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M y PhD work in 2003 entailed the design of 256 
DNA sequences of length 45 capable of encod-
ing 256 integers, and satisfying a number of con-
straints. Understandably, the search space is vast 

(since there are four DNA bases, it is 445), and unfortunately 
being combinatorial, this problem is known to be NP-hard. 
My best algorithm (as most algorithms for DNA codeword de-
sign) used stochastic local search (similar to genetic algorithms), 
which might still converge to one of the many local minima; 
thus, the traditional approach is to run many instances of it 
with different start conditions and parameters to obtain the best 
solution. "is is a pure example of simple-to-parallelize prob-
lems—many instances that can be executed independent from 
each other. Numerous scientific problems fall in the category of 
embarrassingly parallel: for example, Monte Carlo simulations, 
parameter and threshold sensitivity curves (where a span of pa-
rameters are explored and the performance of the algorithm is 
evaluated), and obtaining rate distortion curves in compression 
(where for different bitrates we must obtain the distortion).

A multiprocessor machine in my former lab could 
handle the execution of many instances. However, many 
colleagues needed access to the same machine at the same 
time, particularly around conference deadlines. Relying on 
our university’s cluster was a solution in the long run, but 
it required a proposal explaining the need for, and amount 
of, compute hours, approved by a university committee, and 
budgeted (after a certain quota) to an account. Once ap-
proved, it entailed convincing the cluster administrator to 
install software not present on the cluster, and then depend-
ing on the priority as a user, waiting an unknown amount 
of time for jobs to start and finish (at the control of our clus-
ter’s Portable Batch System [PBS] scheduler). My approach 
to satisfy on-the-spot needs was simpler: I wrote a master-
slave framework to send jobs to Matlab “slaves” via a shared 
directory in our fileserver (this was done prior to Matlab’s 
distributed computing server offering). I was using all the 
desktop PCs of the lab, which had different capabilities, to 
solve the combinatorial problem. "is helped tremendously 
in speeding up my computation.

In 2006, Amazon introduced Amazon Web Services 
(AWS; http://aws.amazon.com), which included the Elastic 
Compute Cloud (EC2; http://aws.amazon.com/ec2) service. 

Not many people in the scientific world (except the expert 
community in grid, utility, and high-performance comput-
ing) realized the impact at the time. For me, the benefit was 
clear and immediate. For example, when I had to invert a 
large matrix for an image restoration project, I signed up 
with EC2 and picked an instance satisfying my needs. I 
then launched a virtual machine (a software-based imple-
mentation resembling a physical computer), installed the 
needed application, and solved the problem without much 
hassle and logistics overhead. However, coordinating many 
instances in a manner that was straightforward and trans-
parent for me, the user, was another story.

Later, after I had moved to a new institution, I ran into 
an issue with large-scale processing. We were working in my 
lab with neuroimaging data and multiple processes required 
several hours. Navigating the system again towards find-
ing the cluster infrastructure was too slow. I searched neu-
roimaging and the cloud and found discussions in forums 
describing procedures using AWS to execute neuroimaging 
pipelines (which are now better documented for Freesurfer 
at http://freesurfer.net/fswiki/AmazonCloud, and for others 
at www.nitrc.org/plugins/mwiki/index.php/nitrc:User_
Guide_-_NITRC_Computational_Environment), but not 
at a large, coordinated scale. I searched for cloud computing 
tools and a few options came up.

I believe my story will resonate with many readers. Clear-
ly, the advent of commercial clouds has revolutionized every-
day computing, but many now believe it will impact scientific 
computing, as well. Already several articles have been written 
illustrating and evaluating the potential of cloud computing 
for science, particularly from the software engineering and 
resource management side (see the related sidebar for more 
information). "is article is geared instead towards helping 
readers understand that with some new (commercial and even 
public) tools, dealing with the cloud and running large-scale 
processing can be rather easy and efficient.

Cloud Computing Solutions for the Scientist
Several commercial entities, academic groups, and individu-
als considered the problem of how to facilitate interaction 
with cloud infrastructures from the scientists’ perspective. 
For example, Cycle Computing (www.cyclecomputing.com) 
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New tools (some commercial and even public), have made it so that dealing with the cloud and running  
large-scale processing can be rather easy and efficient.
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offers their consulting expertise to users and builds cloud-
based high-performance computing (HPC) alternatives; 
however, they don’t offer a tool or a service for a user to de-
velop their own cloud-based infrastructure.

