

Edinburgh Research Explorer

A scientist's guide to cloud computing

Citation for published version:
Tsaftaris, SA 2014, 'A scientist's guide to cloud computing', Computing in science & engineering, vol. 16,
no. 1, 6756844, pp. 70-76. https://doi.org/10.1109/MCSE.2014.12

Digital Object Identifier (DOI):
10.1109/MCSE.2014.12

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Computing in science & engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1109/MCSE.2014.12
https://doi.org/10.1109/MCSE.2014.12
https://www.research.ed.ac.uk/en/publications/d86b66a6-955a-4151-84cf-458315c97295

SCIENTIFIC PROGRAMMING
Editors: Konrad Hinsen, konrad.hinsen@cnrs-orleans.fr | Matthew Turk, matthewturk@gmail.com

70 Computing in Science & Engineering 1521-9615/14/$31.00 © 2014 IEEE Copublished by the IEEE CS and the AIP January/February 2014

M y PhD work in 2003 entailed the design of 256
DNA sequences of length 45 capable of encod-
ing 256 integers, and satisfying a number of con-
straints. Understandably, the search space is vast

(since there are four DNA bases, it is 445), and unfortunately
being combinatorial, this problem is known to be NP-hard.
My best algorithm (as most algorithms for DNA codeword de-
sign) used stochastic local search (similar to genetic algorithms),
which might still converge to one of the many local minima;
thus, the traditional approach is to run many instances of it
with different start conditions and parameters to obtain the best
solution. "is is a pure example of simple-to-parallelize prob-
lems—many instances that can be executed independent from
each other. Numerous scientific problems fall in the category of
embarrassingly parallel: for example, Monte Carlo simulations,
parameter and threshold sensitivity curves (where a span of pa-
rameters are explored and the performance of the algorithm is
evaluated), and obtaining rate distortion curves in compression
(where for different bitrates we must obtain the distortion).

A multiprocessor machine in my former lab could
handle the execution of many instances. However, many
colleagues needed access to the same machine at the same
time, particularly around conference deadlines. Relying on
our university’s cluster was a solution in the long run, but
it required a proposal explaining the need for, and amount
of, compute hours, approved by a university committee, and
budgeted (after a certain quota) to an account. Once ap-
proved, it entailed convincing the cluster administrator to
install software not present on the cluster, and then depend-
ing on the priority as a user, waiting an unknown amount
of time for jobs to start and finish (at the control of our clus-
ter’s Portable Batch System [PBS] scheduler). My approach
to satisfy on-the-spot needs was simpler: I wrote a master-
slave framework to send jobs to Matlab “slaves” via a shared
directory in our fileserver (this was done prior to Matlab’s
distributed computing server offering). I was using all the
desktop PCs of the lab, which had different capabilities, to
solve the combinatorial problem. "is helped tremendously
in speeding up my computation.

In 2006, Amazon introduced Amazon Web Services
(AWS; http://aws.amazon.com), which included the Elastic
Compute Cloud (EC2; http://aws.amazon.com/ec2) service.

Not many people in the scientific world (except the expert
community in grid, utility, and high-performance comput-
ing) realized the impact at the time. For me, the benefit was
clear and immediate. For example, when I had to invert a
large matrix for an image restoration project, I signed up
with EC2 and picked an instance satisfying my needs. I
then launched a virtual machine (a software-based imple-
mentation resembling a physical computer), installed the
needed application, and solved the problem without much
hassle and logistics overhead. However, coordinating many
instances in a manner that was straightforward and trans-
parent for me, the user, was another story.

Later, after I had moved to a new institution, I ran into
an issue with large-scale processing. We were working in my
lab with neuroimaging data and multiple processes required
several hours. Navigating the system again towards find-
ing the cluster infrastructure was too slow. I searched neu-
roimaging and the cloud and found discussions in forums
describing procedures using AWS to execute neuroimaging
pipelines (which are now better documented for Freesurfer
at http://freesurfer.net/fswiki/AmazonCloud, and for others
at www.nitrc.org/plugins/mwiki/index.php/nitrc:User_
Guide_-_NITRC_Computational_Environment), but not
at a large, coordinated scale. I searched for cloud computing
tools and a few options came up.

