
2	 This article has been peer-reviewed.� Computing in Science & Engineering

S c i e n c E D a t a
M a n a g e m e n t

Current data-management systems and analysis tools fail to meet scientists’ data-intensive
needs. A “data vault” approach lets researchers effectively and efficiently explore and
analyze information.

Data Vaults: Database Technology
for Scientific File Repositories

I ncreased data volume from advanced ob-
servatory instruments and simulations has
led to data-intensive scientific domains.1
Scientific research requires efficient tech-

nology to manage and explore high-volume data
repositories.

Scientists organize this data primarily in multi
tier, filed-based repositories. Metadata encoded
in file names or managed by workflow systems let
researchers navigate and search for data. Custom-
ized tools process and analyze data by blending
data access, computational analysis, and visualiza-
tion. Increased data volume leads to limitations,
such as poor access and scalability, the inability to
incorporate new studies, and difficulty deploying
the customized software and scripting tools “near
the data.”2

Database management systems (DBMSs) ap-
proach these problems by processing information
at the data storage site, providing flexible declara-
tive queries that analyze and scale information
to terabytes (TBs) of data. Applying a database
system to a scientific application is difficult for
several reasons: a state-of-the-art DBMS requires
data to be loaded up front in the database, which
is costly and tedious. A DBMS doesn’t naturally

understand and support external file formats spe-
cific to scientific domains, and it provides only
limited processing capabilities for nonstandard
data types. Also, it doesn’t provide integrated ac-
cess to existing external libraries or tools for anal-
ysis and visualization.

To address these problems, we created the
MonetDB data vault—a virtual scientific data
warehouse that lets scientists simply attach an
external file repository to the DBMS using, for
example, a Uniform Resource Identifier (URI),
which efficiently and flexibly processes queries
over relevant data. The data vault keeps the data in
its original format and place, and simultaneously
allows transparent metadata and data access and
analysis using a query language. The data vault
relieves scientists’ pressure to migrate files, and
provides extended functionality and flexibility.
Moreover, high-level declarative query languages
(such as SQL and SCIentific Query Language, or
SciQL) let scientists experiment with novel algo-
rithms.3 Scientists can combine familiar external
analysis tools with efficient in-database process-
ing for complex operations, for which databases
have shown to be beneficial. Transparent, just-in-
time data loading reduces the “bootstrapping”
costs of adopting a database solution for existing
file repositories.

DBMSs and Data-Management
Architectures
Before we discuss the data vault’s functionalities,
let’s consider some important background infor-
mation. Software architectures for data-intensive

Milena Ivanova
Netherlands eScience Center
Martin Kersten, Stefan Manegold, and Yağız Kargın
Centrum Wiskunde and Informatica

1521-9615/13/$31.00 © 2013 IEEE

Copublished by the IEEE CS and the AIP

CISE-15-3-Ivanova.indd 2 6/4/13 7:37 PM

May/June 2013 � 3

scientific applications are diverse. Visual explora-
tion tools, workflow systems, or large collections
of programming scripts are often bound tightly
together. Here, we focus on the most common
data-management architectures and the role of
DBMSs for them.

File-Based Solutions
Figure 1a illustrates one solution that uses a file-
based repository for raw data and metadata. Most
scientists take this approach, particularly in a
small database’s “long tail,” for example, where
they might use spreadsheets.

Mixed Solutions
As file-based repositories grew, mixed solutions
became the larger, concerted scientific commu-
nity’s preferred tool to standardize file struc-
tures and manage metadata.4 Custom-designed,
mixed solutions often combine physical storage

directives with file-system organization, and en-
code crucial information in the file names. Such
solutions have important limitations, such as in-
flexibility when handling new requirements, in
efficient access, and scalability.

Mixed solutions create inconsistency, and need
different backup and access models, because they
distribute file maintenance between the DBMS
and the file system. Newer mixed solutions ad-
dress this problem by providing some form of
integration between DBMSs and file systems,
mainly by facilitating file management and main-
tenance. Examples include the Oracle Database
Filesystem (DBFS)5 and the Microsoft SQL Server
FileTable feature (http://msdn.microsoft.com/
en-us/library/ff929144.aspx) that store files in
the database and allow access to those files.

Although they can be used for any file type,
the main application is for files with unstructured
content (such as text and images) as needed by

Figure 1. Software architectures for scientific repositories. Possible solutions include (a) file-based, (b) mixed
solutions, (c) external tables, (d) Rasdaman, and (e) an object-relational (OR) database management system
(DBMS). (Rel = relational).