StarCluster (http://star.mit.edu/cluster), on the other 
hand, is an open source toolset for simplifying and au-
tomating the creation and management of cloud-based 
clusters geared for science with AWS. "e StarCluster 
Amazon Machine Image (AMI is the virtual machine 
image of AWS) includes several options, packages, and 
plugins preinstalled, ready to work in a StarCluster arrange-
ment. It can also be extended with user-defined software/ 
applications and plug-ins. For example, with such a plug-in  
(see http://star.mit.edu/cluster/docs/latest/plugins/ipython.
html?highlight=ipython), an interactive IPython cluster 
configuration is even possible (ipcluster enables the use of 
multiple computational instances within the Python inter-
preter). StarCluster provides several job-handling options  
(such as Sun Grid Engine), and Hadoop and OpenMPI 
implementations. StarCluster is definitely a powerful open 
source tool for scientific computing in the cloud; however, 
an expertise and comfort on cluster setup from the user is 
required. Since not all scientists are well-versed, for example, 
with cluster configuration and management and job queues, 
several approaches towards simplifying access to such com-
putational power are under development.

An interesting academic and open source attempt 
towards this goal is OpenCPU (https://public.opencpu.
org), which focuses on calling and using the R language 
(www.r-project.org) on a cloud server via a Web API. Us-
ing OpenCPU is easy and when combined with JavaScript, 

R functions and scripts can be embedded in the browser, 
and user-defined apps (R packages bundled with Web con-
tent for headless operation) can be deployed and shared. 
Interested users deploy OpenCPU on EC2 or other com-
patible providers and pay solely for the cost of the cloud 
provider. However, currently, OpenCPU doesn’t offer an 
architecture where multiple cloud instances can be used to 
tackle the same problem in an efficient fashion.

A recent start-up CPUsage (www.cpusage.com), released 
its public beta in September 2013 with the goal of facilitat-
ing submitting and distributing tasks in the cloud, with the 
focus on being application, cloud provider, and language ag-
nostic. "e user can manage and submit jobs via a Represen-
tational State Transfer (REST) API or command-line tools 
(which will be released soon). "e user customizes a Linux 
Container with their own applications and software, run-
ning on Amazon AWS, which is then wrapped in an API. 
Containers aren’t technically independent operating sys-
tems, but appear as such to the end user. Current planned 
enhancements include API and application builders, and li-
braries for known languages such as Python. CPUsage also 
intends to benchmark a user’s jobs and advise upon what’s 
the best provider and instance configuration, either opti-
mizing cost or speed/efficiency. "e pricing strategy follows 
a per-minute compute cost for various configurations with 
access to a multinode infrastructure. Data transfer costs are 
included within the price, while no storage is available with-
in CPUsage, except the 500 Mbytes of temporary storage 
within the container.

Relying on Python’s emergence and scientific appeal,1 
Wakari (www.wakari.io; by Continuum Analytics) deploys 

Cloud Computing for Science from the View of CiSE

Cloud’s appeal for science is clear: simplicity, elasticity (that 
is, the availability of large resources on the spot by launching 

as many instances as needed), true reproducibility (the virtual ma-
chine and the code running on that machine can be made public 
together with the data, when necessary), the ability to cover a large 
span of open questions previously unattainable due to a possible 
lack of computing power, and most importantly, democratization of 
science (since anyone has access to large computing power). 

Naturally, this journal has been following scientific cloud com-
puting closely, with two special issues1,2 in 2009 and 2013 and 
articles throughout the years.3 In the most recent special issue, 
review,4 comparison,5 and application6-7 articles appeared, cover-
ing the cloud’s broad potential as well as some of its challenges.
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a “Python in the cloud” system. "us, the user has access 
to a Python instance on Wakari’s cloud environment, in-
teractive even within a Web-based IPython notebook. "e 
computational power depends on the choice of instance, 
with multicore, high-memory, and ipcluster options avail-
able. "e user can also customize a Linux Container to in-
clude other applications/libraries. Using Wakari requires 
a monthly subscription, which varies in cost according to 
the chosen setup. Overall, for those familiar with Python, 
it’s really easy to use the Web-based notebook with Wakari, 
and this appeals to users who want to create and promote 
reproducible research; however, while adding extra nodes is 
possible, it’s less intuitive.