I believe my story will resonate with many readers. Clear-
ly, the advent of commercial clouds has revolutionized every-
day computing, but many now believe it will impact scientific
computing, as well. Already several articles have been written
illustrating and evaluating the potential of cloud computing
for science, particularly from the software engineering and
resource management side (see the related sidebar for more
information). "is article is geared instead towards helping
readers understand that with some new (commercial and even
public) tools, dealing with the cloud and running large-scale
processing can be rather easy and efficient.

Cloud Computing Solutions for the Scientist
Several commercial entities, academic groups, and individu-
als considered the problem of how to facilitate interaction
with cloud infrastructures from the scientists’ perspective.
For example, Cycle Computing (www.cyclecomputing.com)

A Scientist’s Guide to Cloud Computing
Sotirios A. Tsaftaris IMT Institute for Advanced Studies Lucca, Italy, and Northwestern University

New tools (some commercial and even public), have made it so that dealing with the cloud and running
large-scale processing can be rather easy and efficient.

SCIENTIFIC PROGRAMMING

CISE-16-01-Sciprog.indd 70 27/01/14 8:48 PM

www.computer.org/cise 71

offers their consulting expertise to users and builds cloud-
based high-performance computing (HPC) alternatives;
however, they don’t offer a tool or a service for a user to de-
velop their own cloud-based infrastructure.

StarCluster (http://star.mit.edu/cluster), on the other
hand, is an open source toolset for simplifying and au-
tomating the creation and management of cloud-based
clusters geared for science with AWS. "e StarCluster
Amazon Machine Image (AMI is the virtual machine
image of AWS) includes several options, packages, and
plugins preinstalled, ready to work in a StarCluster arrange-
ment. It can also be extended with user-defined software/
applications and plug-ins. For example, with such a plug-in
(see http://star.mit.edu/cluster/docs/latest/plugins/ipython.
html?highlight=ipython), an interactive IPython cluster
configuration is even possible (ipcluster enables the use of
multiple computational instances within the Python inter-
preter). StarCluster provides several job-handling options
(such as Sun Grid Engine), and Hadoop and OpenMPI
implementations. StarCluster is definitely a powerful open
source tool for scientific computing in the cloud; however,
an expertise and comfort on cluster setup from the user is
required. Since not all scientists are well-versed, for example,
with cluster configuration and management and job queues,
several approaches towards simplifying access to such com-
putational power are under development.

An interesting academic and open source attempt
towards this goal is OpenCPU (https://public.opencpu.
org), which focuses on calling and using the R language
(www.r-project.org) on a cloud server via a Web API. Us-
ing OpenCPU is easy and when combined with JavaScript,

R functions and scripts can be embedded in the browser,
and user-defined apps (R packages bundled with Web con-
tent for headless operation) can be deployed and shared.
Interested users deploy OpenCPU on EC2 or other com-
patible providers and pay solely for the cost of the cloud
provider. However, currently, OpenCPU doesn’t offer an
architecture where multiple cloud instances can be used to
tackle the same problem in an efficient fashion.

A recent start-up CPUsage (www.cpusage.com), released
its public beta in September 2013 with the goal of facilitat-
ing submitting and distributing tasks in the cloud, with the
focus on being application, cloud provider, and language ag-
nostic. "e user can manage and submit jobs via a Represen-
tational State Transfer (REST) API or command-line tools
(which will be released soon). "e user customizes a Linux
Container with their own applications and software, run-
ning on Amazon AWS, which is then wrapped in an API.
Containers aren’t technically independent operating sys-
tems, but appear as such to the end user. Current planned
enhancements include API and application builders, and li-
braries for known languages such as Python. CPUsage also
intends to benchmark a user’s jobs and advise upon what’s
the best provider and instance configuration, either opti-
mizing cost or speed/efficiency. "e pricing strategy follows
a per-minute compute cost for various configurations with
access to a multinode infrastructure. Data transfer costs are
included within the price, while no storage is available with-
in CPUsage, except the 500 Mbytes of temporary storage
within the container.