Raw dataMetadata

(b)(a)
Database File repository

Raw data
Metadata

Application

File repository

Application

Rel DBMS

SQL

Middleware

Metadata
Raw data

Metadata
Raw data

(c) (d) (e)

Application

Rel DBMS

Rasdaman

RaSQL

SQL

Database

Application

OR DBMS

SQL APIs

OR Database

External
data

Local
tables

External
tables

Database File repository/database

Application

SQL

Rel DBMS

CISE-15-3-Ivanova.indd 3 6/4/13 7:37 PM

4� Computing in Science & Engineering

content management systems. These systems typ-
ically limit file processing to a rudimentary, file-
system-like interface that can upload and retrieve
a file, update metadata, and manage directory
structures. This category of systems doesn’t aim
to process file content in-database, but rather to
efficiently provision files to external applications,
such as text processing and content management
systems.

Temporary DBMS Access to External Data
The SQL/MED (Management of External
Data) standard proposes the external table fea-
ture that lets users access non-SQL (external) data
as if it were in the database (see Figure 1c). The
feature is applied predominantly to external data
from other SQL-server vendors or in plain, comma-
separated values (CSV) files.

The Universal File Interface extension (UFI;
w w w.barrodale.com/universal-file-interface-ufi)
offers an alternative for researchers indexing and
querying external files. In addition to CSV files, it
offers UFI adapters for scientific formats, such as
network Common Data Form (NetCDF), Hierar-
chical Data Format 5 (HDF5), and Flexible Image
Transport System (FITS; http://heasarc.nasa.gov/
docs/heasarc/fits.html). Users must explicitly map
the files and their elements to virtual tables, which
they can then query from inside the database. Be-
cause users must specify the data they load and
provide the mapping rules to the system, it is the
user’s task to localize and select data from the ex-
ternal file repository.

Raw Data inside DBMS
Figures 1d and 1e present architectures in which
the DBMS stores and retrieves raw, nontabular
science data. These systems chop the data into
pieces and store it in Binary Large Object Block
(BLOB) table columns. RasDaMan provides
middleware with database services on multi
dimensional data structures, such as declarative
query language, indexing, and optimization.7 A
DBMS back end stores and retrieves array tiles
and indexes in BLOB form.

Modern object-relational systems offer vari-
ous extensions that store, index, query, and
retrieve complex data and their associated meta-
data. Examples are geospatial extenders for vec-
tor and raster data, such as Oracle Spatial and
Graph (www.oracle.com) and PostGIS (www.
postgis.org). The extenders come with various
subprograms—user-defined functions (UDFs)—
that offer common processing tasks over the new
data types.

In both scenarios, the user must first explicitly
ingest data into the system before the user can
submit a query. Query processing on the middle
layer or algorithms encapsulated in UDFs aren’t
(completely) integrated with the database inter-
nals, and the database optimizer might not be
aware of it.

SciDB is a DBMS for scalable processing of
array data.8 Arrays are the only data model that
SciDB supports, and query processing and opti-
mization take advantage of their superior seman-
tics and properties. Besides CSV files, the system
offers file loaders for popular scientific formats,
such as HDF5 and FITS. Like the previous exam-
ples, for all file types that SciDB supports, the user
must first load the data before SciDB can process
it. Currently, SciDB limits metadata support and
management to the array structure. The system
can’t represent accompanying tabular metadata,
such as sensor settings or experimental param-
eters encoded in the scientific formats. To do that,
the user could artificially represent the metadata,
for example, as a single-dimensional array that
mimics a key-value list. Consequently, the system
doesn’t offer an integrated view over array data
and tabular metadata, which would allow metadata-
driven query processing.

NoSQL Solutions
Using the Hadoop and MapReduce coding style,
programmers have been able to parallel process
large file repositories. This might be the best op-
tion for users addressing parallel problems such
as preprocessing, and aggregation over entire
datasets; however, these coding styles require
substantial resources. The MongoDB and Clou-
dera Distribution Including Hadoop (CDH)
products, provide increasingly good declarative
query languages and evolve toward a database
system. Conversely, all database vendors in-
clude the MapReduce functional style in their
products.

The main characteristics distinguishing the
data vault approach from other architectures are
its dynamic, on-demand data ingestion, support
of array-based scientific formats, and integrated
view over data and metadata that enables metadata-
driven query processing.

To fully exploit the data vault features, the
data vault should be a part of an array-enabled
DBMS, such as RasDaMan, SciDB, or object-
relational extenders for complex data types.
The MonetDB multiparadigm data model treats
both tables and arrays as first-class citizens. This
special treatment provides adequate support to

CISE-15-3-Ivanova.indd 4 6/4/13 7:37 PM

May/June 2013 � 5

array-based scientific formats, such as FITS,
TIFF (http://trac.osgeo.org/geotiff/), and the
Mini-Standard for the Exchange of Earthquake
Data (mSEED).9

Systems that process array-structured raw data
require users to statically and explicitly load data
prior to query processing. Users must separately
and often manually localize and select the raw
data they want to load into the database. Associa-
tive search queries over the metadata drive the
data vault to dynamically ingest external data.

