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I recently participated in a federal agency workshop to 

identify ways to improve the productivity of science-based 

high-performance computing (HPC) software applications. The 

agency is concerned that HPC applications will not be available 

to utilize next-generation high-performance computers— 
in the exascale range (approximately 1018 floating-
point operations [FLOPs] per second). The computing 
power now becoming available (1015−1018 FLOPs) will 
give society the unprecedented capability to use HPC 
to solve some of the hardest technical problems fac-
ing the world today. This computing power will let us 
simultaneously

•	 utilize highly accurate solution methods,
•	 include all of the scientific effects we know to be 

important,
•	 validate the correctness of the models for those effects 

and quantify their uncertainties,
•	model full-scale systems, and
•	 achieve reasonable problem turnaround times.

Over the next few years, the lower end of this comput-
ing power will become available to the general scientific 
and engineering community, not just to a handful of 
major research centers. 

The impact of HPC is already being felt. It’s 
enabling major advances in scientific research and 
engineering and bringing about a paradigm shift in 
research and engineering methods. To name a few, 
science-based HPC applications are beginning to be 
able to

•	 predict the weather with greater accuracy than before 
(including the unusually complex path of major storm 
systems such as Hurricane Sandy);

•	 improve automotive safety through crash simulations; 
•	 increase the fuel efficiency and reduce the noise of new 

commercial aircraft (for example, the Boeing 787 versus 
the 777), and

•	 analyze data from large telescopes and satellites to iden-
tify planets orbiting other stars.

These applications, together with high-performance 
computers, are enabling significant advances in scientific 
research and engineering design. For example, theoreti-
cal chemistry is now done with large-scale HPC computer 
applications such as the General Atomic and Molecu-
lar Electronic Structure System (GAMESS; www.msg.
ameslab.gov/gamess), Gaussian (www.gaussian.com),  
and NWChem (www.nwchem-sw.org). The impact of 
computational chemistry was recently recognized by 
the 2013 Nobel Prize in Chemistry. The discovery of 
the Higgs boson required the use of HPC to analyze 
large experimental datasets to conclusively identify the 
small number of decays of a Higgs boson out of many, 
many decays of other collision products.

Clearly, HPC will continue to revolutionize scientific 
research. But while there are many challenges for HPC, 
there are initiatives that are emerging for handling these 
challenges.

HPC Challenges
HPC isn’t only computers or software applications. 
Successful HPC requires an ecosystem of sponsors, 
subject matter expert users, software applications, 
validation experiments and data, high-speed networks, 
high-performance computers, and data storage facili-
ties. Without every single one of these, the system is 
crippled. Today, the weakest link is software, partly be-
cause each technical area generally requires a different 
software application. The study of protein folding, air-
craft performance, weather forecasting, and other com-
plex phenomena require different software applications 
even if they can all take advantage of the same networks, 
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computers, and data storage facilities. There are three 
additional major challenges:

•	 efficiently exploiting next-generation massively parallel 
complex computer architectures with special-purpose 
processors;

•	 developing, deploying, and supporting software 
applications that can provide accurate solutions for com-
plex problems easily and quickly; and

•	 ensuring sponsor support over the HPC ecosystem’s 
whole life cycle.

Overcoming the “power wall” is the first challenge. 
For approximately the last 30 years, individual pro-
cessor clock speeds have doubled every 18 months—a 
consequence of “Moore’s law.” After 2005, power dis-
sipation limits have clamped processor clock speeds to 
about 2 GHz. Unable to increase the clock speed, chip 
manufacturers have continued to improve computer 
performance with multiple processors on each chip 
(multicore), and special-purpose processors (such  
as general-purpose graphics processing units, or 
GPGPUs). This improves performance at the cost of 
increased computer and programming complexity. 
Applications now must be capable of running efficiently 
on massively parallel computers with a mix of heteroge-
neous processors.

The second challenge is to integrate the many dif-
ferent scientific effects that govern the system of inter-
est’s behavior. Practical algorithms for each important 
effect must be developed and integrated into a single 
application. Successful development generally re-
quires large, multidisciplinary, non-collocated groups 
from different organizations and funding sources, 
working together as a tightly knit team. These are 
all tremendously demanding scientific, coordination, 
and management challenges. The efforts of small and 
large groups of highly skilled staff must be coordinat-
ed closely. This is causing a major paradigm change 
in the structure and sociology of application develop-
ment teams. There’s a profound shift from small- and 
medium-sized applications developed by small groups 
primarily for their own research, to large-scale appli-
cations used by scientists and engineers outside the 
development group. These external users lack in-
timate knowledge of the code’s strengths and weak-
nesses. Representative examples of such large-scale 
codes include the astrophysics Flash code (www.flash.

uchicago.edu), the already mentioned computational 
chemistry code GAMESS, and the weather-prediction 
code Weather Research and Forecasting Model (WRF; 
www.wrf-model.org). Such codes require high levels 
of software quality, effective software development 
practices and processes, and agile software project 
management. Verification and validation, robustness, 
usability, documentation, problem set up, and analysis 
of results and user support all assume much greater 
importance than for small group research codes. Al-
though there are examples of success, there are many 
that didn’t succeed due to resource limitations, inad-
equate attention to the aforementioned issues, and 
less technical capability and fewer features than the 
competition.

