
A multi-scale code for flexible hybrid simulations

L. Leukkunen1, T. Verho2 and O. Lopez-Acevedo1

1COMP Centre of Excellence, Department of Applied Physics, Aalto
University, P.O. Box 11100, 00076 Aalto, Finland

2Molecular Materials, Department of Applied Physics, Aalto University,
P.O. Box 11100, 00076 Aalto, Finland

June 4, 2018

Abstract

Multi-scale computer simulations combine the computationally efficient classical
algorithms with more expensive but also more accurate ab-initio quantum mechanical
algorithms. This work describes one implementation of multi-scale computations using
the Atomistic Simulation Environment (ASE). This implementation can mix classical
codes like LAMMPS and the Density Functional Theory-based GPAW. Any combina-
tion of codes linked via the ASE interface however can be mixed. We also introduce
a framework to easily add classical force fields calculators for ASE using LAMMPS,
which also allows harnessing the full performance of classical-only molecular dynamics.
Our work makes it possible to combine different simulation codes, quantum mechanical
or classical, with great ease and minimal coding effort.

1 Introduction

1.1 Multiscale Computations

Computer simulations are a valuable tool in modern molecular physics research. They can
provide insight into dynamics of a complex system which can be hard to attain through
actual experimentation and they are able to deliver results in scenarios that can be hopelessly
beyond capabilities of current analytical methods.

Despite its significant potential, computational physics faces challenges in practice arising
from the computational cost associated with many high precision algorithms. This leads to
continuous balancing of the desire for accuracy with the cost of reaching it. There is a large
performance gap between ab initio DFT algorithms and the computationally cheap but quite
system specific classical force field algorithms. This has created a need for a mechanism that

1

ar
X

iv
:1

21
1.

20
75

v1
 [

ph
ys

ic
s.

co
m

p-
ph

]
 9

 N
ov

 2
01

2

would allow bridging this chasm in order to simulate systems with thousands of atoms while
retaining the flexibility of modeling quantum mechanical behavior that arises, without having
to first spend significant effort in tuning the classical force fields to work in the particular
system under scrutiny.

There can be considered to be two main approaches to a solution to this. First method
attempts to develop and improve fast classical methods to incorporate behavior arising from
quantum mechanical features. Reactive force fields are one such example of this class of
solutions. The second path is the attempt to combine two or more algorithms into a single
uniform multi-scale simulation. An example of this approach is ONIOM [10] developed by
Gaussian. Both approaches have their strengths and weaknesses and currently no universal
answer exists. Multi-scale setups tend to lead to problems at the interface region between
the calculation methods, while reactive force fields face difficulties coping with systems that
fall outside the setups for which they were trained for.

1.2 Atomistic Simulation Environment

Atomistic Simulation Environment (ASE)[2] is an open source software framework designed
to perform simulations using a number of algorithm implementations. These algorithms are
called calculators in ASE. The calculator interface is defined so that an adhering class must
provide functions that calculate both forces acting on the atoms and the total potential
energy of the system. ASE itself is written in Python programming language, but the actual
calculator implementation can be something else, as long as a Python class wrapping the
implementation is provided.

The force and energy information provided by the calculators is used by various other
ASE modules to perform a range of molecular dynamics operations. These include structure
relaxation along with constant NVE/NVT molecular dynamics. Structure relaxation is also
considered a molecular dynamics operation even if there is no time progression involved.

Using ASE consists typically of writing small Python scripts that create the atom con-
figuration and setup the calculators and any molecular dynamics operations that are to be
performed. The framework is designed so that the central object is the Atoms class, which
stores all the arrays describing the atoms of the system. The calculator is then assigned
to this Atoms object, essentially resulting in a one to one mapping. At present the ASE
framework does not provide any facilities for combining multiple calculators into a single
simulation.

1.3 GPAW

GPAW [4] is a projector-augmented wave (PAW) [3] implementation designed to work with
ASE. PAW takes account of the core electrons of atoms as frozen, and computes with soft
pseudo valence wave functions. GPAW supports all the exchange-correlation functionals
provided by the libxc library [6]. While GPAW reaches good accuracy, it is compute intensive,
requiring large cluster computers to simulate systems larger than just tens of atoms. For
GPAW a huge simulation is already something with 500 atoms and for that kind of calculation

2

a cluster with thousands of nodes is needed in order to produce results in a reasonable amount
of time.