Data Vault Architecture
Figure 2 illustrates the MonetDB data vault ar-
chitecture. It extends MonetDB’s software archi-
tecture with three components. The data vault
wrapper communicates with the external file re-
pository and accesses data, metadata, and external
libraries and tools. The data vault cache manager
takes care of the virtual data warehouse structure.
The data vault optimizer searches for the best query
execution plans over external data and drives dy-
namic data ingestion.

First, a user simply attaches an external reposi-
tory specifying its location. Upon attachment, the
system opens the repository metadata for brows-
ing and sophisticated searching. Typical scientific
formats encode a variety of metadata that enable
applications to interpret the file contents. Cor-
respondingly, scientific libraries usually offer
lightweight functions that extract this metadata
without touching the high-volume raw data. The
data vault metadata wrapper component accesses
the metadata and populates a predefined data
vault catalog. This lets users quickly identify rel-
evant datasets through declarative queries over
the catalog. The catalog structure varies depend-
ing on the external data format. The data vault
applies a lazy load approach to derived metadata
that must be computed over the raw datasets.
The application can piggyback the derivation on
the first query over the data, or it can exploit idle
CPU time.

Without further preparation and up-front data
ingestion, the user can start submitting queries
involving external data. For this purpose, the data
vault supplies a virtual database structure that
represents external data without actually loading
them. We will load the data in a dynamic, just-in-
time manner as needed by the queries. The data
wrapper component accesses external data and
creates internal representations in the data vault
cache.

The data vault uses a symbiotic query-processing
scheme. It loads queried data into the database

and processes that data with pure database tech-
niques. The data vault also uses external tools to
process files in situ and to capitalize upon the ex-
isting support libraries. Symbiotic query process-
ing combines the benefits of both approaches: use
external tools, if efficient ones exist, and carry out
operations in the database when the DBMS can
perform them better. The data vault optimizer
component provides this symbiotic query pro-
cessing. Using the data vault catalog, it detects
operations over repository data and makes deci-
sions about their execution locations based on a
cost model. If external tools process the query,
the functionality wrapper component defines
mappings between the external functions’ in-
put parameters and results to valid database
representations.

If the optimizer deems in-database process-
ing more efficient, it applies a two-phase opti-
mization, at compile-time and at runtime, that
facilitates automatic, on-demand data loading
from files.10 At compile time, the optimizer re-
organizes the plan so that the query execution
engine first evaluates the selection predicates
on the metadata, which dynamically determines
the actual files it will load. After the query ex-
ecution engine performs this part of the plan,
the optimizer triggers a rewriting operator at
runtime. This operator modifies the rest of

Figure 2. MonetDB data vault architecture. Three components extend
the software: the data vault wrapper, the data vault cache manager,
and the data vault optimizer.

Legacy
applications

File system
Web server
FTP server

File (remote)
repository

DV
catalog

DB

Metadata

MonetDB

Interpreter

Optimizers

Data vault

SQL SciQL

DV optimizer

DV wrapper

DV cache
manager

Data

Functions

DV cache

CISE-15-3-Ivanova.indd 5 6/4/13 7:37 PM

6� Computing in Science & Engineering

the plan by replacing all references to external
data with operators (data wrapper calls) that load
the necessary files, or parts of them. Data wrap-
per operators then call to external scientific li-
braries to extract the data from the specific file
formats.

The data vault lets file-based applications run
as usual, because it keeps external repositories in
their original format and place. Thus, it offers
more functionality to application developers by
extending existing library tools with database fa-
cilities, such as declarative queries, optimization,
and efficient join operations.

If the external applications modify the file reposi-
tory content, the data vault cache manager syn-
chronizes the modification with the in-database
representation, and thus always presents the user
with an up-to-date repository state.

The data vault cache contains snippets of the
repository data imported into the database as a side
effect of query processing. This improves perfor-
mance during subsequent analyses over the same
external data. This component leverages our work
on recycling intermediates.11 The cache might
contain the input dataset entirely or partially de-
pending on the queries, cache size, and dataset
size. Either the user or the system can apply di-
verse cache replacement strategies.11 For instance,
we can augment the cache with mechanisms that
spill content onto the disk to accommodate large
datasets. We can also transform the cached data
into persistent database structures.

The data vault offers important features:

•	 It provides an integrated view over metadata
and data—for instance, the data vault saves the
user from having to manually browse the repos-
itory to determine which files might contain the
dataset of interest; instead, the user can specify
metadata selection criteria as an integrated part
of the query, transparently translated into file-
access instructions.

•	 It reduces the bootstrapping costs by reducing
the time between external source data availabil-
ity and the query answer.

•	 It enables declarative processing over external
data, which is more convenient and efficient for
users engaging in exploratory tasks and experi-
menting with new hypotheses and algorithms.

•	 It provides an alternative way for users to inte-
grate heterogeneous data sources—for example,
image processing can include images stored in
both FITS and GeoTIFF formats.

