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S c i e n c E  D a t a 
M a n a g e m e n t

Current data-management systems and analysis tools fail to meet scientists’ data-intensive 
needs. A “data vault” approach lets researchers effectively and efficiently explore and 
analyze information.

Data Vaults: Database Technology  
for Scientific File Repositories

I ncreased data volume from advanced ob-
servatory instruments and simulations has 
led to data-intensive scientific domains.1 
Scientific research requires efficient tech-

nology to manage and explore high-volume data 
repositories.

Scientists organize this data primarily in multi
tier, filed-based repositories. Metadata encoded 
in file names or managed by workflow systems let 
researchers navigate and search for data. Custom-
ized tools process and analyze data by blending 
data access, computational analysis, and visualiza-
tion. Increased data volume leads to limitations, 
such as poor access and scalability, the inability to 
incorporate new studies, and difficulty deploying 
the customized software and scripting tools “near 
the data.”2

Database management systems (DBMSs) ap-
proach these problems by processing information 
at the data storage site, providing flexible declara-
tive queries that analyze and scale information 
to terabytes (TBs) of data. Applying a database 
system to a scientific application is difficult for 
several reasons: a state-of-the-art DBMS requires 
data to be loaded up front in the database, which 
is costly and tedious. A DBMS doesn’t naturally 

understand and support external file formats spe-
cific to scientific domains, and it provides only 
limited processing capabilities for nonstandard 
data types. Also, it doesn’t provide integrated ac-
cess to existing external libraries or tools for anal-
ysis and visualization.

To address these problems, we created the 
MonetDB data vault—a virtual scientific data 
warehouse that lets scientists simply attach an 
external file repository to the DBMS using, for 
example, a Uniform Resource Identifier (URI), 
which efficiently and flexibly processes queries 
over relevant data. The data vault keeps the data in 
its original format and place, and simultaneously 
allows transparent metadata and data access and 
analysis using a query language. The data vault 
relieves scientists’ pressure to migrate files, and 
provides extended functionality and flexibility. 
Moreover, high-level declarative query languages 
(such as SQL and SCIentific Query Language, or 
SciQL) let scientists experiment with novel algo-
rithms.3 Scientists can combine familiar external 
analysis tools with efficient in-database process-
ing for complex operations, for which databases 
have shown to be beneficial. Transparent, just-in-
time data loading reduces the “bootstrapping” 
costs of adopting a database solution for existing 
file repositories.

DBMSs and Data-Management  
Architectures
Before we discuss the data vault’s functionalities, 
let’s consider some important background infor-
mation. Software architectures for data-intensive 
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scientific applications are diverse. Visual explora-
tion tools, workflow systems, or large collections 
of programming scripts are often bound tightly 
together. Here, we focus on the most common 
data-management architectures and the role of 
DBMSs for them.

File-Based Solutions
Figure 1a illustrates one solution that uses a file-
based repository for raw data and metadata. Most 
scientists take this approach, particularly in a 
small database’s “long tail,” for example, where 
they might use spreadsheets.

Mixed Solutions
As file-based repositories grew, mixed solutions 
became the larger, concerted scientific commu-
nity’s preferred tool to standardize file struc-
tures and manage metadata.4 Custom-designed, 
mixed solutions often combine physical storage 

directives with file-system organization, and en-
code crucial information in the file names. Such 
solutions have important limitations, such as in-
flexibility when handling new requirements, in
efficient access, and scalability.

Mixed solutions create inconsistency, and need 
different backup and access models, because they 
distribute file maintenance between the DBMS 
and the file system. Newer mixed solutions ad-
dress this problem by providing some form of 
integration between DBMSs and file systems, 
mainly by facilitating file management and main-
tenance. Examples include the Oracle Database 
Filesystem (DBFS)5 and the Microsoft SQL Server  
FileTable feature (http://msdn.microsoft.com/ 
en-us/library/ff929144.aspx) that store files in 
the database and allow access to those files.