1.4 LAMMPS/ReaxFF

LAMMPS [7] is a classical molecular dynamics simulator. It is a mature framework that
supports parallel distributed memory cluster computers. Similar to ASE, it allows different
algorithms to be plugged in through an extension mechanism. One such algorithm is the
ReaxFF [8] developed by Adri van Duin. ReaxFF has been developed to bridge the gap be-
tween ab initio quantum mechanical algorithms, such as GPAW, and the existing empirical
force field (EFF) methods. Unlike traditional EFF methods, ReaxFF is capable of describ-
ing reactive systems. As is the nature of LAMMPS as a simulation environment, ReaxFF
produces potentials describing the interactions of atoms. These are trained using ab initio
techniques to fit a particular system, but unlike some EFF algorithms, there is only one
version of each atom type used in a single simulation.

The performance difference between LAMMPS/ReaxFF and ASE/GPAW is significant.
In a simulation of a system containing 5000 atoms of which 10 are computed using GPAW,
the ReaxFF computations take so little time it is not worth to even consider parallelizing
that part as the GPAW computation of its tiny subset of atoms completely dominates CPU
usage.

2 ASE/LAMMPS interface

2.1 Design of the interface

Since the standard ASE distribution merely offers rudimentary support for LAMMPS that
only allows nonbonded interaction, we took upon ourselves to improve the interface. Because
LAMMPS supports a large number of functional forms for force fields, a great many force
fields can be used through LAMMPS. Therefore, in our design, each LAMMPS force field is
a separate calculator class in ASE. However, all of them inherit a base class for LAMMPS
calculators, LAMMPSBase, that handles all communication with LAMMPS. The responsibility
of the subclasses is to (a) provide the force field parameters as a FFData object, (b) handle
atom typing, i.e. determine a force field specific type for each atom, depending on its chemical
environment, and (c) possibly assign partial charges to atoms for calculating electrostatic
interactions. The methods in LAMMPSBase then detect chemical bonds, bond angles, dihedrals
and improper dihedrals in the system and generate LAMMPS input based on the force field
parameters provided by the subclass.

The main steps for adding support for a new LAMMPS force field consist typically of
writing a parser that reads a force parameter file acquired from an external source, and
enabling automatic atom typing for the force field. To make automatic typing as easy as
possible, we defined a template syntax for defining chemical environments that characterize
a given type. For each type, a template expression consisting of a single line is given, and to

3

avoid ambiguity with multiple matching types, precedence expressions for defining priority
among types can be used.

In order to offer maximal performance in molecular dynamics simulations that do not
involve mixing with quantum mechanical calculators, we wrote ASE dynamics classes that
are specific to the LAMMPS calculators. Their purpose is to allow running dynamics inside
LAMMPS without needing to execute Python code between every timestep. The syntax for
using these LAMMPS dynamics classes is identical to that when using the standard ASE
dynamics classes, but instead of executing the LAMMPS calculator timestep by timestep,
they instruct the calculator to execute LAMMPS molecular dynamics runs with given pa-
rameters. The run is divided into shorter runs in order to save ASE trajectory snapshots
along the way, also allowing the use of “observer” functions in the same way as the standard
ASE dynamics classes. In the future, the concept of LAMMPS specific dynamics classes can
be used to expose the rich feature set of LAMMPS to the ASE user in a clean way. This
could include robust equilibration methods such as replica exchange dynamics.

Even though the present paper is geared towards mixing the LAMMPS calculator with
quantum codes, we regard the interface potentially useful for purely classical molecular
dynamics simulations as well. In addition to allowing running LAMMPS from ASE, it
automatizes many task such as atom typing and generating LAMMPS input parameters,
something that the LAMMPS native interface leaves to the user.