•	 It gradually ports external archives into a
DBMS solution that transforms the virtual

data warehouse content into persistent database
structures.

Use Cases
Here, we consider concrete examples of how we
can use the MonetDB data vault’s features in sev-
eral scientific fields.

Seismology
The Earth’s surface moves constantly, gen-
erating huge amounts of data. Scientists pre-
fer the SEED file format to exchange waveform
data among seismograph networks.12 A SEED
volume has several American Standard Code for
Information Interchange (ASCII) control headers
and highly compressed data records—that is,
the waveform time series. The control headers
store the metadata, which consists of identifica-
tion and configuration information about the data
records.

We applied our data vault to a collection of
mSEED files extracted from the Observatories
and Research Facilities for European Seismology
(Orfeus; www.orfeus-eu.org) file repository, con-
taining more than 3.5 million files collected since
1988. An mSEED file contains limited metadata
and multiple mSEED records (35 records per
file on average in our data collection). An mSEED
record contains the sensor readings over consecu-
tive time intervals, which in our data collection is
usually a time series of approximately 3,500 values
on average.

Data warehouse schema. We straightforwardly de-
rive the normalized data warehouse schema shown
in Figure 3 from the mSEED file format. The
files and records tables hold the metadata per
mSEED file and record, respectively, while the
data table stores the actual sensor data. Each row
in the file table identifies an mSEED file via its URI
(file location), and contains the metadata describ-
ing the sensor that collected the data (network,
station, location, channel) as well as some
technical data characteristics (dataquality,
encoding, byte_order). A unique sequence
number identifies each record, and that record
holds metadata such as the start_time, sam-
pling rate (frequency), and number of data sam-
ples (sample_count). The data table stores the
time series data as (timestamp, value) pairs. For
user convenience, we define a (nonmaterialized)
view dataview that joins all three tables into a
(denormalized) universal table. Upon initializing
the seismic data vault, only the metadata tables are
populated, while the data table is empty. We use

CISE-15-3-Ivanova.indd 6 6/4/13 7:37 PM

May/June 2013 � 7

the libmseed library (www.iris.edu/software/
libraries) to extract (meta)data from mSEED files.

Query processing. Query processing over the seis-
mic data vault varies from retrieving an entire
record’s data for visualization and visual analy-
sis to aggregating and detecting outliers. The
sample Query 1 in Figure 4 finds the maximum
values (amplitudes) for a given channel (BHN,
which is a broadband channel representing mo-
tion on the north–south direction) per station
in the Netherlands (NL) during the first week
of June 2010. Query 2 computes the long-term

average (LTA, typically over an interval of 15 sec-
onds) over the data generated at Kandilli Observa-
tory in Istanbul (ISK) over all available channels.

The queries highlight the integrated view
over data and metadata offered by the data vault.
Predicates over the metadata select the data to be
aggregated. At runtime, we modify the query
execution plan to do the rest of the work. As we
discussed previously, MonetDB seamlessly in-
tegrates the process of external data extraction
and ingestion with query evaluation.

We performed experiments with three different
datasets of increasing size. We randomly selected

Figure 3. Seismic data vault schema. Seismologists widely use the Standard for the Exchange of Earthquake Data (SEED) file
format to exchange waveform data among seismograph networks.

CREATE SCHEMA mseed;

CREATE TABLE mseed.files (

 file_location STRING, dataquality CHAR(1),

 network VARCHAR(10), station VARCHAR(10),

 location VARCHAR(10), channel VARCHAR(10),

 encoding TINYINT, byte_order BOOLEAN,

 PRIMARY KEY (file_location)

);

CREATE TABLE mseed.records (

 file_location STRING, seq_no INTEGER,

 record_length INTEGER, start_time TIMESTAMP,

 frequency DOUBLE, sample_count BIGINT,

 sample_type CHAR(1),

 PRIMARY KEY (file_location, seq_no),

 FOREIGN KEY (file_location)

 REFERENCES mseed.files(file_location)

);

CREATE TABLE mseed.data (

 file_location STRING, seq_no INTEGER,

 sample_time TIMESTAMP, sample_value INTEGER,

 FOREIGN KEY (file_location)

 REFERENCES mseed.files(file_location),

 FOREIGN KEY (file_location, seq_no)

 REFERENCES mseed.records(file_location, seq_no)

);

CREATE VIEW mseed.dataview AS

SELECT

 f.file_location, dataquality, network, station, location, channel, encoding,

 byte_order, r.seq_no, record_length, start_time, frequency, sample_count,

 sample_type, sample_time, sample_value

FROM mseed.files AS f

 JOIN mseed.records AS r ON f.file_location = r.file_location

 JOIN mseed.data AS d

 ON r.file_location = d.file_location AND r.seq_no = d.seq_no;