Relying on Python’s emergence and scientific appeal,1
Wakari (www.wakari.io; by Continuum Analytics) deploys

Cloud Computing for Science from the View of CiSE

Cloud’s appeal for science is clear: simplicity, elasticity (that
is, the availability of large resources on the spot by launching

as many instances as needed), true reproducibility (the virtual ma-
chine and the code running on that machine can be made public
together with the data, when necessary), the ability to cover a large
span of open questions previously unattainable due to a possible
lack of computing power, and most importantly, democratization of
science (since anyone has access to large computing power).

Naturally, this journal has been following scientific cloud com-
puting closely, with two special issues1,2 in 2009 and 2013 and
articles throughout the years.3 In the most recent special issue,
review,4 comparison,5 and application6-7 articles appeared, cover-
ing the cloud’s broad potential as well as some of its challenges.

References
1. F. Sullivan, “Cloud Computing for the Sciences,” Computing in

Science & Eng., vol. 11, no. 4, 2009, pp. 10–11.

2. G.K. Thiruvathukal, and M. Parashar, “Cloud Computing,”
Computing in Science & Eng., vol. 15, no. 4, 2013, pp. 8–9.
2013.

3. J.J Rehr et al., “Scientific Computing in the Cloud,” Comput-
ing in Science & Eng., vol. 12, no. 3, 2010, pp. 34–43.

4. M. Parashar et al., “Cloud Paradigms and Practices for Compu-
tational and Data-Enabled Science and Engineering,” Computing
in Science & Eng., vol. 15, no. 4, 2013, pp. 10–18.

5. G. Juve et al., “Comparing FutureGrid, Amazon EC2, and Open
Science Grid for Scientific Workflows,” Computing in Science
& Eng., vol. 15, no. 4, 2013, pp. 20–29.

6. D.K. Krishnappa et al., “CloudCast: Cloud Computing for
Short-Term Weather Forecasts,” Computing in Science & Eng.,
vol. 15, no. 4, 2013, pp. 30–37.

7. Y. Simmhan et al., “Cloud-Based Software Platform for Big
Data Analytics in Smart Grids,” Computing in Science & Eng.,
vol. 15, no. 4, 2013, pp. 38–47.

Editors: Konrad Hinsen, konrad.hinsen@cnrs-orleans.fr | Matthew Turk, matthewturk@gmail.com

CISE-16-01-Sciprog.indd 71 27/01/14 8:48 PM

SCIENTIFIC PROGRAMMING

72 January/February 2014

a “Python in the cloud” system. "us, the user has access
to a Python instance on Wakari’s cloud environment, in-
teractive even within a Web-based IPython notebook. "e
computational power depends on the choice of instance,
with multicore, high-memory, and ipcluster options avail-
able. "e user can also customize a Linux Container to in-
clude other applications/libraries. Using Wakari requires
a monthly subscription, which varies in cost according to
the chosen setup. Overall, for those familiar with Python,
it’s really easy to use the Web-based notebook with Wakari,
and this appeals to users who want to create and promote
reproducible research; however, while adding extra nodes is
possible, it’s less intuitive.

PiCloud (www.multyvac.com) is one of the first com-
mercial entities with a special focus on making scientific
computing in the cloud simple for the users. PiCloud
provisions AWS instances transparently to the user, act-
ing as a middleware between AWS and the user. Their
provisioning technology allows PiCloud to compete for
the lower cost spot instances on Amazon. By predict-
ing clients’ usage, they bid for future AWS instances as
needed. They bundle their own instances (referred to as
core types) so that many users can co-exist within a single
(for example, large) AWS instance. This allows PiCloud
to offer competitive compute pricing at the millisecond.
Users pay for data storage and data download. In addi-
tion, PiCloud offers several instance configurations and
even permits a user to define multiple instances for a sin-
gle job, in case high memory or multicore processing is
needed. PiCloud is appealing due to the amount of opti-
mization involved behind the scenes to simplify access to
the cloud. The user interacts transparently with the cloud
via an API and a Python library.

A “Getting Started” Tutorial with PiCloud
Here, I’ll demonstrate with two examples the power of Pi-
Cloud for distributed processing. In the following, a fixed-
width font is used for Python and PiCloud commands and
functions. At the time of writing, PiCloud offered 20 hours
of free computing, so readers can easily test PiCloud follow-
ing the examples below.