2.2 Using the interface

We illustrate the usage of the LAMMPS interface with a simple molecular dynamics involving
a phenol dimer. The initial geometry is obtained from the s22 data set included in ASE, and
we demonstrate two different LAMMPS calculators, ReaxFF and CHARMM general force
field for drug-like molecules[9]. The code in listing 1 runs a 10 picoseconds simulation with
first ReaxFF and then CHARMM, and saves the trajectories in two separate files.

from ase . data import s22
from ase import un i t s
from m u l t i a s e c a l c . lammps import ReaxFF , CHARMM
from m u l t i a s e c a l c . lammps . dynamics import LAMMPS NVT
from m u l t i a s e c a l c . u t i l s import g e t d a t a f i l e

atoms = s22 . c r e a t e s 2 2 sy s t em (’ Phenol dimer ’)
atoms . c a l c = ReaxFF(g e t d a t a f i l e (’ f f i e l d . reax ’))
dyn = LAMMPS NVT(atoms , 1∗ un i t s . f s , 300 , t r a j e c t o r y=’ reax . t r a j ’)
dyn . run (10000)
atoms . c a l c = CHARMM(g e t d a t a f i l e (’ p a r a l l 3 6 c g e n f f . prm ’))
dyn = LAMMPS NVT(atoms , 1∗ un i t s . f s , 300 , t r a j e c t o r y=’charmm . t r a j ’)
dyn . run (10000)

Listing 1: Molecular dynamics with LAMMPS

As an aside, we don’t implement any partial charge determination scheme in the CHARMM
force field, so the user needs to apply a suitable charge equilibration method prior to simu-

4

lation. In listing 1, we use the build-in charge equilibration algorithm in ReaxFF to provide
partial charges for the CHARMM simulation.

3 Force and Energy Mixer

3.1 Design of The Mixer

The easiest way to combine results from two calculators is to simply assign different atoms
to each and then present the combined results. This is guaranteed to produce errors as the
interaction between the two sets of atoms is not taken into account at all.

To avoid this error, the Mixer employs a strategy based on ONIOM, a method developed
by Gaussian. The basic idea is to calculate the full system using the cheap less accurate
algorithm, then correct this result by adding the result from calculating the quantum me-
chanically interesting sub-system with the QM method. At this point the QM sub-system
atoms are calculated twice, so a further correction is done by removing the same QM sub-
system calculated using the classical method.

This still leaves something to be desired, as the outer edges of the QM sub-system will
have substantial errors introduced in the calculations due to the arbitrary system boundary.
To avoid this, the Mixer uses weights that can be assigned to atoms for each calculation,
controlling how big contribution it will make to the final result. The weights can either be
fixed to each atom permanently, or calculated dynamically depending for example on the
position of the atom.

It is important to keep in mind that the Mixer itself imposes very few restrictions on
how the forces and energies of the sub-calculators are combined. It can support any number
of calculators, used in any number of force and energy calculations, with atoms and their
weights and coefficients set separately for each and updated dynamically as the simulation
progresses. In this work we primarily concentrate on a setup where two calculators are used
but this in no way implies that the Mixer could not be used in a more creative way.

3 - Full System (ReaxFF)

2 - Quantum Zone (GPAW)

1 - Full Weight
 Quantum Zone

Figure 1: Simple 2D Calculation Region Arrangement

For a concrete example, we can consider the simple two calculator configuration shown
in figure 1 and have the outer box 3 simulated using a classical method and a smaller inner
box 1 using a QM method. For energies we are somewhat restricted by how the potential
energy is calculated. The ASE calculators only provide a single potential energy value for

5

the full system they computed, there is no way to split that up into finer components in a
general way. We will therefore stick to the basic ONIOM Hamiltonian:

H = H3C + {H2Q −H2C}. (1)

Forces are given on a per atom basis by ASE calculators, so we have more flexibility in
calculating the mixed combination. The equation for forces acting on atom i is:

F i = F i
3C + wi(F i

2Q − F i
2C). (2)

The numbers 1, 2, 3 refer to the regions of space so that 1 is the fully quantum inner box,
2 the inner box + transition region and 3 the full system. Letters Q and C refer to the
calculators used: Q for quantum and C for classical.