CISE-15-3-Ivanova.indd 7 6/4/13 7:37 PM

8 Computing in SCienCe & engineering

5,000, 10,000, and 20,000 fi les, respectively, from
a 2010 collection that contained more than
160,000 fi les. Table 1 lists some of the dataset’s
characteristics. The timestamp-value decom-
pression of all samples causes the fi les to expand
in size. This expansion characterizes the full,
up-front fi le loading to MonetDB. Selective,
just-in-time fi le loading as needed by the queries
touches only a small portion of the raw data. This
provides fast bootstrapping to the fi rst query re-
sults. More comprehensive research examining
the seismic data vault can be found elsewhere.10

Remote Sensing
We further explore the data vault architecture
in the context of a remote-sensing repository to
highlight MonetDB’s usefulness when scientists
design and experiment with new algorithms.

The example application comes from content-
based image retrieval over remote-sensing
images in the TELEIOS project (w w w.
earthobservatory.eu). The source data are

high-resolution TerraSAR-X (so named because
of its active-phased array X-band synthetic-
aperture radar, or SAR, antenna) satellite images
in GeoTIFF format accompanied by metadata
specifi cations in XML format. First, the example
application prepares for the process by tiling an
image into smaller chunks, called patches, and ap-
plying various feature-extraction methods over
the patches. Customized software tools process
image fi les in fi le repositories.

The application extracts features and stores
them in a database, which it uses as input for higher-
level image analysis, such as classifi cation with
support vector machines and content-based image
retrieval. The data vault creates an opportunity to
move the DBMS upstream in the processing pipe-
line, which provides fl exible (and effi cient) patch
construction and feature extraction inside the
database engine.

data warehouse schema. The data warehouse schema
(see Figure 5) contains two catalog tables with
metadata and one array structure. The files
table describes the GeoTIFF fi les in the reposi-
tory with their location, status (loaded or not), and
timestamp of the last modifi cation.

The image_catalog table describes image-
specifi c metadata. Here, we take an application-
specifi c approach. Thus, in addition to the meta-
data encoded in the GeoTIFF fi les (image length
and width), the table also contains auxiliary data
extracted from the accompanying XML files
(sensor), and properties encoded in the image fi le
names (resvariant, mode, and so on). When the
user attaches the image fi le repository, the meta-
data wrapper component browses the directory,
extracts the metadata encoded in different sources,
and populates the respective catalog tables.

Images map naturally to 2D arrays, there-
fore we chose to implement the remote-sensing
data vault using the array-enabled SciQL lan-
guage.3 In addition to tables, the language lets
users and applications create and directly oper-
ate over array structures. The user def ines
the arrays similarly to tables with one or more

Figure 4. Seismic queries. The sample Query 1 fi nds the maximum
values (amplitudes) for a given channel (BHN, which is a broadband
channel representing motion on the north–south direction) per
station in the Netherlands (NL) during the fi rst week of June
2010. Query 2 computes the long-term average (LTA, typically
over an interval of 15 seconds) over the data generated at Kandilli
Observatory in Istanbul (ISK) over all available channels.

-- Query 1

SELECT station, MAX(sample_value)

FROM mseed.dataview

WHERE network = 'NL' AND channel = 'BHN'

 AND start_time > '2010-06-01T00:00:00.000'

 AND start_time < '2010-06-07T23:59:59.999'

GROUP BY station;

-- Query 2

SELECT channel, AVG(sample_value)

FROM mseed.dataview

WHERE station = 'ISK'

 AND sample_time > '2010-01-12T22:15:00.000'

 AND sample_time < '2010-01-12T22:15:15.000'

GROUP BY channel;

Table 1. Datasets and their sizes.

Tuples per table Dataset size

Files Records Data mSEED MonetDB (full)
Data vault up-front

load (metadata)
 5,000 175,765 660,259,608 1.3 Gbytes 13 Gbytes 10 Mbytes

10,000 359,735 1,323,307,090 2.7 Gbytes 26 Gbytes 20 Mbytes

20,000 715,738 2,629,496,058 5.5 Gbytes 50 Gbytes 36 Mbytes

* mSEED = Mini-Standard for the Exchange of Earthquake Data.

CISE-15-3-Ivanova.indd 8 6/4/13 7:37 PM

May/June 2013 � 9

dimensional attributes. Those attributes are
tagged with the dimension constraint, which
essentially indexes the array tuples.

The images 3D array (see Figure 5) repre-
sents the actual image data. The first dimension
is the associated image id and the other two are
the image width x and length y. Again, the ar-
ray is empty when the repository attaches, and
the user doesn’t ingest images up-front into the
system. Instead, the data vault presents the virtual
data warehouse to the users in the form of the
images array so that they can formulate queries
over images of interest. The libgeotiff library
(http://trac.osgeo.org/geotiff) extracts (meta)
data from GeoTIFF files.