"e first step is to create a PiCloud account and login.
"e Web interface of PiCloud provides several options, such
as reviewing of billing, and managing data storage and en-
vironments. It also includes running directly an interactive
IPython notebook (similar to Wakari). For this tutorial, I’ll
focus on running processes from a user’s computer. Note
that the PiCloud documentation contains several additional
examples and tutorials for readers to get inspiration from,
such as running applications on PiCloud (such as R), and
even deploying Matlab-compiled functions.

Depending on the operating system, the “Get Started”
guide on PiCloud’s Web interface advises on how to install

Python, the PiCloud library, and PiCloud credentials on the
local system providing access to the PiCloud infrastructure.
(Note that for a single account, many credentials can be
generated—thus, one account can be used by many users.
"is facilitates logistics in a group/lab setting.)

For a Python script to have access to the PiCloud infra-
structure, it must include
>>> import cloud

Now, let’s define a simple Python function:
def add(x, y):

return x+y

Issuing the command
>>> jid = cloud.call(add, 1, 2)

1

will execute “add” on the cloud, and obtain a job id (jid=1),
which we can use to monitor the process of the job(s):
>>> cloud.status(1)

"e returned messages are self-explanatory; for exam-
ple, “done” indicates that the process has completed.

"e results of the job “add” can be seen with:
>>> cloud.result(1)

3

"us, this simple example shows that PiCloud automat-
ically transferred the dependencies of the function “add” to
the cloud, and executed the process on the cloud.

One of the most useful capabilities of PiCloud is to map
a function with different inputs—in other words, execute
the same Python function with different arguments on the
cloud (the way the Python map command does it on the
 local Python):
>>> jids = cloud.map(add, [1,3,2], [2,2,2])

"is actually launches three jobs, the results of which
can be obtained via their ids as
>>> cloud.result(jids)

3,5,4

Even this trivial example illustrates the power, but easi-
ness and efficiency, of distributing several identical process-
es (with different inputs) on PiCloud, since PiCloud takes
care of sending the function to the cloud and executing it
with all possible arguments. According to the selection of
instances, jobs will start as soon as “on-demand” cores are
available (recall that PiCloud predicts usage by profiling the
jobs of each user and assigns priorities), for which the user
pays only for the amount of time used for computation (at
the millisecond level). Alternatively, “real-time” cores guar-
antee the availability of concurrent cores. However, a setup
wait time is necessary, and they do incur a minimum cost
(their cost is the same as with on-demand cores if usage is
greater than 36 minutes/hour). PiCloud offers several core
types, varying in memory, computer power, local disk space,
and price. For example,
>>> jids = cloud.map(add, [1,3,2], [2,2,2], _type='m1')

will map the “add” function on “m1”-type cores.

CISE-16-01-Sciprog.indd 72 27/01/14 8:48 PM

www.computer.org/cise 73

Now let’s consider a problem for which we need to
use an external binary or library. While the standard Pi-
Cloud instance contains Python and several libraries, it
can be extended using environments. An environment is a
Linux Container that runs on top of the standard PiCloud
Linux Container (PiCloud refers to this as the base). As
with Wakari and CPUsage, within environments the user
can install applications necessary for computation. "e en-
vironments can be private, shared among users, or public.
"e shared environment facilitates research in a group/lab
setting, since many users can update/modify the environ-
ment keeping the installed codebase up to date. Public en-
vironments (as with public AMIs) are available to the broad
community and anyone can use them, increasing the repro-
ducibility of science, and the exchange of information.

PiCloud’s documentation and blog contains several exam-
ples regarding calling external binary applications (for example,
FFmpeg to transcode video), but not one together with how
to create a custom environment. I’ll use as an example a rather
(scientifically) complex problem from medical image process-
ing, and particularly neuroimaging. "is will demonstrate the
power of PiCloud and resonate with many scientists.

"e scientific problem at hand is to have imaging vol-
umes (3D matrices) overlap as much as possible, commonly
known in neuroimaging as normalization. Usually, this in-
volves a reference volume, known as the atlas, which is con-
sidered as the fixed volume (because it doesn't change), and
a subject volume, which moves (that is, it’s transformed) to
match the atlas. "e best matching is usually obtained via
nonlinear registration between the 3D volumetric data,5
to find a mapping between voxel locations of the subject to
those of the atlas. Overall, this process is complex and some
registration frameworks require iterative optimization of
millions of parameters of the transformation. Depending on
the volumes’ size, the amount of deformation present (that
is, how much do we need to change the subject to match the
atlas), and the algorithm used, it can take several hours for
a single pair of inputs. Registration is repeated for all input
subjects; thus, processing needs increase rapidly.