This leaves us with a slight discrepancy between the force and energy calculations but the
additional error dampening given by the weights for forces could help achieve for example
better relaxation results. The Mixer design allows the user to control the weight configuration
entirely, affording complete tailoring of these aspects of the calculation to the problem at
hand.

3.2 Implementation of The Mixer

The Mixer is designed to present two or more ASE calculators as one towards the rest of the
ASE framework. This is achieved by making the mixer appear as an ordinary ASE calculator
itself. It provides a single set of forces and a single total potential energy for the given Atoms
object. It can therefore take part in all the molecular dynamics operations ASE supports.

Figure 2: Mixer Class Diagram

6

As the Mixer inherits from the ASE interface class for calculators, it meets the require-
ments for a normal ASE calculator. It then further extends this functionality by providing a
set of constructor parameters and member methods for registering a set of force and energy
calculations. The main role of the Mixer class is to simply sum up the contributions from
the sub-calculations using the coefficients given by them. The coefficients are primarily used
to control the sign of the contribution. Almost all actual complexity of the Mixer concept is
separated out to the Calculation and AtomSelector classes. This has been done to allow the
user to completely control the way the multi-scale calculations are to be combined without
having to modify the Mixer implementation itself.

The Mixer Calculation classes have an ASE calculator and an AtomSelector assigned to
them. The AtomSelector is used to select the correct atoms from the original full system
Atoms object. Two implementations of this selector functionality are provided. First is
AtomListSelector, which filters based on an atom ID list, and second is the CalcBox, which
selects atoms that fall within its extents. These demonstrate the flexibility provided by
the Mixer design and can be used as a model for how the user can implement custom
atom selectors to meet requirements of a particular simulation. The AtomSelectors are also
responsible for providing the weight used in ForceCalculations. This means there are two
separate factors affecting the computation of forces. The first is the weight that AtomSelector
assigns, and second is the coefficient provided by the ForceCalculation. This may seem
slightly strange at first, but this design allows re-using the same AtomSelector in multiple
ForceCalculations. Looking at equation (2) it can be seen that in that scenario the same
weight is used with both a positive and a negative sign.

Testing is an important part of developing a simulation tool. Unit tests have been written
for all the main functionality of the Mixer. Specifically the CalcBox weight generation and
molecule entry/exit have been tested carefully. Many of the classes support a debug level
that can be specified in the constructors. Debug output is written into a human readable
textfile.

3.3 Using The Mixer

In this section we examine how the Mixer is used in practice. We prepare a simple multi-scale
simulation with just two hydrogen atoms. The code snippets demonstrate the procedure in
a more tangible form.

There are four parts necessary for a Mixer calculation. First a valid ASE Atoms object
must be created, the second component is a set of ASE calculator objects, third are the force
and energy Mixer calculations and finally the fourth and final piece are the AtomSelector
objects that are used to carve the Atoms object to parts given to each calculation.

The Atoms object can be created in the normal ASE way. Typically it is created by
a separate script that stores it in an ASE Trajectory file and read into the actual calcu-
lation script later. Mixer places no restrictions to the contents of the Atoms object. The
only special preparation that needs to be performed is executing Mixer.set atom ids(atoms)
method, which adds a new Atoms-internal array to the atoms object, containing unique
integer identifiers to each atom.

7

atoms = Atoms(”H2” , p o s i t i o n = [(0 , 0 , 0) , (0 , 0 , 0 . 7 6 4 7 0)] ,
c e l l = (60 , 60 , 60))

Mixer . s e t a t o m i d s (atoms)

Listing 2: Declare Atoms object

This part is in accordance to the way Atoms class is designed to work, so it does not
interfere with any existing ASE functionality and is automatically handled correctly by the
various splicing and extending methods of the Atoms class. These unique identifiers are
critical for correctly combining forces provided by the sub-calculators.