Although they can be used for any file type, 
the main application is for files with unstructured 
content (such as text and images) as needed by 

Figure 1. Software architectures for scientific repositories. Possible solutions include (a) file-based, (b) mixed 
solutions, (c) external tables, (d) Rasdaman, and (e) an object-relational (OR) database management system 
(DBMS). (Rel = relational).
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content management systems. These systems typ-
ically limit file processing to a rudimentary, file-
system-like interface that can upload and retrieve 
a file, update metadata, and manage directory 
structures. This category of systems doesn’t aim 
to process file content in-database, but rather to 
efficiently provision files to external applications, 
such as text processing and content management 
systems.

Temporary DBMS Access to External Data
The SQL/MED (Management of External 
Data) standard proposes the external table fea-
ture that lets users access non-SQL (external) data 
as if it were in the database (see Figure 1c). The 
feature is applied predominantly to external data 
from other SQL-server vendors or in plain, comma-
separated values (CSV) files.

The Universal File Interface extension (UFI; 
w w w.barrodale.com/universal-file-interface-ufi) 
offers an alternative for researchers indexing and 
querying external files. In addition to CSV files, it 
offers UFI adapters for scientific formats, such as 
network Common Data Form (NetCDF), Hierar-
chical Data Format 5 (HDF5), and Flexible Image 
Transport System (FITS; http://heasarc.nasa.gov/
docs/heasarc/fits.html). Users must explicitly map 
the files and their elements to virtual tables, which 
they can then query from inside the database. Be-
cause users must specify the data they load and 
provide the mapping rules to the system, it is the 
user’s task to localize and select data from the ex-
ternal file repository.

Raw Data inside DBMS
Figures 1d and 1e present architectures in which 
the DBMS stores and retrieves raw, nontabular 
science data. These systems chop the data into 
pieces and store it in Binary Large Object Block 
(BLOB) table columns. RasDaMan provides  
middleware with database services on multi
dimensional data structures, such as declarative 
query language, indexing, and optimization.7 A 
DBMS back end stores and retrieves array tiles 
and indexes in BLOB form.

Modern object-relational systems offer vari-
ous extensions that store, index, query, and 
retrieve complex data and their associated meta-
data. Examples are geospatial extenders for vec-
tor and raster data, such as Oracle Spatial and 
Graph (www.oracle.com) and PostGIS (www.
postgis.org). The extenders come with various 
subprograms—user-defined functions (UDFs)—
that offer common processing tasks over the new 
data types.

In both scenarios, the user must first explicitly 
ingest data into the system before the user can 
submit a query. Query processing on the middle 
layer or algorithms encapsulated in UDFs aren’t 
(completely) integrated with the database inter-
nals, and the database optimizer might not be 
aware of it.

SciDB is a DBMS for scalable processing of 
array data.8 Arrays are the only data model that 
SciDB supports, and query processing and opti-
mization take advantage of their superior seman-
tics and properties. Besides CSV files, the system 
offers file loaders for popular scientific formats, 
such as HDF5 and FITS. Like the previous exam-
ples, for all file types that SciDB supports, the user 
must first load the data before SciDB can process 
it. Currently, SciDB limits metadata support and 
management to the array structure. The system 
can’t represent accompanying tabular metadata, 
such as sensor settings or experimental param-
eters encoded in the scientific formats. To do that, 
the user could artificially represent the metadata, 
for example, as a single-dimensional array that 
mimics a key-value list. Consequently, the system 
doesn’t offer an integrated view over array data 
and tabular metadata, which would allow metadata-
driven query processing.

NoSQL Solutions
Using the Hadoop and MapReduce coding style, 
programmers have been able to parallel process 
large file repositories. This might be the best op-
tion for users addressing parallel problems such 
as preprocessing, and aggregation over entire 
datasets; however, these coding styles require 
substantial resources. The MongoDB and Clou-
dera Distribution Including Hadoop (CDH) 
products, provide increasingly good declarative 
query languages and evolve toward a database 
system. Conversely, all database vendors in-
clude the MapReduce functional style in their 
products.

The main characteristics distinguishing the 
data vault approach from other architectures are 
its dynamic, on-demand data ingestion, support 
of array-based scientific formats, and integrated 
view over data and metadata that enables metadata-
driven query processing.