For this demonstration, I’ll use the Advanced Normal-
ization Tools (ANTs) collection of applications for neuro-
imaging (http://sourceforge.net/projects/advants) version
ANTS_1_9_y. "e first step is to ensure that ANTs is avail-
able within our PiCloud environment. We follow PiCloud’s
documentation for the environment, to launch an ssh ter-
minal inside the browser, which gives access to an instance
running our environment. With the ssh terminal open, we
follow the instructions (see http://brianavants.wordpress.
com/2012/04/13/updated-ants-compile-instructions-april-
12-2012) to download, compile, and install the ANTs tool-
kit (PiCloud gives root access with the sudo command). At
the end, issuing the command
>/home/picloud/ants/bin/ANTS

will return the command usage of the ants binary, indicat-
ing its proper installation. We’ll refer to this environment
with the name “test.”

"e next step is to upload our data to PiCloud for pro-
cessing (readers can download example data from www.
oasis-brains.org or use plain 2D images with necessary modi-
fications to the calls of the ANTS commands). For simplic-
ity, we assume that the imaging data reside in a local “data”
folder and are named sequentially s01.nii.gz to s10.nii.gz.
(nii.gz is the common NIFTI imaging format; see http://
nifti.nimh.nih.gov). "e goal is to register them to an atlas,
named atlas.nii.gz. In the Python interpreter (or with a for
loop within a script), the commands
>>> import cloud

>>> cloud.bucket.put('data/atlas.nii.gz', 'atlas.

 nii.gz')

>>> cloud.bucket.put('data/s01.nii.gz', 's01.nii.gz')

…

>>> cloud.bucket.put('data/s10.nii.gz', 's10.nii.gz')

will upload the data on the PiCloud storage as buckets (a
key-value interface to storing data objects following the defi-
nition of Amazon S3 storage buckets).

Now, let’s define the Python script, shown in Listing 1
(see Figure 1), which performs a registration between the
two volumes, atlas, and subject, and then deforms the sub-
ject volume to match the atlas.

"is script consists of two parts: one defining the func-
tion job, and main. Here, job uses two binaries from ANTs:
ANTS for registration and WarpImageMultiTransform to
deform a volume after the registration has occurred. It first
defines the atlas (atlas.nii.gz) and subject volumes (sXX.
nii.gz), the filenames of which are stored in the strings at-
las and subject, respectively. It then downloads from the
cloud storage the files using the cloud.bucket.get PiCloud
function. Subsequently, Python’s subprocess.Popen in-
vokes the ANTS binary to register the subject to the atlas,
with several parameters defined to perform this nonlinear
registration (for more information on the parameters see the
ANTs manual; http://sourceforge.net/projects/advants/files/
Documentation/ants.pdf). "e popen.wait() command
locks, waiting for the external (Popen) call to finish before
continuing with the remaining commands. "e outputs of
ANTS are several large data files that define the nonlinear
forward and backward deformation field (sXXWarp.nii.gz
and sXXInverseWarp.nii.gz) and a text file defining the af-
fine (linear) transformation parameters (sXXAffine.txt). Sub-
sequently, using the WarpImageMultiTransform, the function
takes the subject and actually deforms it to the space of the
atlas volume to match it. "e final outcome is the volume
sXX_warped.nii.gz, which is uploaded and stored in the
cloud with the cloud.bucket.put function.

At the end of the script, in its main part, there’s a cloud.
map invocation with several arguments. Here’s the simplicity

CISE-16-01-Sciprog.indd 73 27/01/14 8:48 PM

SCIENTIFIC PROGRAMMING

74 January/February 2014

import cloud
import subprocess
import time
import os
import sys

def job(n):
 """

 """

 """

 """

 Performs a non-linear registration between atlas 'atlas.nii.gz' and a subject sXX.nii.gz.