PiCloud (www.multyvac.com) is one of the first com-
mercial entities with a special focus on making scientific 
computing in the cloud simple for the users. PiCloud 
provisions AWS instances transparently to the user, act-
ing as a middleware between AWS and the user. Their 
provisioning technology allows PiCloud to compete for 
the lower cost spot instances on Amazon. By predict-
ing clients’ usage, they bid for future AWS instances as 
needed. They bundle their own instances (referred to as 
core types) so that many users can co-exist within a single 
(for example, large) AWS instance. This allows PiCloud 
to offer competitive compute pricing at the millisecond. 
Users pay for data storage and data download. In addi-
tion, PiCloud offers several instance configurations and 
even permits a user to define multiple instances for a sin-
gle job, in case high memory or multicore processing is 
needed. PiCloud is appealing due to the amount of opti-
mization involved behind the scenes to simplify access to 
the cloud. The user interacts transparently with the cloud 
via an API and a Python library.

A “Getting Started” Tutorial with PiCloud
Here, I’ll demonstrate with two examples the power of Pi-
Cloud for distributed processing. In the following, a fixed-
width font is used for Python and PiCloud commands and 
functions. At the time of writing, PiCloud offered 20 hours 
of free computing, so readers can easily test PiCloud follow-
ing the examples below.

"e first step is to create a PiCloud account and login. 
"e Web interface of PiCloud provides several options, such 
as reviewing of billing, and managing data storage and en-
vironments. It also includes running directly an interactive 
IPython notebook (similar to Wakari). For this tutorial, I’ll 
focus on running processes from a user’s computer. Note 
that the PiCloud documentation contains several additional 
examples and tutorials for readers to get inspiration from, 
such as running applications on PiCloud (such as R), and 
even deploying Matlab-compiled functions.

Depending on the operating system, the “Get Started” 
guide on PiCloud’s Web interface advises on how to install 

Python, the PiCloud library, and PiCloud credentials on the 
local system providing access to the PiCloud infrastructure. 
(Note that for a single account, many credentials can be 
generated—thus, one account can be used by many users. 
"is facilitates logistics in a group/lab setting.)

For a Python script to have access to the PiCloud infra-
structure, it must include
>>> import cloud

Now, let’s define a simple Python function:
def add(x, y): 

return x+y 

Issuing the command
>>> jid = cloud.call(add, 1, 2)

1

will execute “add” on the cloud, and obtain a job id (jid=1), 
which we can use to monitor the process of the job(s):
>>> cloud.status(1)

"e returned messages are self-explanatory; for exam-
ple, “done” indicates that the process has completed.

"e results of the job “add” can be seen with:
>>> cloud.result(1)

3

"us, this simple example shows that PiCloud automat-
ically transferred the dependencies of the function “add” to 
the cloud, and executed the process on the cloud.

One of the most useful capabilities of PiCloud is to map 
a function with different inputs—in other words, execute 
the same Python function with different arguments on the 
cloud (the way the Python map command does it on the 
 local Python):
>>> jids = cloud.map(add, [1,3,2], [2,2,2])

"is actually launches three jobs, the results of which 
can be obtained via their ids as
>>> cloud.result(jids)