Query processing. The first example in Figure 6
shows another integrated view over data and
metadata—a table and an array. The SciQL query
computes image masks by filtering pixel values
within the range [10,100]. Predicates over the
remote-sensing metadata specify the images—
for example, the image resolution variant is spa-
tially enhanced (SE), the imaging mode is high-
resolution spotlight (HS), and the start time is in
a given time interval.

The data vault optimizer recognizes the refer-
ence to the external repository in the form of the

images array and rewrites the execution plan to
ensure that the data wrapper ingests the images se-
lected by the predicates over the id array attribute.

Queries 2 and 3 demonstrate that users can
easily specify typical operations, such as image

Figure 5. Remote sensing schema. The files table describes the GeoTIFF files in the repository with their
location, status, and timestamp of the last modification; the image_catalog table describes image-specific
metadata; and the images 3D array represents the actual image data.

CREATE SCHEMA rs;

CREATE TABLE rs.files (

 fileid INT, location STRING,

 status TINYINT, lastmodified TIMESTAMP);

CREATE TABLE rs.image_catalog (

 imageid INT, fileid INT, imagewidth INT,

 imagelength INT, resvariant CHAR(4), mode CHAR(2),

 starttime TIMESTAMP, stoptime TIMESTAMP,

 sensor VARCHAR(20), absorbit INT,

 PRIMARY KEY (imageid),

 FOREIGN KEY (fileid) REFERENCES rs.files(fileid));

DECLARE NumCols INT;

SET NumCols = (SELECT max(imagewidth) FROM rs.image_catalog);

DECLARE NumRows INT;

SET NumRows = (SELECT max(imagelength) FROM rs.image_catalog);

CREATE ARRAY images (

 id INT DIMENSION, x INT DIMENSION [NumCols],

 y INT DIMENSION [NumRows], v SMALLINT);

Figure 6. Remote sensing queries. Predicates over the remote-sensing
metadata specify the images—for example, the image resolution
variant is spatially enhanced (SE), imaging mode is high-resolution
spotlight (HS), and the start time is in a given time interval.

-- Query 1

SELECT [id], [x], [y], v

FROM images

WHERE v BETWEEN 10 AND 100 AND id IN

 (SELECT imageid

 FROM rs.image_catalog

 WHERE resvariant = 'SE__' AND mode = 'HS'

 AND starttime > TIMESTAMP '2011-12-08 16:30:00');

-- Query 2 Smoothing

SELECT [x], [y], avg(v)

FROM images[1][*][*]

GROUP BY images[1][x-1:x+2][y-1:y+2];

-- Query 3 Sampling

SELECT [x/4], [y/4], v

FROM images[1][*:4:*][*:4:*];

CISE-15-3-Ivanova.indd 9 6/4/13 7:37 PM

10� Computing in Science & Engineering

smoothing and sampling using declarative SciQL
queries. The smoothing query uses a SciQL fea-
ture called structural grouping, which uses each
valid value of the dimensions x and y to split the
image into overlapping 3 × 3 pixel tiles. The pixel
value at position ([x], [y]) in the result array is sub-
stituted with the average value for the correspond-
ing tile centered at ([x], [y]).

The declarative interface lets researchers eas-
ily and conveniently experiment, and therefore
boosts productivity.

Astronomy
Recent astronomy surveys often store their cata-
log data using database technology, but many ar-
chives use FITS files. With the growing number
and scope of surveys, astronomers increasingly
must correlate observations from different sur-
veys over the same sky objects. Thus, the data
vault might be valuable as a platform provid-
ing an integrated view over heterogeneous data
sources.

Data warehouse schema. Astronomers widely use
the FITS format to store and exchange images
and tabular data. A FITS file can contain several

header-data units that can be images or tables in
ASCII or binary format. Scientists can represent a
whole database with various tables in a single file.
Consequently, instead of defining a fixed struc-
ture similar to the records table in the seismology
data vault, we need a general structure that resem-
bles a traditional SQL system catalog, as Figure 7
shows. Furthermore, we can’t predefine a table
or array representing the actual data, because
the logical schema of the FITS files appears
only when the repository attaches. Hence, an ad-
ditional operation during the attachment of a
FITS file repository creates the database tables
representing the external file tables for querying
purposes. The cfitsio library (http://heasarc.
gsfc.nasa.gov/fitsio) extracts (meta)data from
FITS files.

Query processing. After the application attaches an
external FITS repository, the user can explore its
content without touching the data through simple
SQL queries to the data vault catalog. For exam-
ple, Query 1 in Figure 8 only lists all the tables
available in the repository, while Query 2 shows
all of the columns storing measurements in arc-
seconds and their respective tables.

Figure 7. The Flexible Image Transport System (FITS; http://heasarc.nasa.gov/docs/heasarc/fits.htmlFITS)
data vault schema. Because scientists can represent a whole database with various tables in a single file,
we need a general structure that resembles a traditional SQL system catalog, instead of defining a fixed
structure similar to the records table in the seismology data vault.