To fully exploit the data vault features, the 
data vault should be a part of an array-enabled 
DBMS, such as RasDaMan, SciDB, or object-
relational extenders for complex data types.  
The MonetDB multiparadigm data model treats 
both tables and arrays as first-class citizens. This 
special treatment provides adequate support to  
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array-based scientific formats, such as FITS, 
TIFF (http://trac.osgeo.org/geotiff/), and the 
Mini-Standard for the Exchange of Earthquake 
Data (mSEED).9

Systems that process array-structured raw data 
require users to statically and explicitly load data 
prior to query processing. Users must separately 
and often manually localize and select the raw 
data they want to load into the database. Associa-
tive search queries over the metadata drive the 
data vault to dynamically ingest external data.

Data Vault Architecture
Figure 2 illustrates the MonetDB data vault ar-
chitecture. It extends MonetDB’s software archi-
tecture with three components. The data vault 
wrapper communicates with the external file re-
pository and accesses data, metadata, and external 
libraries and tools. The data vault cache manager 
takes care of the virtual data warehouse structure. 
The data vault optimizer searches for the best query 
execution plans over external data and drives dy-
namic data ingestion.

First, a user simply attaches an external reposi-
tory specifying its location. Upon attachment, the 
system opens the repository metadata for brows-
ing and sophisticated searching. Typical scientific 
formats encode a variety of metadata that enable 
applications to interpret the file contents. Cor-
respondingly, scientific libraries usually offer 
lightweight functions that extract this metadata 
without touching the high-volume raw data. The 
data vault metadata wrapper component accesses 
the metadata and populates a predefined data 
vault catalog. This lets users quickly identify rel-
evant datasets through declarative queries over 
the catalog. The catalog structure varies depend-
ing on the external data format. The data vault 
applies a lazy load approach to derived metadata 
that must be computed over the raw datasets. 
The application can piggyback the derivation on 
the first query over the data, or it can exploit idle  
CPU time.

Without further preparation and up-front data 
ingestion, the user can start submitting queries 
involving external data. For this purpose, the data 
vault supplies a virtual database structure that 
represents external data without actually loading 
them. We will load the data in a dynamic, just-in-
time manner as needed by the queries. The data 
wrapper component accesses external data and 
creates internal representations in the data vault 
cache.

The data vault uses a symbiotic query-processing 
scheme. It loads queried data into the database 

and processes that data with pure database tech-
niques. The data vault also uses external tools to 
process files in situ and to capitalize upon the ex-
isting support libraries. Symbiotic query process-
ing combines the benefits of both approaches: use 
external tools, if efficient ones exist, and carry out 
operations in the database when the DBMS can 
perform them better. The data vault optimizer 
component provides this symbiotic query pro-
cessing. Using the data vault catalog, it detects 
operations over repository data and makes deci-
sions about their execution locations based on a 
cost model. If external tools process the query, 
the functionality wrapper component defines 
mappings between the external functions’ in-
put parameters and results to valid database  
representations.

If the optimizer deems in-database process-
ing more efficient, it applies a two-phase opti-
mization, at compile-time and at runtime, that 
facilitates automatic, on-demand data loading 
from files.10 At compile time, the optimizer re-
organizes the plan so that the query execution 
engine first evaluates the selection predicates 
on the metadata, which dynamically determines 
the actual files it will load. After the query ex-
ecution engine performs this part of the plan, 
the optimizer triggers a rewriting operator at 
runtime. This operator modifies the rest of 

Figure 2. MonetDB data vault architecture. Three components extend 
the software: the data vault wrapper, the data vault cache manager, 
and the data vault optimizer.
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the plan by replacing all references to external 
data with operators (data wrapper calls) that load 
the necessary files, or parts of them. Data wrap-
per operators then call to external scientific li-
braries to extract the data from the specific file  
formats.

The data vault lets file-based applications run 
as usual, because it keeps external repositories in 
their original format and place. Thus, it offers 
more functionality to application developers by 
extending existing library tools with database fa-
cilities, such as declarative queries, optimization, 
and efficient join operations.

If the external applications modify the file reposi-
tory content, the data vault cache manager syn-
chronizes the modification with the in-database  
representation, and thus always presents the user 
with an up-to-date repository state.