3,5,4

Even this trivial example illustrates the power, but easi-
ness and efficiency, of distributing several identical process-
es (with different inputs) on PiCloud, since PiCloud takes 
care of sending the function to the cloud and executing it 
with all possible arguments. According to the selection of 
instances, jobs will start as soon as “on-demand” cores are 
available (recall that PiCloud predicts usage by profiling the 
jobs of each user and assigns priorities), for which the user 
pays only for the amount of time used for computation (at 
the millisecond level). Alternatively, “real-time” cores guar-
antee the availability of concurrent cores. However, a setup 
wait time is necessary, and they do incur a minimum cost 
(their cost is the same as with on-demand cores if usage is 
greater than 36 minutes/hour). PiCloud offers several core 
types, varying in memory, computer power, local disk space, 
and price. For example,
>>> jids = cloud.map(add, [1,3,2], [2,2,2], _type='m1')

will map the “add” function on “m1”-type cores.
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Now let’s consider a problem for which we need to 
use an external binary or library. While the standard Pi-
Cloud instance contains Python and several libraries, it 
can be extended using environments. An environment is a 
Linux Container that runs on top of the standard PiCloud 
Linux Container (PiCloud refers to this as the base). As 
with Wakari and CPUsage, within environments the user 
can install applications necessary for computation. "e en-
vironments can be private, shared among users, or public. 
"e shared environment facilitates research in a group/lab 
setting, since many users can update/modify the environ-
ment keeping the installed codebase up to date. Public en-
vironments (as with public AMIs) are available to the broad 
community and anyone can use them, increasing the repro-
ducibility of science, and the exchange of information.

PiCloud’s documentation and blog contains several exam-
ples regarding calling external binary applications (for example, 
FFmpeg to transcode video), but not one together with how 
to create a custom environment. I’ll use as an example a rather 
(scientifically) complex problem from medical image process-
ing, and particularly neuroimaging. "is will demonstrate the 
power of PiCloud and resonate with many scientists.

"e scientific problem at hand is to have imaging vol-
umes (3D matrices) overlap as much as possible, commonly 
known in neuroimaging as normalization. Usually, this in-
volves a reference volume, known as the atlas, which is con-
sidered as the fixed volume (because it doesn't change), and 
a subject volume, which moves (that is, it’s transformed) to 
match the atlas. "e best matching is usually obtained via 
nonlinear registration between the 3D volumetric data,5 
to find a mapping between voxel locations of the subject to 
those of the atlas. Overall, this process is complex and some 
registration frameworks require iterative optimization of 
millions of parameters of the transformation. Depending on 
the volumes’ size, the amount of deformation present (that 
is, how much do we need to change the subject to match the 
atlas), and the algorithm used, it can take several hours for 
a single pair of inputs. Registration is repeated for all input 
subjects; thus, processing needs increase rapidly.

For this demonstration, I’ll use the Advanced Normal-
ization Tools (ANTs) collection of applications for neuro-
imaging (http://sourceforge.net/projects/advants) version 
ANTS_1_9_y. "e first step is to ensure that ANTs is avail-
able within our PiCloud environment. We follow PiCloud’s 
documentation for the environment, to launch an ssh ter-
minal inside the browser, which gives access to an instance 
running our environment. With the ssh terminal open, we 
follow the instructions (see http://brianavants.wordpress. 
com/2012/04/13/updated-ants-compile-instructions-april- 
12-2012) to download, compile, and install the ANTs tool-
kit (PiCloud gives root access with the sudo command). At 
the end, issuing the command
>/home/picloud/ants/bin/ANTS

will return the command usage of the ants binary, indicat-
ing its proper installation. We’ll refer to this environment 
with the name “test.”

"e next step is to upload our data to PiCloud for pro-
cessing (readers can download example data from www.
oasis-brains.org or use plain 2D images with necessary modi-
fications to the calls of the ANTS commands). For simplic-
ity, we assume that the imaging data reside in a local “data” 
folder and are named sequentially s01.nii.gz to s10.nii.gz. 
(nii.gz is the common NIFTI imaging format; see http://
nifti.nimh.nih.gov). "e goal is to register them to an atlas, 
named atlas.nii.gz. In the Python interpreter (or with a for 
loop within a script), the commands
>>> import cloud

>>> cloud.bucket.put('data/atlas.nii.gz', 'atlas. 

 nii.gz')

>>> cloud.bucket.put('data/s01.nii.gz', 's01.nii.gz')

…

>>> cloud.bucket.put('data/s10.nii.gz', 's10.nii.gz')

will upload the data on the PiCloud storage as buckets (a 
key-value interface to storing data objects following the defi-
nition of Amazon S3 storage buckets).