 Input to job (e.g., for subject 1):
 - atlas.nii.gz
 - s01.nii.gz

 non-linear registration between moving image (e.g., s01) and fixed image atlas
 ANTS 3 -m CC[atlas.nii.gz,s01.nii.gz,1,2] -o s01 -i 120x120x120x120 -t SyN[0.25] -r
Gauss[3,0.] --affine-metric-type CC --number-of-affine-iterations
10000x10000x10000x10000x10000

 Output from job (e.g., for subject 1):
 - s01_warped.nii.gz

 Keyword arguments:
 n -- n-th subject id (moving image)

 print Subject %d' % (n)
 subject = s' + str(n).rjust(2, '0')

 # get input data from cloud storage
 indata = ['atlas.nii.gz', subject + .nii.gz']
 for ff in indata:
 cloud.bucket.get(ff)

 # non-linear registration between moving image subject and fixed image atlas

 args = /home/picloud/ants/bin/ANTS 3 -m CC[atlas.nii.gz,' + subject + .nii.gz,1,2] -o '
+ subject + ' -i 120x120x120x120 -t SyN[0.25] -r Gauss[3,0.] --affine-metric-type CC --
number-of-affine-iterations 10000x10000x10000x10000x10000'

 print '\n' + args
 start = time.time()
 popen = subprocess.Popen(args, shell=True, stderr=subprocess.STDOUT)
 popen.wait()
 elapsed_ants = time.time() - start
 print Elapsed time: %.2f s' % (elapsed_ants)

 # warp (transform) the moving image subject to the fixed atlas image
 args = '/home/picloud/ants/bin/WarpImageMultiTransform 3 + subject + '.nii.gz ' +
subject + _warped.nii.gz + subject + 'Warp.nii.gz + subject + Affine.txt -R atlas.nii.gz'
 print '\n' + args
 popen = subprocess.Popen(args, shell=True, stderr=subprocess.STDOUT)
 popen.wait()

 # upload output data to cloud storage
 outdata = [subject + '_warped.nii.gz']
 start = time.time()
 for ff in outdata:
 cloud.bucket.put(ff)
 elapsed_put = time.time() - start

if __name__ == '__main__':

 perform non-linear registration between subjects sXX.nii.gz and an atlas.nii.gz

 subjects = range(1,10)
 jids = cloud.map(job, subjects, _env= test', _type='f2', _label='cise_test')
 print '%d jobs, IDs = %d..%d' % (len(jids), jids[0], jids[-1])

'
'

'

'

' '
'

'

'

'

'

Figure 1. Listing 1. A Python script that performs a registration between the two volumes, atlas, and subject, and then deforms the
subject volume to match the atlas.

CISE-16-01-Sciprog.indd 74 27/01/14 8:48 PM

www.computer.org/cise 75

of PiCloud. With one command, the function job will be
executed for all subjects s01 … s10, with the environment
“test” on the “f2” core type. With on-demand cores, it’s pos-
sible that the jobs are queued; however, if we wanted guaran-
teed simultaneous execution, we would reserve real-time cores
(as many as the number of subjects) from the PiCloud dash-
board. Note: the user should release the real-time cores after
the end of computation, to ensure that charges don’t contin-
ue. Overall, registration can take up to two hours (which ex-
plains the time.time() inclusions in the script). "e user can
check the processing times and explore the speedup offered
by each core type. "e ability to run all registrations at the
same time (one on each core) demonstrates the acceleration
achieved with this parallelization.

Once the computation has completed (which can be
checked either on the PiCloud dashboard or via the cloud.
result function), we can download the files to a local re-
sults folder with
>>> cloud.bucket.get('s01_warped.nii.gz', 'results/

s01_warped.nii.gz')

that can be repeated for all other files. Cloud stored files can
be deleted with the cloud.bucket.remove(filename) com-
mand to reduce storage costs.

"e possibilities with PiCloud are endless, and it’s truly a
powerful platform. If the reader wants to use another binary
installed in the environment, the aforementioned listing can
be modified to suit many needs. With some knowledge of
Python and Linux, PiCloud permits utilizing cloud instances
with transparency and ease of use, when relying on default be-
havior. Furthermore, the PiCloud library has an abundance of
functions and parameterizations to satisfy complex operations
and cases. It provides several options to synchronize local and
cloud volumes, which can be mounted to the file system, thus
facilitating data transfer and workflow. Recall that the PiCloud
is nonblocking, so commands on the cloud will continue to
the remainder of the script. For this purpose, there exist also
several options (such as the cloud.join function) for build-
ing and synchronizing complex workflows with queues (see
relevant documentation).