CREATE SCHEMA fits;

CREATE TABLE fits.files (

 fileid INT, location STRING,

 status TINYINT, lastmodified TIMESTAMP);

CREATE TABLE fits.tables (

 tableid INT, name CHAR(256), columns INT,

 fileid INT, hdu INT,

 PRIMARY KEY (tableid),

 FOREIGN KEY (fileid) REFERENCES fits.files(fileid));

CREATE TABLE fits.columns (

 columnid INT, name VARCHAR(80), type VARCHAR(80),

 units VARCHAR(10), number INT, tableid INT,

 PRIMARY KEY (columnid),

 FOREIGH KEY (tableid) REFERENCES fits.tables(tableid));

CREATE TABLE fits.images(

 imageid INT, fileid INT,

 width INT, length INT,

 PRIMARY KEY (imageid),

 FOREIGH KEY (fileid) REFERENCES fits.files(fileid));

CISE-15-3-Ivanova.indd 10 6/4/13 7:37 PM

May/June 2013 � 11

Query 3 illustrates integrated processing
over source data of different formats. In this
scenario, a researcher must cross-match two as-
tronomical surveys—Faint Images of the Radio
Sky at Twenty Centimeters (FIRST; http://
sundog.stsci.edu) and Sloan Digital Sky Survey
(SDSS; www.sdss.org). The surveys contain in-
formation about objects in overlapping areas of
the sky. To compute properties, such as the object
spectral index, the scientist must match objects
based on their spatial coordinates and correlate
other properties measured in the surveys for dif-
ferent frequencies. Assume that the SDSS catalog
is stored in a table in the local relational database,
while the FIRST dataset is available as a table
in a FITS file. After the repository attaches, the
FIRST dataset appears in the database as fits.
first table.

Query 3 computes a simplified version of sur-
veys’ cross-matching operation. It uses the Car-
tesian distance between objects and stores the
results in the xmatch table, which researchers can
use in subsequent analysis.

The data vault handles the just-in-time load of
the required data from the external table (fits.
first), similar to the remote-sensing case. Ad-
ditionally, if the user specifies a condition that
filters rows of the fits.first table, the data

vault can use a specialized loader that filters the
rows by applying some external tool, such as the
Starlink Tables Infrastructure Library Tools Set
(STILTS), and provide only the relevant subset
to the database.13

Although other software tools might cross-
match, they often lack scalability. High-volume
datasets might require manually splitting the task
into small steps—for example, a single object or
set of objects from one of the surveys processed
“one spoon” at a time. Instead, the data vault ap-
plication uses the most efficient DBMS join algo-
rithms, which are more convenient and enhance
performance.

A ll three of the use cases for science
disciplines and their file formats high-
light the MonetDB data vault’s advan-
tages and special features. The data

vault is a work-in-progress that provides a vista
on different database research challenges. Wrap-
ping the external libraries’ functionality lets us
capitalize upon existing tools for in situ analysis,
but this still needs careful interface design and
cost modeling. Efficient symbiotic query pro-
cessing requires an extensible optimizer that
can detect external data and libraries. Achieving

Figure 8. FITS queries. After the application attaches an external FITS repository, the user can explore its
content by simple SQL queries to the data vault catalog without touching the data.

-- Query 1

SELECT * FROM fits.tables;

-- Query 2

SELECT ft.name as table_name, fc.name as column_name, fc.units

FROM fits.tables ft JOIN fits.columns fc ON ft.tableid = fc.tableid

WHERE fc.units LIKE '%arcsec%';

-- Query 3

CREATE TABLE xmatch (

 sdss_id BIGINT, sdss_brightness FLOAT,

 first_id BIGINT, first_brightness FLOAT, distance FLOAT);

INSERT INTO xmatch

SELECT sdss.objid, sdss.sky_r / 3631000,

 f.seqno, f.fInt,

 3600 * degrees(2 * asin (0.5 * sqrt (power (sdss.cx - f.cx, 2) +

 power (sdss.cy - f.cy, 2) +

 power (sdss.cz - f.cz, 2))))

FROM sdss, fits.first as f

WHERE

 3600 * degrees(2 * asin (0.5 * sqrt (power (sdss.cx - f.cx, 2) +

 power (sdss.cy - f.cy, 2) +

 power (sdss.cz - f.cz, 2)))) < 30;

CISE-15-3-Ivanova.indd 11 6/4/13 7:37 PM

12� Computing in Science & Engineering

balance between generality and usability poses
another challenge. We must actively collaborate
with domain scientists to develop data vault
into a technology that’s useful across multiple
sciences.�

Acknowledgments
The data vault is the collective work of the MonetDB
team. We acknowledge Ying Zhang for her important
work on the implementation of SciQL, Bart Scheers
and Joao Sa for their contributions on the FITS data
vault, and Holger Pirk for his contribution in the seis-
mology data vault. We would also like to thank our
partners in the TELEIOS and COMMIT projects for
their fruitful collaboration. The work reported here
was partly funded by the European Union’s Seventh
Framework Program Information and Communica-
tion Technologies Project (EU-FP7-ICT) TELEIOS, and
the Dutch national program COMMIT.