Now, let’s define the Python script, shown in Listing 1 
(see Figure 1), which performs a registration between the 
two volumes, atlas, and subject, and then deforms the sub-
ject volume to match the atlas.

"is script consists of two parts: one defining the func-
tion job, and main. Here, job uses two binaries from ANTs: 
ANTS for registration and WarpImageMultiTransform to 
deform a volume after the registration has occurred. It first 
defines the atlas (atlas.nii.gz) and subject volumes (sXX.
nii.gz), the filenames of which are stored in the strings at-
las and subject, respectively. It then downloads from the 
cloud storage the files using the cloud.bucket.get PiCloud 
function. Subsequently, Python’s subprocess.Popen in-
vokes the ANTS binary to register the subject to the atlas, 
with several parameters defined to perform this nonlinear 
registration (for more information on the parameters see the 
ANTs manual; http://sourceforge.net/projects/advants/files/
Documentation/ants.pdf ). "e popen.wait() command 
locks, waiting for the external (Popen) call to finish before 
continuing with the remaining commands. "e outputs of 
ANTS are several large data files that define the nonlinear 
forward and backward deformation field (sXXWarp.nii.gz 
and sXXInverseWarp.nii.gz) and a text file defining the af-
fine (linear) transformation parameters (sXXAffine.txt). Sub-
sequently, using the WarpImageMultiTransform, the function 
takes the subject and actually deforms it to the space of the 
atlas volume to match it. "e final outcome is the volume 
sXX_warped.nii.gz, which is uploaded and stored in the 
cloud with the cloud.bucket.put function.

At the end of the script, in its main part, there’s a cloud.
map invocation with several arguments. Here’s the simplicity 
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import cloud 
import subprocess 
import time 
import os 
import sys 

def job(n): 
    """ 

    """ 

    """ 

    """ 

    Performs a non-linear registration between atlas  'atlas.nii.gz' and a subject sXX.nii.gz. 

    Input to job (e.g., for subject 1): 
          - atlas.nii.gz 
          - s01.nii.gz 

    non-linear registration between moving image (e.g., s01) and fixed image atlas 
    ANTS 3 -m CC[atlas.nii.gz,s01.nii.gz,1,2] -o s01 -i 120x120x120x120 -t SyN[0.25] -r 
Gauss[3,0.] --affine-metric-type CC --number-of-affine-iterations 
10000x10000x10000x10000x10000 

    Output from job (e.g., for subject 1): 
          - s01_warped.nii.gz 

    Keyword arguments: 
          n -- n-th subject id (moving image) 

    print  Subject %d' % (n) 
    subject =  s' + str(n).rjust(2, '0') 

    # get input data from cloud storage 
    indata = ['atlas.nii.gz', subject +  .nii.gz'] 
    for ff in indata: 
          cloud.bucket.get(ff) 

    # non-linear registration between moving image subject and fixed image atlas 

    args =  /home/picloud/ants/bin/ANTS 3 -m CC[atlas.nii.gz,' + subject +  .nii.gz,1,2] -o '
+ subject + ' -i 120x120x120x120 -t SyN[0.25] -r Gauss[3,0.] --affine-metric-type CC --
number-of-affine-iterations 10000x10000x10000x10000x10000'  

    print '\n' + args 
    start = time.time() 
    popen = subprocess.Popen(args, shell=True, stderr=subprocess.STDOUT) 
    popen.wait() 
    elapsed_ants = time.time() - start 
    print  Elapsed time: %.2f s' % (elapsed_ants) 

   # warp (transform) the moving image subject to the fixed atlas image  
    args = '/home/picloud/ants/bin/WarpImageMultiTransform 3   + subject + '.nii.gz ' + 
subject +  _warped.nii.gz   + subject + 'Warp.nii.gz + subject +  Affine.txt -R atlas.nii.gz'  
    print '\n' + args 
    popen = subprocess.Popen(args, shell=True, stderr=subprocess.STDOUT) 
    popen.wait() 