Practical Considerations and Risks
With easily parallelizable tasks, processing on the cloud is
worth considering and could be beneficial for a variety of us-
ers.2 It could complement an in-house or in-campus com-
putational infrastructure due to its elasticity (that is, the
possibility to add instances on demand). Several commercial
and open source tools aim to simplify this process. However,
there exist several lessons to be learned, challenges to tackle,
and opportunities to explore.

"e characteristics of the computational problem and
the amount and type of data that must be moved in, out, and
around the cloud (from cloud storage to processing instances)
should be considered carefully. Applications that require

homogeneous and optimized environments with very long
computational times and frequent utilization might not be
ideal for the cloud.3,4 Even embarrassingly parallel tasks that
involve heavy data transfers need special attention. For exam-
ple, in neuroimaging, some of the input data are in the tens of
megabytes, but metadata produced can be in the hundreds of
megabytes (in our example, the Warp and InverseWarp fields).
"is means that while uploading data might not be a problem,
downloading the metadata and shuffling them around the
cloud can be an issue. "us, proper care in designing the work-
flow is necessary; otherwise, the benefit of large-scale comput-
ing on the cloud could be lost. Another issue is data privacy,
and every user must value this aspect on its own merits.

Even though it isn’t immediately apparent to most sci-
entists, good quality code is important. Although previ-
ously, inefficient code (such as unnecessary loops or poor
memory usage) would have just caused slow computation,
now the same code will actually cost money. In the world
of big data, when the same code is used thousands of times,
even small inefficiencies do add up.

Another aspect contributing to cost is the use of com-
mercial software that does require a paid license. Licensing
on the cloud is not yet straightforward and requires com-
municating with the software’s maker to identify possibly
solutions. On the other hand, relying more on open source
and free software reduces deployment costs—and Python,
with its vast libraries, is a great start.

From a logistics viewpoint, using the cloud for research
can be a challenge due to billing and accounting regulations.
From a personal experience, getting reimbursed for cloud
computing costs (on a personal credit card) from research
funds was an effort not worth investigating in my current post
in Europe, while in the USA this was more straightforward.

On the positive side, a great opportunity arises in ed-
ucating students (and young researchers in general) to ap-
preciate that although their thesis/research might not need
HPC per se, (future) problems can benefit from large com-
putational resources (either local academic clusters or the
cloud). "is experience can challenge students not only into
writing better code and considering open source software,
but also into rethinking their own problem (and maybe
coming up with a cloud-suitable implementation). It’s also a
current need in the marketplace, so young researchers have
much to gain. However, as of now, discouraging this may
be the lack of simplicity, and that some familiarity with
 Python and Linux are required.

Many institutions around the world are beginning to
adopt new perspectives of teaching computing to under-
graduate and graduate students. New online courses, for ex-
ample the High-Performance Scientific Computing course
in Coursera (www.coursera.org/course/scicomp), also show
this trend. In my current institution, in the first semester we
offer graduate courses on Python, working with data, cloud

CISE-16-01-Sciprog.indd 75 27/01/14 8:48 PM

SCIENTIFIC PROGRAMMING

76 January/February 2014

computing, and practical hands-on experience with such
tools. In my Machine Learning and Pattern Recognition
course, I emphasize algorithms that are easy to parallelize
(in a mapReduce-like fashion). I also teach a course on how
to design image analysis and processing algorithms tailored
to large dataset sizes and the cloud.