After preparing the Atoms object with the unique IDs, the user can proceed to creating
instances of the ASE calculators to be used by the Mixer.

gpaw calc = GPAW(nbands=2, txt=”gpaw . l og ”)
r e a x f f c a l c = ReaxFF(f f f i l e p a t h=g e t d a t a f i l e (” f f i e l d . reax ”) ,

implementation=”C”)

Listing 3: Create ASE calculators

In this simulation we want one of the hydrogen atoms to be in the classical region, and
the other in the quantum region. This is obviously quite unphysical and the results are not
very useful, but does serve well as a straightforward example. We proceed by creating two
selectors to split the atoms into these two regions.

f u l l s y s t e m = AtomListSe lector ([0 , 1] ,
{0 : 1 . 0 , 1 : 1 . 0})

qm region = AtomListSe lector ([1] ,
{1 : 1 . 0})

Listing 4: AtomSelector objects

The atom ids that the selector will select for are 0, 1 for the full system, and 1 for the
QM region. The second parameter to the constructor is the set of weights assigned to each
atom.

Now we are ready to define the Calculation objects for this system. Since we are going to
implement, at least in principle, the calculations based on equations (2) and (1), we need six
calculation objects. Three for energies and three for forces. This may look a little verbose,
but considering the flexibility this allows, the trade off is worth it.

f o r c e s f u l l s y s t e m r e a x f f = ForceCa lcu la t ion (” f o r c e s f u l l ” ,
f u l l s y s t e m)

f o r c e s f u l l s y s t e m r e a x f f . c a l c u l a t o r = r e a x f f c a l c
f o r c e s f u l l s y s t e m r e a x f f . c e l l = (6 0 . 0 , 60 . 0 , 6 0 . 0)

fo rces qm reg ion gpaw = ForceCa lcu la t i on (” forces qm gpaw ” ,
qm region)

forces qm reg ion gpaw . c a l c u l a t o r = gpaw calc
fo rces qm reg ion gpaw . c e l l = (6 . 0 , 6 . 0 , 6 . 0)

8

f o r c e s q m r e g i o n r e a x f f = ForceCa lcu la t i on (” f o r c e s q m r e a x f f ” ,
qm region)

f o r c e s q m r e g i o n r e a x f f . c a l c u l a t o r = r e a x f f c a l c
f o r c e s q m r e g i o n r e a x f f . c e l l = (6 0 . 0 , 60 . 0 , 6 0 . 0)
f o r c e s q m r e g i o n r e a x f f . c o e f f = −1.0

e n e r g y f u l l s y s t e m r e a x f f = EnergyCalcu lat ion (” e n e r g y f u l l ” ,
f u l l s y s t e m)

e n e r g y f u l l s y s t e m r e a x f f . c a l c u l a t o r = r e a x f f c a l c
e n e r g y f u l l s y s t e m r e a x f f . c e l l = (6 0 . 0 , 60 . 0 , 6 0 . 0)

e n e r g y q m r e g i o n r e a x f f = EnergyCalcu lat ion (” energy qm reax f f ” ,
qm region)

e n e r g y q m r e g i o n r e a x f f . c a l c u l a t o r = r e a x f f c a l c
e n e r g y q m r e g i o n r e a x f f . c e l l = (6 0 . 0 , 60 . 0 , 60 . 0)
e n e r g y q m r e g i o n r e a x f f . c o e f f = −1.0

energy qm region gpaw = EnergyCalcu lat ion (”energy qm gpaw” ,
qm region)

energy qm region gpaw . c a l c u l a t o r = gpaw calc
energy qm region gpaw . c e l l = (6 . 0 , 6 . 0 , 6 . 0)

Listing 5: Calculation objects

Now all that is left is creating the Mixer calculator object and running the simulation.
The Mixer constructor takes two lists that comprise the sets of force and energy calculations.

mixer = Mixer (f o r c e s =[f o r c e s f u l l s y s t e m r e a x f f ,
forces qm reg ion gpaw ,
f o r c e s q m r e g i o n r e a x f f] ,

e n e r g i e s =[e n e r g y f u l l s y s t e m r e a x f f ,
ene rgy qm reg i on r eax f f ,
energy qm region gpaw])

atoms . s e t c a l c u l a t o r (mixer)

Listing 6: Mixer instance creation

From this point onwards the atoms object can be used in exactly the same way as usual in
ASE. All calculations will happen transparently in the background.

3.4 Mixer Unit Tests

A rudimentary unit test set has been developed. The tests have been built using the Python
unittest class. Main focus is on the AtomSelectors and the supporting OctreeNode. The
tests exercise the classes in isolation to make the results easier to interpret.