The data vault cache contains snippets of the  
repository data imported into the database as a side 
effect of query processing. This improves perfor-
mance during subsequent analyses over the same 
external data. This component leverages our work 
on recycling intermediates.11 The cache might 
contain the input dataset entirely or partially de-
pending on the queries, cache size, and dataset 
size. Either the user or the system can apply di-
verse cache replacement strategies.11 For instance, 
we can augment the cache with mechanisms that 
spill content onto the disk to accommodate large 
datasets. We can also transform the cached data 
into persistent database structures.

The data vault offers important features:

•	 It provides an integrated view over metadata 
and data—for instance, the data vault saves the 
user from having to manually browse the repos-
itory to determine which files might contain the 
dataset of interest; instead, the user can specify 
metadata selection criteria as an integrated part 
of the query, transparently translated into file-
access instructions.

•	 It reduces the bootstrapping costs by reducing 
the time between external source data availabil-
ity and the query answer.

•	 It enables declarative processing over external 
data, which is more convenient and efficient for 
users engaging in exploratory tasks and experi-
menting with new hypotheses and algorithms.

•	 It provides an alternative way for users to inte-
grate heterogeneous data sources—for example, 
image processing can include images stored in 
both FITS and GeoTIFF formats.

•	 It gradually ports external archives into a 
DBMS solution that transforms the virtual 

data warehouse content into persistent database 
structures.

Use Cases
Here, we consider concrete examples of how we 
can use the MonetDB data vault’s features in sev-
eral scientific fields.

Seismology
The Earth’s surface moves constantly, gen-
erating huge amounts of data. Scientists pre-
fer the SEED file format to exchange waveform 
data among seismograph networks.12 A SEED 
volume has several American Standard Code for 
Information Interchange (ASCII) control headers 
and highly compressed data records—that is, 
the waveform time series. The control headers 
store the metadata, which consists of identifica-
tion and configuration information about the data  
records.

We applied our data vault to a collection of 
mSEED files extracted from the Observatories 
and Research Facilities for European Seismology 
(Orfeus; www.orfeus-eu.org) file repository, con-
taining more than 3.5 million files collected since 
1988. An mSEED file contains limited metadata 
and multiple mSEED records (35 records per 
file on average in our data collection). An mSEED 
record contains the sensor readings over consecu-
tive time intervals, which in our data collection is 
usually a time series of approximately 3,500 values 
on average.

Data warehouse schema. We straightforwardly de-
rive the normalized data warehouse schema shown 
in Figure 3 from the mSEED file format. The 
files and records tables hold the metadata per 
mSEED file and record, respectively, while the 
data table stores the actual sensor data. Each row 
in the file table identifies an mSEED file via its URI 
(file location), and contains the metadata describ-
ing the sensor that collected the data (network, 
station, location, channel) as well as some  
technical data characteristics (dataquality, 
encoding, byte_order). A unique sequence 
number identifies each record, and that record 
holds metadata such as the start_time, sam-
pling rate (frequency), and number of data sam-
ples (sample_count). The data table stores the 
time series data as (timestamp, value) pairs. For 
user convenience, we define a (nonmaterialized) 
view dataview that joins all three tables into a 
(denormalized) universal table. Upon initializing 
the seismic data vault, only the metadata tables are 
populated, while the data table is empty. We use  
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the libmseed library (www.iris.edu/software/ 
libraries) to extract (meta)data from mSEED files.

Query processing. Query processing over the seis-
mic data vault varies from retrieving an entire 
record’s data for visualization and visual analy-
sis to aggregating and detecting outliers. The 
sample Query 1 in Figure 4 finds the maximum 
values (amplitudes) for a given channel (BHN, 
which is a broadband channel representing mo-
tion on the north–south direction) per station 
in the Netherlands (NL) during the first week 
of June 2010. Query 2 computes the long-term 

average (LTA, typically over an interval of 15 sec-
onds) over the data generated at Kandilli Observa-
tory in Istanbul (ISK) over all available channels.