Clearly, the cloud can provide interesting alternatives,
supplementing local computational infrastructures. How-
ever, this additional option might confuse the user even
further. He or she must still make the—sometimes com-
plex—decision on where to perform the computation (via a
local desktop, local cluster, private, or public cloud), taking
into account cost and computational complexity. "e man-
agement of such hybrid setups and the resource allocation
particularly from the provider’s side are extremely active
topics. However, currently no transparent and easy-to-use
approach is available for the user. In the long run, such a
mixed environment will permit an automated, and seamless
to the user, delegation of where tasks are executed. "e user,
for example, will still work on his local Python installation,
but behind the scenes according to the profiling of the jobs/
tasks, decisions will be made, automatically, to push some
of the tasks to local clusters (or private clouds) or public
clouds. "is implies superior profiling of the tasks, which is
possible for heterogeneous tasks (for example, via learning
from historical information of several execution variables,
or via source-code profiling). In other domains, such as in
medical image processing, where many tasks are homoge-
neous but execution time/needs depend on data content and
context, until recently profiling wasn’t possible. We recently
showed, that we can extract privacy-preserving features from
the imaging data and learn associations with execution time/
resources;5 thus, resource allocation for such data-dependent
tasks can be improved.

I would like to conclude this article with a warning. As with
proprietary closed source software, there’s a risk of vendor

lock-in: the user can get “trapped” into relying on a single
platform for computational needs, and changing platforms
(out of choice or need) might require a significant redesign
of the computational pipeline. Even more, when relying on
early stage commercial platforms, there’s the risk of prod-
uct discontinuation. For example, PiCloud recently was ac-
quired by Dropbox (www.dropbox.com), which will seize
support and development for PiCloud. However, in consid-
eration of its academic clients, PiCloud will be sustained as
an open source tool, and the platform will be maintained
by another entity (Multyvac). Even then, such transitions
don’t always guarantee that everything will remain in place:
for example, Multyvac is considering not permitting func-
tion publishing via REST APIs (due to lack of user interest).
Overall, openness and contingency plans are necessary if

start-ups are to convince users to adopt their platform, and
they should be communicated clearly and early on to the
user. "us, careful planning to eliminate as many risks as
possible is required. Researchers comfortable with Linux and
Python should consider open source tools, such as StarClu-
ster and now PiCloud, and deploy their own solution. "ey
should consult their IT office and explore solutions around
these options. On the other hand, if researchers don’t have
such knowhow, it’s best they contact one of the commercial
providers, discuss their computational needs, and obtain as-
surances about the platform’s continuity and viability.

Acknowledgments
I would like to thank Ken Elkabany, CEO/founder of PiCloud,
Antony Tin, founder of Multyvac, Jeff Martens and Matt Wal-
lington, CPUsage’s co-founders, and Massimo Minervini and
Rafael Uriarte, both PhD candidates at the IMT Institute for Ad-
vanced Studies, Lucca, for useful discussions. I would also like to
acknowledge the support of a Marie Curie Action “Reintegration
Grant” (no. 256534) of the European Union’s Seventh Framework
Programme (FP7).

References
1. T.E. Oliphant, “Python for Scientific Computing,” Comput-

ing in Science & Eng., vol. 9, no. 3, 2007, pp. 10–20.
2. A. Gupta and D. Milojicic, “Evaluation of HPC Applica-

tions on Cloud,” Proc. 2011 Sixth Open Cirrus Summit, 2011,
pp. 22–26.

3. T. Dillon, C. Wu, and E. Chang, “Cloud Computing:
Issues and Challenges,” Proc. 2010 24th IEEE Int’ l Conf.
Advanced Information Networking and Applications, 2010,
pp. 27–33.

4. A.G. Carlyle, S.L. Harrell, and P.M Smith, “Cost-Effective
HPC: "e Community or the Cloud?” Proc. 2010 IEEE 2nd
Int’ l Conf. Cloud Computing Technology and Science, 2010,
pp. 169–176.

5. M. Minervini et al., “Large-Scale Analysis of Neuroimaging
Data on Commercial Clouds with Content-Aware Resource
Allocation Strategies,” Int’ l J. High-Performance Computing
Applications, 2014, preprint; http://hpc.sagepub.com/content/
early/2014/01/15/1094342013519483.abstract.

Sotirios A. Tsaftaris is with the IMT Institute for Advanced Stud-
ies, Lucca, Italy, and Northwestern University. His research interests
are medical image analysis, computational biology, machine learn-
ing, and large-scale analysis of imaging data. Tsaftaris has a PhD in
electrical and computer engineering from Northwestern University.
Contact him at s.tsaftaris@imtlucca.it.

Selected articles and columns from IEEE Computer Society
publications are also available for free at http://Computing-

Now.computer.org.

CISE-16-01-Sciprog.indd 76 27/01/14 8:48 PM