The third challenge is due to the expense and long 
life cycle of software development and the entire HPC 
ecosystem. In the past (see Figure 1), research sponsors 
seldom explicitly funded the development of small-
scale applications. They funded the scientific research 
but mostly left the researcher to scrounge the resources 
needed to develop the computational tool. Develop-
ment of the application tool was done to facilitate the 
developer’s research, not to build a tool for the use of 
others. For larger-scale applications with a large user 
community, the time and effort required to develop, 
deploy, and sustain these applications is too large to be 
covered as part of a few research grants. The life cycle 
of such codes is typically 20–30 years or longer, and 
involves budgets of $5 million or more per year—often 
much more. Even explicit code development projects, 
such as the Department of Energy’s Scientific Discov-
ery through Advanced Computing (SciDAC) projects 
have been funded for five years at most. This funding 
paradigm must change to provide support for the entire 
software application life cycle, or only a few applica-
tions that can exploit next generation computers will 
exist, and the full benefit of these computers will not 
be realized.
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Understanding Requirements  
and Building Consensus
The HPC ecosystem, including the applications, per-
forms similar functions as an experimental research, 
test, or design facility. Sponsors already understand 
what’s required to design, build, operate, and sustain 
physical facilities. HPC ecosystems, including the 
software applications, have analogous requirements. 
As noted, the development, deployment, and sustain-
ment of large-scale scientific software applications 
cost at least $5 to $10 million per year for the use-
ful life of the application (often 30 or more years). 
If the application is successful in attracting a very 
large user community (and thus, it’s really success-
ful), the support cost can be even larger. The remain-
ing HPC ecosystem also needs support. If adequate 
financial support doesn’t exist, society doesn’t get the 
maximum potential benefit. The support must also be 
continuous, especially software application support. 
Complex scientific and engineering software is a living 
intellectual construct. If a software application isn’t con-
tinuously supported, it dies as the people working on the 
code scatter to other endeavors when the support with-
ers. Those people generally don’t come back if support 
is restored.

Engaging sponsor support requires a convincing 
business model. It’s important to demonstrate that 
HPC ecosystems, including the applications, can en-
able research or design to be done more quickly, more 
efficiently, and more effectively than with conventional 
methods. In other words, it’s important to see a tan-
gible return on investment. In some cases, computing 
can enable research and testing that can’t be done with 
physical systems (such as weather and climate fore-
casting; or testing many candidate design options for 
very large, complex systems). Scientists and engineers 
must aggressively “market” their ideas and vision for 
the use of HPC to improve research and engineering 
outcomes. In the past, they’ve concentrated on the 
quality of the science and let that speak for itself. But, 
in the future, they’ll need to focus on communicating 
the scientific and engineering impact and the ability to 
reduce costs, schedule, risks, and performance short-
falls in their research and in the engineering design of 
new products.

F ortunately, US funding agencies and industry are 
becoming aware of the challenges and are moving 

to address them. A limited number of large-scale com-
puting projects have been launched recently by sev-
eral agencies. In 2010, the US Department of Energy 
recently launched the $20 million/year Consortium 
for Advanced Simulation of LWRs (CASL; www.casl.
gov), led by the Oak Ridge National Laboratory. In 
2008, the US Department of Defense (DoD) launched 
a similar scale project called Computational Research 
and Engineering Acquisition Tools and Environments 
(CREATE) to develop, deploy, and support physics-
based computational engineering tools for the design 
and analysis of DoD weapons systems (www.hpcmo.
hpc.mil/cms2/index.php/aboutcreate). Industry is also 
beginning to utilize multi-physics design tools, and 
there are many independent software vendor products 
that are beginning to provide multi-physics simulations 
of smaller-scale devices and systems. The workshop I 
mentioned at the beginning is evidence that progress is 
being made, and that there’s a path forward for high-end 
scientific and engineering computing to have a bright 
and productive future. However, success is contingent 
on sponsors willing to provide the required funding for 
the HPC ecosystem and the time needed to develop the 
application software.�
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Figure 1. The software development life cycle for scientific and 
engineering codes is changing. Research codes are generally 
developed and used by the same team. General-use codes are 
developed by a group much smaller than the user base.
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