References
1.	 T. Hey, S. Tansley, and E.K. Tolle, The Fourth Para-

digm: Data-Intensive Scientific Discovery, Microsoft

Research, 2009.

2.	 J. Gray et al., “Scientific Data Management in the

Coming Decade,” SIGMOD Record, vol. 34, no. 4,

2005, pp. 34–41.

3.	 Y. Zhang et al., “SciQL: Bridging the Gap between

Science and Relational DBMS,” Proc. 5th Int’l.

Database Eng. and Application Symp., ACM, 2011,

pp. 124–133.

4.	 E. Stolte et al., “Scientific Data Repositories: Design-

ing for a Moving Target,” Proc. 32nd Ann. Conf.

Sigmod, ACM, 2003, pp. 349–360.

5.	 K. Kunchithapadam et al., “Oracle Database File

system,” Proc. 30th Ann. Conf. Sigmod, ACM, 2011,

pp. 1149–1160.

6.	 ISO/IEC 9075-9:2008, Information Technology—

Database Languages—SQL—Part 9: Management of

External Data (SQL/MED), Am. Nat’l Standards Inst.

(ANSI), 2008.

7.	 P. Baumann et al., “The Multidimensional Database

System RasDaMan,” SIGMOD Record, vol. 27 no. 2,

1998, pp. 575–577.

8.	 The SciDB Development Team, “Overview of SciDB:

Large Scale Array Storage, Processing and Analysis,”

Proc. 39th Ann. Sigmod, ACM, 2010, pp. 963–968.

9.	 M. Ivanova, M.L. Kersten, and S. Manegold, “Data

Vaults: A Symbiosis between Database Technology

and Scientific File Repositories,” Proc. 24th Int’l Conf.

Scientific and Statistical Database Management, LNCS

7338, Springer, 2012, pp. 485–494.

10.	 Y. Kargin et al., “Instant-On Scientific Data

Warehouse—Lazy ETL for Data-Intensive Research,”

Proc. 6th Int’l Workshop on Business Intelligence for

the Real Time Enterprise, 2012; http://oai.cwi.nl/oai/

asset/19947/19947B.pdf.

11.	 M. Ivanova et al., “An Architecture for Recycling In-

termediates in a Column-store,” ACM Trans. Database

Syst., vol. 35, no. 4, Nov. 2010, p. 24.

12.	 SEED Reference Manual, Standard for the Exchange of

Earthquake Data, Incorporated Research Inst. for Seis-

mology (IRIS), 2010; www.fdsn.org/seed_manual/

SEEDManual_V2.4.pdf.

13.	 M. Taylor, STILTS—Starlink Tables Infrastructure Library

Tool Set Version 2.5, user note, Oct. 2011; www.star.

bristol.ac.uk/~mbt/stilts/sun256.pdf.

Milena Ivanova is a core eScience engineer at the
Netherlands eScience Center. Her research interests
include in-database support for array processing,
transparent access to external scientific file reposito-
ries, and reuse of intermediates to improve perfor-
mance of workloads with commonalities. Ivanova
has a PhD in computer science (with a specialization
in database technology) from Uppsala University.
Contact her at m.ivanova@esciencecenter.nl.

Martin Kersten is a Centrum Wiskunde and Informat-
ica research fellow and a full professor at the Uni-
versity of Amsterdam. His research interests include
architectures for parallel database management sys-
tems, performance of database systems, multimedia
database applications, and data mining. Kersten has
a PhD in mathematics and computer science from
Vrije Universiteit Amsterdam. Contact him at Martin.
Kersten@cwi.nl.

Stefan Manegold is the leader of the Database Ar-
chitectures Research Group at Centrum Wiskunde
and Informatica. His research interests include data-
base architectures, query-processing algorithms, and
data-management technology for data-intensive
scientific discovery, with a focus on optimization,
performance, benchmarking, and testing. Mane-
gold received a PhD in computer science from the
University of Amsterdam. Contact him at Stefan.
Manegold@cwi.nl.

Yagiz Kargin is a doctoral candidate in the Database
Architectures Research Group at Centrum Wiskunde
and Informatica. His research interests include data
base systems, data ingestion, and scientific data
management. Kargin has an MSc in computer sci-
ence from Saarland University. Contact him at yagiz.
kargin@cwi.nl.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

CISE-15-3-Ivanova.indd 12 6/4/13 7:37 PM

