ameslab.gov/gamess), Gaussian (www.gaussian.com),
and NWChem (www.nwchem-sw.org). The impact of
computational chemistry was recently recognized by
the 2013 Nobel Prize in Chemistry. The discovery of
the Higgs boson required the use of HPC to analyze
large experimental datasets to conclusively identify the
small number of decays of a Higgs boson out of many,
many decays of other collision products.

Clearly, HPC will continue to revolutionize scientific
research. But while there are many challenges for HPC,
there are initiatives that are emerging for handling these
challenges.

HPC Challenges
HPC isn’t only computers or software applications.
Successful HPC requires an ecosystem of sponsors,
subject matter expert users, software applications,
validation experiments and data, high-speed networks,
high-performance computers, and data storage facili-
ties. Without every single one of these, the system is
crippled. Today, the weakest link is software, partly be-
cause each technical area generally requires a different
software application. The study of protein folding, air-
craft performance, weather forecasting, and other com-
plex phenomena require different software applications
even if they can all take advantage of the same networks,

The Changing Face of Scientific and
Engineering Computing
By Douglass Post

CISE-15-6-EIC.indd 4 04/12/13 5:05 PM

November/December 2013� 5

computers, and data storage facilities. There are three
additional major challenges:

•	 efficiently exploiting next-generation massively parallel
complex computer architectures with special-purpose
processors;

•	 developing, deploying, and supporting software
applications that can provide accurate solutions for com-
plex problems easily and quickly; and

•	 ensuring sponsor support over the HPC ecosystem’s
whole life cycle.

Overcoming the “power wall” is the first challenge.
For approximately the last 30 years, individual pro-
cessor clock speeds have doubled every 18 months—a
consequence of “Moore’s law.” After 2005, power dis-
sipation limits have clamped processor clock speeds to
about 2 GHz. Unable to increase the clock speed, chip
manufacturers have continued to improve computer
performance with multiple processors on each chip
(multicore), and special-purpose processors (such
as general-purpose graphics processing units, or
GPGPUs). This improves performance at the cost of
increased computer and programming complexity.
Applications now must be capable of running efficiently
on massively parallel computers with a mix of heteroge-
neous processors.

The second challenge is to integrate the many dif-
ferent scientific effects that govern the system of inter-
est’s behavior. Practical algorithms for each important
effect must be developed and integrated into a single
application. Successful development generally re-
quires large, multidisciplinary, non-collocated groups
from different organizations and funding sources,
working together as a tightly knit team. These are
all tremendously demanding scientific, coordination,
and management challenges. The efforts of small and
large groups of highly skilled staff must be coordinat-
ed closely. This is causing a major paradigm change
in the structure and sociology of application develop-
ment teams. There’s a profound shift from small- and
medium-sized applications developed by small groups
primarily for their own research, to large-scale appli-
cations used by scientists and engineers outside the
development group. These external users lack in-
timate knowledge of the code’s strengths and weak-
nesses. Representative examples of such large-scale
codes include the astrophysics Flash code (www.flash.

uchicago.edu), the already mentioned computational
chemistry code GAMESS, and the weather-prediction
code Weather Research and Forecasting Model (WRF;
www.wrf-model.org). Such codes require high levels
of software quality, effective software development
practices and processes, and agile software project
management. Verification and validation, robustness,
usability, documentation, problem set up, and analysis
of results and user support all assume much greater
importance than for small group research codes. Al-
though there are examples of success, there are many
that didn’t succeed due to resource limitations, inad-
equate attention to the aforementioned issues, and
less technical capability and fewer features than the
competition.

The third challenge is due to the expense and long
life cycle of software development and the entire HPC
ecosystem. In the past (see Figure 1), research sponsors
seldom explicitly funded the development of small-
scale applications. They funded the scientific research
but mostly left the researcher to scrounge the resources
needed to develop the computational tool. Develop-
ment of the application tool was done to facilitate the
developer’s research, not to build a tool for the use of
others. For larger-scale applications with a large user
community, the time and effort required to develop,
deploy, and sustain these applications is too large to be
covered as part of a few research grants. The life cycle
of such codes is typically 20–30 years or longer, and
involves budgets of $5 million or more per year—often
much more. Even explicit code development projects,
such as the Department of Energy’s Scientific Discov-
ery through Advanced Computing (SciDAC) projects
have been funded for five years at most. This funding
paradigm must change to provide support for the entire
software application life cycle, or only a few applica-
tions that can exploit next generation computers will
exist, and the full benefit of these computers will not
be realized.

Welcome Aboard!

CiSE welcomes the following
new editorial board member.