The queries highlight the integrated view 
over data and metadata offered by the data vault.  
Predicates over the metadata select the data to be 
aggregated. At runtime, we modify the query 
execution plan to do the rest of the work. As we 
discussed previously, MonetDB seamlessly in-
tegrates the process of external data extraction 
and ingestion with query evaluation.

We performed experiments with three different 
datasets of increasing size. We randomly selected 

Figure 3. Seismic data vault schema. Seismologists widely use the Standard for the Exchange of Earthquake Data (SEED) file 
format to exchange waveform data among seismograph networks.

CREATE SCHEMA mseed;

CREATE TABLE mseed.files (

  file_location STRING,        dataquality  CHAR(1),

  network       VARCHAR(10),   station      VARCHAR(10),

  location      VARCHAR(10),   channel      VARCHAR(10),

  encoding      TINYINT,       byte_order   BOOLEAN,

  PRIMARY KEY (file_location)

);

CREATE TABLE mseed.records (

  file_location STRING,        seq_no       INTEGER,

  record_length INTEGER,       start_time   TIMESTAMP,

  frequency     DOUBLE,        sample_count BIGINT,

  sample_type   CHAR(1),

  PRIMARY KEY (file_location, seq_no),

  FOREIGN KEY (file_location)

    REFERENCES mseed.files(file_location)

);

CREATE TABLE mseed.data (

  file_location STRING,        seq_no       INTEGER,

  sample_time   TIMESTAMP,     sample_value INTEGER,

  FOREIGN KEY (file_location)

    REFERENCES mseed.files(file_location),

  FOREIGN KEY (file_location, seq_no)

    REFERENCES mseed.records(file_location, seq_no)

);

CREATE VIEW mseed.dataview AS

SELECT

  f.file_location, dataquality, network, station, location, channel, encoding,

  byte_order, r.seq_no, record_length, start_time, frequency, sample_count,

  sample_type, sample_time, sample_value

FROM mseed.files AS f 

  JOIN mseed.records AS r ON f.file_location = r.file_location 

  JOIN mseed.data AS d 

    ON r.file_location = d.file_location AND r.seq_no = d.seq_no;
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5,000, 10,000, and 20,000 fi les, respectively, from 
a 2010 collection that contained more than 
160,000 fi les. Table 1 lists some of the dataset’s 
characteristics. The timestamp-value decom-
pression of all samples causes the fi les to expand 
in size. This expansion characterizes the full, 
up-front fi le loading to MonetDB. Selective, 
just-in-time fi le loading as needed by the queries 
touches only a small portion of the raw data. This 
provides fast bootstrapping to the fi rst query re-
sults. More comprehensive research examining 
the seismic data vault can be found elsewhere.10

Remote Sensing
We further explore the data vault architecture 
in the context of a remote-sensing repository to 
highlight MonetDB’s usefulness when scientists 
design and experiment with new algorithms.

The example application comes from content-
based image retrieval over remote-sensing 
images in the TELEIOS project (w w w.
earthobservatory.eu). The source data are 

high-resolution TerraSAR-X (so named because 
of its active-phased array X-band synthetic-
aperture radar, or SAR, antenna) satellite images 
in GeoTIFF format accompanied by metadata 
specifi cations in XML format. First, the example 
application prepares for the process by tiling an 
image into smaller chunks, called patches, and ap-
plying various feature-extraction methods over 
the patches. Customized software tools process 
image fi les in fi le repositories.

The application extracts features and stores 
them in a database, which it uses as input for higher-
level image analysis, such as classifi cation with 
support vector machines and content-based image 
retrieval. The data vault creates an opportunity to 
move the DBMS upstream in the processing pipe-
line, which provides fl exible (and effi cient) patch 
construction and feature extraction inside the 
database engine.

data warehouse schema. The data warehouse schema 
(see Figure 5) contains two catalog tables with 
metadata and one array structure. The files
table describes the GeoTIFF fi les in the reposi-
tory with their location, status (loaded or not), and 
timestamp of the last modifi cation.

The image_catalog table describes image-
specifi c metadata. Here, we take an application-
specifi c approach. Thus, in addition to the meta-
data encoded in the GeoTIFF fi les (image length 
and width), the table also contains auxiliary data 
extracted from the accompanying XML files 
(sensor), and properties encoded in the image fi le 
names (resvariant, mode, and so on). When the 
user attaches the image fi le repository, the meta-
data wrapper component browses the directory, 
extracts the metadata encoded in different sources, 
and populates the respective catalog tables.