For OctreeNode the tests create and populate a volume and test finding these objects us-
ing various search radius. This mimics the way CalcRegion atom selector uses OctreeNode.
AtomSelector tests focus on the CalcBox class as CalcRegion and the underlying Atom-
Selector functionality gets completely and predictably covered that way too. Transition

9

region weight generation is a key functionality and is extensively tested. Furthermore, the
computations demonstrated in section 4 have been encapsulated into test cases as well.

For the CalcBox class we have developed a separate mixer box.py Python script that can
be used to run a two calculator computation as described by equations (1), (2) and figure
1. This script has been used during development for ad-hoc testing, but it is of sufficient
quality to be used by users. It takes a number of command line parameters that control
its behavior including specification of ASE trajectory file for input, the dimensions of the
calculation regions and choosing the molecular dynamics to use and the number of steps to
run among other variables. It also serves as a complete example of how the Mixer framework
can be utilized to construct computation schemes for multiscale calculations.

4 Simple molecular systems in hybrid simulations

4.1 Interaction energy

To demonstrate the use of the LAMMPS interface and the Mixer using the implemented
framework [1] we calculate the interaction energy of a 2-pyridoxine 2-aminopyridine complex
shown in figure 3. The equation for interaction energy of the dimer is

Figure 3: 2-pyridoxine 2-aminopyridine complex

Hinteraction = Htotal −H2−pyridoxine −H2−aminopyridine. (3)

In the Mixer calculations we treat the molecule on the left (2-pyridoxine) using GPAW
and the full system using LAMMPS/ReaxFF. In table 1 are presented the molecular and in-
teraction energies computed first using ReaxFF and GPAW alone, and then together through
Mixer. The Mixer calculations have been performed to match the energy equation (1) and
in code look very similar to what is found in listings 2 through 6.

The interaction energies found in table 1 differ somewhat from the value -0.72eV published
in [5], but this is expected as that value has been achieved using coupled-cluster method,
and these here are of lesser accuracy by design.

4.2 Forces

In order to verify the force mixing functionality of the Mixer, a system consisting of a methane
molecule is used. The molecule is moved along the x-axis so that it passes through the central

10

Table 1: 2-pyridoxine 2-aminopyridine energies

Energy ReaxFF GPAW/PBE Mixer (GPAW + ReaxFF)

2-pyridoxine -62.339058 -78.485885 -78.519775
2-aminopyridine -66.263778 -83.629371 -66.263778
Combined -128.974632 -162.745084 -145.155333
Interaction -0.371795 -0.629827 -0.371780

region of the simulation box. This motion on the x-axis is the only time integration done
on the system, the relative positions of atoms remain constant to make comparison of forces
calculated in different molecule positions easier. The computations are configured similar to
what is shown in figure 1 but expanded to three dimensions.

LAMMPS/ReaxFF is used to model the full system using 100x100x100 angstrom cell and
a small central region of 10x10x10 angstroms is handled by GPAW. The central quantum
box has a 2 angstrom transition region where the mixing weights change from 0.0 to 1.0 while
moving inwards. In addition the GPAW calculation is performed with a 3 angstrom thick
vacuum layer added around the actual quantum box zone. The purpose of this experiment is
to show how the intra-molecule forces acting on the atoms change when the molecule enters
and exits the quantum box. section 3.4. The calculations implement the force equation (2).
The force components for a single hydrogen atom are shown in figure 4 which also shows
how the forces gradually change from the values produced by ReaxFF to the ones computed
by GPAW as the CH4 molecule enters the quantum box from the left. While it stays within
the GPAW box the forces are constant, and then migrate back to ReaxFF values as it exits.
Worth noticing is how the entry is completely smooth, but the exit has a sharp jump. This

10 5 0 5 10
x-axis position [Ang]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Fo
rc

e
[N

]

F_x
F_y
F_z

Figure 4: Force components acting on a methane hydrogen atom

is caused by Mixer making sure that all atoms of a single molecule are calculated with the
same calculator. Now when the molecule is exiting, one of its atoms moves outside the

11

GPAW calculation cell while the one being observed is still a significant distance from that
boundary. At that point the entire molecule must be excluded from the GPAW computation.
In other words the atom being inspected is on the trailing edge of the methane molecule.
This discontinuity can be made less severe by using a larger transition region.