Jeffrey Carver is an associate
professor of computer science at
the University of Alabama. His
expertise is in empirical software
engineering, and his research
focuses on the study and applica-
tion of appropriate software engi-

neering practices to the development of computational
science and engineering software. Carver has a PhD
in computer science from the University of Maryland,
College Park. Contact him at carver@cs.ua.edu.

CISE-15-6-EIC.indd 5 04/12/13 5:05 PM

F r o m T h e E d i t o r s

6� Computing in Science & Engineering

Understanding Requirements
and Building Consensus
The HPC ecosystem, including the applications, per-
forms similar functions as an experimental research,
test, or design facility. Sponsors already understand
what’s required to design, build, operate, and sustain
physical facilities. HPC ecosystems, including the
software applications, have analogous requirements.
As noted, the development, deployment, and sustain-
ment of large-scale scientific software applications
cost at least $5 to $10 million per year for the use-
ful life of the application (often 30 or more years).
If the application is successful in attracting a very
large user community (and thus, it’s really success-
ful), the support cost can be even larger. The remain-
ing HPC ecosystem also needs support. If adequate
financial support doesn’t exist, society doesn’t get the
maximum potential benefit. The support must also be
continuous, especially software application support.
Complex scientific and engineering software is a living
intellectual construct. If a software application isn’t con-
tinuously supported, it dies as the people working on the
code scatter to other endeavors when the support with-
ers. Those people generally don’t come back if support
is restored.

Engaging sponsor support requires a convincing
business model. It’s important to demonstrate that
HPC ecosystems, including the applications, can en-
able research or design to be done more quickly, more
efficiently, and more effectively than with conventional
methods. In other words, it’s important to see a tan-
gible return on investment. In some cases, computing
can enable research and testing that can’t be done with
physical systems (such as weather and climate fore-
casting; or testing many candidate design options for
very large, complex systems). Scientists and engineers
must aggressively “market” their ideas and vision for
the use of HPC to improve research and engineering
outcomes. In the past, they’ve concentrated on the
quality of the science and let that speak for itself. But,
in the future, they’ll need to focus on communicating
the scientific and engineering impact and the ability to
reduce costs, schedule, risks, and performance short-
falls in their research and in the engineering design of
new products.

F ortunately, US funding agencies and industry are
becoming aware of the challenges and are moving

to address them. A limited number of large-scale com-
puting projects have been launched recently by sev-
eral agencies. In 2010, the US Department of Energy
recently launched the $20 million/year Consortium
for Advanced Simulation of LWRs (CASL; www.casl.
gov), led by the Oak Ridge National Laboratory. In
2008, the US Department of Defense (DoD) launched
a similar scale project called Computational Research
and Engineering Acquisition Tools and Environments
(CREATE) to develop, deploy, and support physics-
based computational engineering tools for the design
and analysis of DoD weapons systems (www.hpcmo.
hpc.mil/cms2/index.php/aboutcreate). Industry is also
beginning to utilize multi-physics design tools, and
there are many independent software vendor products
that are beginning to provide multi-physics simulations
of smaller-scale devices and systems. The workshop I
mentioned at the beginning is evidence that progress is
being made, and that there’s a path forward for high-end
scientific and engineering computing to have a bright
and productive future. However, success is contingent
on sponsors willing to provide the required funding for
the HPC ecosystem and the time needed to develop the
application software.�

Douglass Post is the chief scientist of the US Department of

Defense (DoD) High-Performance Computing Modernization Pro-

gram (HPCMP) and an IPA from the Carnegie Mellon University

Software Engineering Institute, where he’s a member of the senior

technical staff. He initiated and leads the DoD HPCMP Computa-

tional Research and Engineering Acquisition Tools and Environ-

ments (CREATE) Program, a Tri-Service (Army, Navy, and Air Force)

DoD program to develop and deploy physics-based HPC engineer-

ing tools for the design of ships, air vehicles, and RF antennas. Post

has a PhD in physics from Stanford University. He’s a Fellow of the

American Nuclear Society, the American Physical Society, and IEEE.

He recently received the 2011 Gold Medal from the American Soci-

ety of Naval Engineers, their highest annual award. Contact him at

douglass.post@hpc.mil.

Selected articles and columns from IEEE Computer Society
publications are also available for free at http://ComputingNow.

computer.org.

1960s

Developers
Users

1990s

Developers Users

Figure 1. The software development life cycle for scientific and
engineering codes is changing. Research codes are generally
developed and used by the same team. General-use codes are
developed by a group much smaller than the user base.

CISE-15-6-EIC.indd 6 04/12/13 5:06 PM