Images map naturally to 2D arrays, there-
fore we chose to implement the remote-sensing 
data vault using the array-enabled SciQL lan-
guage.3 In addition to tables, the language lets 
users and applications create and directly oper-
ate over array structures. The user def ines 
the arrays similarly to tables with one or more 

Figure 4. Seismic queries. The sample Query 1 fi nds the maximum 
values (amplitudes) for a given channel (BHN,  which is a broadband 
channel representing motion on the north–south direction) per 
station in the Netherlands (NL) during the fi rst week of June 
2010. Query 2 computes the long-term average (LTA, typically 
over an interval of 15 seconds) over the data generated at Kandilli 
Observatory in Istanbul (ISK) over all available channels.

-- Query 1

SELECT station, MAX(sample_value) 

FROM mseed.dataview 

WHERE network = 'NL' AND channel = 'BHN' 

  AND start_time > '2010-06-01T00:00:00.000' 

  AND start_time < '2010-06-07T23:59:59.999' 

GROUP BY station;

-- Query 2

SELECT channel, AVG(sample_value) 

FROM mseed.dataview 

WHERE station = 'ISK' 

  AND sample_time > '2010-01-12T22:15:00.000' 

  AND sample_time < '2010-01-12T22:15:15.000' 

GROUP BY channel;

Table 1. Datasets and their sizes.

Tuples per table Dataset size

Files Records Data mSEED MonetDB (full)
Data vault up-front 

load (metadata)
 5,000 175,765 660,259,608 1.3 Gbytes 13 Gbytes 10 Mbytes

10,000 359,735 1,323,307,090 2.7 Gbytes 26 Gbytes 20 Mbytes

20,000 715,738 2,629,496,058 5.5 Gbytes 50 Gbytes 36 Mbytes

* mSEED = Mini-Standard for the Exchange of Earthquake Data.
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dimensional attributes. Those attributes are 
tagged with the dimension constraint, which  
essentially indexes the array tuples.

The images 3D array (see Figure 5) repre-
sents the actual image data. The first dimension 
is the associated image id and the other two are 
the image width x and length y. Again, the ar-
ray is empty when the repository attaches, and 
the user doesn’t ingest images up-front into the 
system. Instead, the data vault presents the virtual 
data warehouse to the users in the form of the 
images array so that they can formulate queries 
over images of interest. The libgeotiff library 
(http://trac.osgeo.org/geotiff ) extracts (meta)
data from GeoTIFF files.

Query processing. The first example in Figure 6  
shows another integrated view over data and 
metadata—a table and an array. The SciQL query 
computes image masks by filtering pixel values 
within the range [10,100]. Predicates over the 
remote-sensing metadata specify the images— 
for example, the image resolution variant is spa-
tially enhanced (SE), the imaging mode is high- 
resolution spotlight (HS), and the start time is in 
a given time interval.

The data vault optimizer recognizes the refer-
ence to the external repository in the form of the 

images array and rewrites the execution plan to 
ensure that the data wrapper ingests the images se-
lected by the predicates over the id array attribute.

Queries 2 and 3 demonstrate that users can 
easily specify typical operations, such as image 

Figure 5. Remote sensing schema. The files table describes the GeoTIFF files in the repository with their 
location, status, and timestamp of the last modification; the image_catalog table describes image-specific 
metadata; and the images 3D array represents the actual image data.

