
F r o m
T h e E d i t o r s

4	 Copublished by the IEEE CS and the AIP	 1521-9615/13/$31.00 © 2013 IEEE� Computing in Science & Engineering

F r o m
T h e E d i t o r s

T he future of high-performance computing’s (HPC’s) suc-

cess might well depend on being able to think in par-

allel, starting w ith the definition of a n algorithm:

In mathematics and computer science, an algorithm is a step-
by-step procedure for calculations. Algorithms are used for
calculation, data processing, and automated reasoning.
� —Wikipedia

A procedure for solving a mathematical problem (as of find-
ing the greatest common divisor) in a finite number of steps
that frequently involves repetition of an operation; broadly:
a step-by-step procedure for solving a problem or accom-
plishing some end especially by a computer.
� —Merriam-Webster

At a recent IEEE Computer Society Board of Governors
meeting, I was invited by Jean-Luc Gaudiot to join several
members of the Educational Activities Board (and other
colleagues) for dinner. Jean-Luc was particularly keen on
knowing my thoughts on how I “define” an algorithm. It
turns out that the two of us have something in common (re-
search in dataflow computing), which might explain why he
wanted to know my definition. I’ll discuss this more later.

Being Enlightened
First, we need a bit of background. Long-time readers of
the “Scientific Programming” department will know that I
have a longstanding interest in exploring alternatives to the
imperative style of programming that still predominates to-
day’s “computational thinking” landscape. In the late 1980s
and early 1990s, I was working on the implementation of
functional/dataflow languages that could compile and ex-
ecute on supercomputers and networks of workstations (the
early term for clusters). Although these early efforts were
promising, I could never quite make the case that working
in functional and object-oriented languages was the right
thing to do. Thinking functionally is tricky, owing to our
classically conditioned learning of procedural programming
(in the von Neumann architectural style). This ultimately led
me to return to more hybrid (better read as “conservative”)

approaches based on C/C++ (and Fortran), which have been
carrying the torch of HPC for some time now. And it’s clear
that they’ll continue to play a role in the modern era.

This background information is important, because it has
much to do with how an algorithm is “defined.” The term
algorithm is largely credited to Al-Khwarizmi of Baghdad,
who with his contemporaries in the House of Wisdom intro-
duced the notion of calculation using Hindu numerals to the
Western world during a period often called the Dark Ages
(in Europe) that preceded the age of enlightenment. With-
out this important contribution to mathematics and compu-
tational thinking, it’s hard to imagine being enlightened.

While it would be some time before these ideas actually
gained traction (until well into the early 1900s), a defini-
tion of algorithms ultimately ensued. In both the Wikipedia
and Merriam-Webster definitions, the phrasing of step-by-
step and procedure are practically joined at the hips. There’s
nothing technically wrong with this definition, but it shapes
our thinking about algorithms in a way that could hamper
effective teaching of computational and computer science
disciplines, not to mention limiting our imagination when
it comes to solving a problem in a way that lends itself to
execution on modern computer hardware (such as super-
computers, accelerators, and other novel architectures).

Removing Limitations
by Thinking Functionally
Let’s start with the thinking that accompanies step-by-
step. Again, we know from Turing computability that all
computation can be boiled down to a sequence of state
transitions and actions, so steps are at least innate to mod-
ern computing hardware. But does the actual thinking
behind an algorithm really require us to use steps (or im-
perative statements)? The answer seemingly points in the
negative. One of the first algorithms I learned in comput-
ing (even before becoming a computer scientist) was in my
discrete mathematics course: the greatest common divisor,

What’s in an Algorithm?
By George K. Thiruvathukal

CISE-15-4-EIC.indd 4 12/08/13 11:43 AM

July/August 2013� 5

the definition and solution of which is credited to Euclid
(another pre-Enlightenment and even pre-Dark Ages
fellow). Its definition is recursive:

gcd(a, b) = gcd(b, a mod b)

gcd(a, 0) = a

where a >= 0, b > 0

I’m going to point to my lecture notes (http://introcs.
cs.luc.edu/book/latest/html/default/gcdexamples.html)
for the details and various ways of coding it (good and bad,
followed by better). The lowdown is that this elementary
algorithm shows how computational thinking (which, in
part, includes mathematical thinking) doesn’t require us to
express a computation as a series of steps. Yes, the code
might ultimately be compiled into a series of steps, but in
this case the algorithm is expressed as a recursive composi-
tion of functions.

And this isn’t the only algorithm of its kind. Another fa-
mous example is the sorting algorithm quicksort (also cov-
ered in our lectures) and the Strassen algorithm for matrix
multiplication (one that many of our readers know). All of
these algorithms are conveniently expressed using recur-
sive function composition. You’ll ultimately find yourself
writing the code as “steps” in languages such as C/C++ and
Fortran, but it’s actually possible to write the code without
steps in modern functional programming languages.

So why should we care? Well, as it turns out, we’re seeing
a resurgence of interest in alternative paradigms for paral-
lel computing (something I hope we’ll do a special issue
on next year). We’ve done a special issue on Modern Pro-
gramming Languages, wherein the authors demonstrated
how an example algorithm can be coded in a functional
style—recursive and without side effects (read: global vari-
ables). When we think about programs in a functional
way without side effects and a priori serialization, we have
more opportunities to exploit multicore and emerging ar-
chitectures. That’s because any function application (that is,
a function call) is a natural candidate for parallelization.
This can lead to a superfluity of parallel computation, but
it can be managed using pooled thread execution or, better
yet, actors that don’t require the full resources of a thread
(that is, no lock variables or thread state).

So does this answer Jean-Luc’s question? I hope so.
In the end, teachers, researchers, and practitioners

should update the algorithm’s definition. With parallel

(and distributed) computers now on everyone’s desktop,
phones, and gaming systems, I posit that a culture of reli-
ability and reproducibility needs to be part of what we’re
doing. Functional computing was created by mathemati-
cians/logicians for mathematicians/logicians. It gives me
pause to think about what the world would look like if
Al-Khwarizmi’s efforts to bring the Hindu system to the
West hadn’t succeeded. We probably wouldn’t be working
with hieroglyphics or Roman numerals, but we wouldn’t be
harnessing the full power of computation, either.

Today, the analog of this for computer/computational
scientists is to be looking at the immense promise—and
delivery—of modern functional programming languag-
es, which are not just toy languages anymore. As the
EIC of CiSE, I promise to bring more of this content
to you with the hope that it can be put into practice
for solving the world’s most important computational/
engineering problems.�

Newsletters
Stay Informed on Hot Topics

computer.org/newsletters

CISE-15-4-EIC.indd 5 12/08/13 4:31 PM