    # upload output data to cloud storage 
    outdata = [subject + '_warped.nii.gz'] 
    start = time.time() 
    for ff in outdata: 
          cloud.bucket.put(ff) 
    elapsed_put = time.time() - start 

if __name__ == '__main__': 

    perform non-linear registration between subjects sXX.nii.gz and an atlas.nii.gz 

    subjects = range(1,10) 
    jids = cloud.map(job, subjects, _env= test', _type='f2', _label='cise_test') 
    print '%d jobs, IDs = %d..%d' % (len(jids), jids[0], jids[-1]) 

'
'

'

'

' '
'

'

'

'

'

Figure 1. Listing 1. A Python script that performs a registration between the two volumes, atlas, and subject, and then deforms the 
subject volume to match the atlas.
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of PiCloud. With one command, the function job will be 
executed for all subjects s01 … s10, with the environment 
“test” on the “f2” core type. With on-demand cores, it’s pos-
sible that the jobs are queued; however, if we wanted guaran-
teed simultaneous execution, we would reserve real-time cores 
(as many as the number of subjects) from the PiCloud dash-
board. Note: the user should release the real-time cores after 
the end of computation, to ensure that charges don’t contin-
ue. Overall, registration can take up to two hours (which ex-
plains the time.time() inclusions in the script). "e user can 
check the processing times and explore the speedup offered 
by each core type. "e ability to run all registrations at the 
same time (one on each core) demonstrates the acceleration 
achieved with this parallelization.

Once the computation has completed (which can be 
checked either on the PiCloud dashboard or via the cloud.
result function), we can download the files to a local re-
sults folder with
>>> cloud.bucket.get('s01_warped.nii.gz', 'results/ 

s01_warped.nii.gz')

that can be repeated for all other files. Cloud stored files can 
be deleted with the cloud.bucket.remove(filename) com-
mand to reduce storage costs.

"e possibilities with PiCloud are endless, and it’s truly a 
powerful platform. If the reader wants to use another binary 
installed in the environment, the aforementioned listing can 
be modified to suit many needs. With some knowledge of 
Python and Linux, PiCloud permits utilizing cloud instances 
with transparency and ease of use, when relying on default be-
havior. Furthermore, the PiCloud library has an abundance of 
functions and parameterizations to satisfy complex operations 
and cases. It provides several options to synchronize local and 
cloud volumes, which can be mounted to the file system, thus 
facilitating data transfer and workflow. Recall that the PiCloud 
is nonblocking, so commands on the cloud will continue to 
the remainder of the script. For this purpose, there exist also 
several options (such as the cloud.join function) for build-
ing and synchronizing complex workflows with queues (see 
relevant documentation).

Practical Considerations and Risks
With easily parallelizable tasks, processing on the cloud is 
worth considering and could be beneficial for a variety of us-
ers.2 It could complement an in-house or in-campus com-
putational infrastructure due to its elasticity (that is, the 
possibility to add instances on demand). Several commercial 
and open source tools aim to simplify this process. However, 
there exist several lessons to be learned, challenges to tackle, 
and opportunities to explore.

"e characteristics of the computational problem and 
the amount and type of data that must be moved in, out, and 
around the cloud (from cloud storage to processing instances)  
should be considered carefully. Applications that  require  

homogeneous and optimized environments with very long 
computational times and frequent utilization might not be 
ideal for the cloud.3,4 Even embarrassingly parallel tasks that 
involve heavy data transfers need special attention. For exam-
ple, in neuroimaging, some of the input data are in the tens of 
megabytes, but metadata produced can be in the hundreds of 
megabytes (in our example, the Warp and InverseWarp fields). 
"is means that while uploading data might not be a problem, 
downloading the metadata and shuffling them around the 
cloud can be an issue. "us, proper care in designing the work-
flow is necessary; otherwise, the benefit of large-scale comput-
ing on the cloud could be lost. Another issue is data privacy, 
and every user must value this aspect on its own merits.

Even though it isn’t immediately apparent to most sci-
entists, good quality code is important. Although previ-
ously, inefficient code (such as unnecessary loops or poor 
memory usage) would have just caused slow computation, 
now the same code will actually cost money. In the world 
of big data, when the same code is used thousands of times, 
even small inefficiencies do add up.