CREATE SCHEMA rs;

CREATE TABLE rs.files (

  fileid      INT,           location     STRING,

  status      TINYINT,       lastmodified TIMESTAMP );

CREATE TABLE rs.image_catalog (

  imageid     INT,           fileid       INT,         imagewidth INT,

  imagelength INT,           resvariant   CHAR(4),     mode       CHAR(2),

  starttime   TIMESTAMP,     stoptime     TIMESTAMP,

  sensor      VARCHAR(20),   absorbit     INT,

  PRIMARY KEY (imageid),

  FOREIGN KEY (fileid) REFERENCES rs.files(fileid) );

DECLARE NumCols INT;

SET NumCols = ( SELECT max(imagewidth)  FROM rs.image_catalog );

DECLARE NumRows INT;

SET NumRows = ( SELECT max(imagelength) FROM rs.image_catalog );

CREATE ARRAY images (

  id INT DIMENSION,             x INT DIMENSION [NumCols],

  y  INT DIMENSION [NumRows],   v SMALLINT );

Figure 6. Remote sensing queries. Predicates over the remote-sensing 
metadata specify the images—for example, the image resolution 
variant is spatially enhanced (SE), imaging mode is high-resolution 
spotlight (HS), and the start time is in a given time interval.

-- Query 1

SELECT [id], [x], [y], v

FROM images

WHERE v BETWEEN 10 AND 100 AND id IN

  (SELECT imageid

   FROM rs.image_catalog

   WHERE resvariant = 'SE__' AND mode = 'HS' 

     AND starttime > TIMESTAMP '2011-12-08 16:30:00');

-- Query 2 Smoothing

SELECT [x], [y], avg(v)

FROM images[1][*][*]

GROUP BY images[1][x-1:x+2][y-1:y+2];

  

-- Query 3 Sampling

SELECT [x/4], [y/4], v

FROM images[1][*:4:*][*:4:*];
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smoothing and sampling using declarative SciQL 
queries. The smoothing query uses a SciQL fea-
ture called structural grouping, which uses each 
valid value of the dimensions x and y to split the 
image into overlapping 3 × 3 pixel tiles. The pixel 
value at position ([x], [y]) in the result array is sub-
stituted with the average value for the correspond-
ing tile centered at ([x], [y]).

The declarative interface lets researchers eas-
ily and conveniently experiment, and therefore 
boosts productivity.

Astronomy
Recent astronomy surveys often store their cata-
log data using database technology, but many ar-
chives use FITS files. With the growing number 
and scope of surveys, astronomers increasingly 
must correlate observations from different sur-
veys over the same sky objects. Thus, the data 
vault might be valuable as a platform provid-
ing an integrated view over heterogeneous data  
sources.

Data warehouse schema. Astronomers widely use 
the FITS format to store and exchange images 
and tabular data. A FITS file can contain several 

header-data units that can be images or tables in 
ASCII or binary format. Scientists can represent a 
whole database with various tables in a single file. 
Consequently, instead of defining a fixed struc-
ture similar to the records table in the seismology 
data vault, we need a general structure that resem-
bles a traditional SQL system catalog, as Figure 7  
shows. Furthermore, we can’t predefine a table 
or array representing the actual data, because 
the logical schema of the FITS files appears 
only when the repository attaches. Hence, an ad-
ditional operation during the attachment of a 
FITS file repository creates the database tables 
representing the external file tables for querying 
purposes. The cfitsio library (http://heasarc.
gsfc.nasa.gov/fitsio) extracts (meta)data from  
FITS files.

Query processing. After the application attaches an 
external FITS repository, the user can explore its 
content without touching the data through simple 
SQL queries to the data vault catalog. For exam-
ple, Query 1 in Figure 8 only lists all the tables 
available in the repository, while Query 2 shows 
all of the columns storing measurements in arc-
seconds and their respective tables.

Figure 7. The Flexible Image Transport System (FITS; http://heasarc.nasa.gov/docs/heasarc/fits.htmlFITS) 
data vault schema. Because scientists can represent a whole database with various tables in a single file, 
we need a general structure that resembles a traditional SQL system catalog, instead of defining a fixed 
structure similar to the records table in the seismology data vault.