5 Conclusion

We have created a force and energy mixer for ASE. The Mixer framework was used to
perform an ONIOM-like multiscale computation using GPAW and LAMMPS/ReaxFF and
simple test scenarios were used to verify both energy and force mixing functionality. We have
also created an ASE/LAMMPS interface designed to allow easy additions of new force fields.
Current supported force fields include ReaxFF, CHARMM general force field, COMPASS
and ClayFF. The MultiASE framework has proven to be flexible and robust enough in
these simulations, and it is proposed here as a base for developing new and more advanced
multiscale strategies.

6 Acknowledgments

L.L and O.L-A acknowledge support by the Academy of Finland through its Centre of Ex-
cellence Program (project no. 251748). Computational resources were provided by Finland
IT center for Science (CSC).

References

[1] The code is written in Python and is freely available at
https://github.com/csmm/multiase.

[2] S. R. Bahn and K. W. Jacobsen. An object-oriented scripting interface to a legacy
electronic structure code. Comput. Sci. Eng., 4(3):56–66, MAY-JUN 2002. ISSN 1521-
9615.

[3] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50:17953–17979, Dec
1994. URL http://link.aps.org/doi/10.1103/PhysRevB.50.17953.

[4] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Du lak, L. Ferrighi, J. Gavn-
holt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H.
Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen,
T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris,
M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. H. Madsen, R. M. Nieminen,
J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Ja-
cobsen. Electronic structure calculations with gpaw: a real-space implementation of

12

the projector augmented-wave method. Journal of Physics: Condensed Matter, 22(25):
253202, 2010. URL http://stacks.iop.org/0953-8984/22/i=25/a=253202.

[5] P. Jurecka, J. Sponer, J. Cerny, and P. Hobza. Benchmark database of accurate (mp2
and ccsd(t) complete basis set limit) interaction energies of small model complexes, dna
base pairs, and amino acid pairs. Phys. Chem. Chem. Phys., 8:1985–1993, 2006. URL
http://dx.doi.org/10.1039/B600027D.

[6] M. A. Marques, M. J. Oliveira, and T. Burnus. Libxc: A library of exchange and cor-
relation functionals for density functional theory. Computer Physics Communications,
183(10):2272 – 2281, 2012. ISSN 0010-4655.

[7] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of
Computational Physics, 117(1):1–19, 1995. ISSN 0021-9991.

[8] A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard. Reaxff: A reactive
force field for hydrocarbons. The Journal of Physical Chemistry A, 105(41):9396–9409,
2001. URL http://pubs.acs.org/doi/abs/10.1021/jp004368u.

[9] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian,
O. Guvench, P. Lopes, I. Vorobyov, and A. D. M. Jr. Charmm general force field: A force
field for drug-like molecules compatible with the charmm all-atom additive biological
force fields. Journal of computational chemistry, 31(4):671–690, 2010.

[10] T. Vreven, K. S. Byun, I. Komáromi, S. Dapprich, . J. A. Montgomery, K. Morokuma,
and M. J. Frisch. Combining quantum mechanics methods with molecular mechanics
methods in oniom. Journal of Chemical Theory and Computation, 2(3):815–826, 2006.
URL http://pubs.acs.org/doi/abs/10.1021/ct050289g.

13

	Contents
	1 Introduction
	1.1 Multiscale Computations
	1.2 Atomistic Simulation Environment
	1.3 GPAW
	1.4 LAMMPS/ReaxFF

	2 ASE/LAMMPS interface
	2.1 Design of the interface
	2.2 Using the interface

	3 Force and Energy Mixer
	3.1 Design of The Mixer
	3.2 Implementation of The Mixer
	3.3 Using The Mixer
	3.4 Mixer Unit Tests

	4 Simple molecular systems in hybrid simulations
	4.1 Interaction energy
	4.2 Forces

	5 Conclusion
	6 Acknowledgments