CREATE SCHEMA fits;

CREATE TABLE fits.files ( 

  fileid   INT,           location     STRING,  

  status   TINYINT,       lastmodified TIMESTAMP );

     

CREATE TABLE fits.tables (

  tableid  INT,           name         CHAR(256),     columns INT,

  fileid   INT,           hdu          INT, 

  PRIMARY KEY (tableid),

  FOREIGN KEY (fileid) REFERENCES fits.files(fileid) );   

CREATE TABLE fits.columns (

  columnid INT,           name         VARCHAR(80),   type    VARCHAR(80),

  units    VARCHAR(10),   number       INT,           tableid INT,

  PRIMARY KEY (columnid),

  FOREIGH KEY (tableid) REFERENCES fits.tables(tableid) );

CREATE TABLE fits.images(

  imageid  INT,           fileid       INT,

  width    INT,           length       INT,

  PRIMARY KEY (imageid),                           

  FOREIGH KEY (fileid) REFERENCES fits.files(fileid) );
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Query 3 illustrates integrated processing 
over source data of different formats. In this 
scenario, a researcher must cross-match two as-
tronomical surveys—Faint Images of the Radio  
Sky at Twenty Centimeters (FIRST; http://
sundog.stsci.edu) and Sloan Digital Sky Survey 
(SDSS; www.sdss.org). The surveys contain in-
formation about objects in overlapping areas of 
the sky. To compute properties, such as the object 
spectral index, the scientist must match objects 
based on their spatial coordinates and correlate 
other properties measured in the surveys for dif-
ferent frequencies. Assume that the SDSS catalog 
is stored in a table in the local relational database, 
while the FIRST dataset is available as a table 
in a FITS file. After the repository attaches, the 
FIRST dataset  appears in the database as fits.
first table.

Query 3 computes a simplified version of sur-
veys’ cross-matching operation. It uses the Car-
tesian distance between objects and stores the 
results in the xmatch table, which researchers can 
use in subsequent analysis.

The data vault handles the just-in-time load of 
the required data from the external table (fits.
first), similar to the remote-sensing case. Ad-
ditionally, if the user specifies a condition that 
filters rows of the fits.first table, the data 

vault can use a specialized loader that filters the 
rows by applying some external tool, such as the 
Starlink Tables Infrastructure Library Tools Set 
(STILTS), and provide only the relevant subset  
to the database.13

Although other software tools might cross-
match, they often lack scalability. High-volume 
datasets might require manually splitting the task 
into small steps—for example, a single object or 
set of objects from one of the surveys processed 
“one spoon” at a time. Instead, the data vault ap-
plication uses the most efficient DBMS join algo-
rithms, which are more convenient and enhance 
performance.

A ll three of the use cases for science 
disciplines and their file formats high-
light the MonetDB data vault’s advan-
tages and special features. The data 

vault is a work-in-progress that provides a vista 
on different database research challenges. Wrap-
ping the external libraries’ functionality lets us 
capitalize upon existing tools for in situ analysis, 
but this still needs careful interface design and 
cost modeling. Efficient symbiotic query pro-
cessing requires an extensible optimizer that 
can detect external data and libraries. Achieving 

Figure 8. FITS queries. After the application attaches an external FITS repository, the user can explore its 
content by simple SQL queries to the data vault catalog without touching the data.

-- Query 1

SELECT * FROM fits.tables;

-- Query 2

SELECT ft.name as table_name, fc.name as column_name, fc.units

FROM fits.tables ft JOIN fits.columns fc ON ft.tableid = fc.tableid

WHERE fc.units LIKE '%arcsec%';

-- Query 3

CREATE TABLE xmatch (

  sdss_id  BIGINT,    sdss_brightness  FLOAT,

  first_id BIGINT,    first_brightness FLOAT,   distance FLOAT );

INSERT INTO xmatch

SELECT sdss.objid, sdss.sky_r / 3631000,

  f.seqno, f.fInt,

  3600 * degrees( 2 * asin ( 0.5 * sqrt ( power ( sdss.cx - f.cx, 2) +

                                          power ( sdss.cy - f.cy, 2) +

                                          power ( sdss.cz - f.cz, 2) ))) 

FROM sdss, fits.first as f

WHERE 

  3600 * degrees( 2 * asin ( 0.5 * sqrt ( power ( sdss.cx - f.cx, 2) +

                                          power ( sdss.cy - f.cy, 2) +

                                          power ( sdss.cz - f.cz, 2) ))) < 30;
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balance between generality and usability poses 
another challenge. We must actively collaborate 
with domain scientists to develop data vault 
into a technology that’s useful across multiple  
sciences.�
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