Another aspect contributing to cost is the use of com-
mercial software that does require a paid license. Licensing 
on the cloud is not yet straightforward and requires com-
municating with the software’s maker to identify possibly 
solutions. On the other hand, relying more on open source 
and free software reduces deployment costs—and Python, 
with its vast libraries, is a great start.

From a logistics viewpoint, using the cloud for research 
can be a challenge due to billing and accounting regulations. 
From a personal experience, getting reimbursed for cloud 
computing costs (on a personal credit card) from research 
funds was an effort not worth investigating in my current post 
in Europe, while in the USA this was more straightforward.

On the positive side, a great opportunity arises in ed-
ucating students (and young researchers in general) to ap-
preciate that although their thesis/research might not need 
HPC per se, (future) problems can benefit from large com-
putational resources (either local academic clusters or the 
cloud). "is experience can challenge students not only into 
writing better code and considering open source software, 
but also into rethinking their own problem (and maybe 
coming up with a cloud-suitable implementation). It’s also a 
current need in the marketplace, so young researchers have 
much to gain. However, as of now, discouraging this may 
be the lack of simplicity, and that some familiarity with 
 Python and Linux are required.

Many institutions around the world are beginning to 
adopt new perspectives of teaching computing to under-
graduate and graduate students. New online courses, for ex-
ample the High-Performance Scientific Computing course 
in Coursera (www.coursera.org/course/scicomp), also show 
this trend. In my current institution, in the first semester we 
offer graduate courses on Python, working with data, cloud 

CISE-16-01-Sciprog.indd   75 27/01/14   8:48 PM



SCIENTIFIC PROGRAMMING

76  January/February 2014

computing, and practical hands-on experience with such 
tools. In my Machine Learning and Pattern Recognition 
course, I emphasize algorithms that are easy to parallelize 
(in a mapReduce-like fashion). I also teach a course on how 
to design image analysis and processing algorithms tailored 
to large dataset sizes and the cloud.

Clearly, the cloud can provide interesting alternatives, 
supplementing local computational infrastructures. How-
ever, this additional option might confuse the user even 
further. He or she must still make the—sometimes com-
plex—decision on where to perform the computation (via a 
local desktop, local cluster, private, or public cloud), taking 
into account cost and computational complexity. "e man-
agement of such hybrid setups and the resource allocation 
particularly from the provider’s side are extremely active 
topics. However, currently no transparent and easy-to-use 
approach is available for the user. In the long run, such a 
mixed environment will permit an automated, and seamless 
to the user, delegation of where tasks are executed. "e user, 
for example, will still work on his local Python installation, 
but behind the scenes according to the profiling of the jobs/
tasks, decisions will be made, automatically, to push some 
of the tasks to local clusters (or private clouds) or public 
clouds. "is implies superior profiling of the tasks, which is 
possible for heterogeneous tasks (for example, via learning 
from historical information of several execution variables, 
or via source-code profiling). In other domains, such as in 
medical image processing, where many tasks are homoge-
neous but execution time/needs depend on data content and 
context, until recently profiling wasn’t possible. We recently 
showed, that we can extract privacy-preserving features from 
the imaging data and learn associations with execution time/ 
resources;5 thus, resource allocation for such data-dependent  
tasks can be improved.

I would like to conclude this article with a warning. As with 
proprietary closed source software, there’s a risk of vendor 

lock-in: the user can get “trapped” into relying on a single 
platform for computational needs, and changing platforms 
(out of choice or need) might require a significant redesign 
of the computational pipeline. Even more, when relying on 
early stage commercial platforms, there’s the risk of prod-
uct discontinuation. For example, PiCloud recently was ac-
quired by Dropbox (www.dropbox.com), which will seize 
support and development for PiCloud. However, in consid-
eration of its academic clients, PiCloud will be sustained as 
an open source tool, and the platform will be maintained 
by another entity (Multyvac). Even then, such transitions 
don’t always guarantee that everything will remain in place: 
for example, Multyvac is considering not permitting func-
tion publishing via REST APIs (due to lack of user interest). 
Overall, openness and contingency plans are necessary if 

start-ups are to convince users to adopt their platform, and 
they should be communicated clearly and early on to the 
user. "us, careful planning to eliminate as many risks as 
possible is required. Researchers comfortable with Linux and 
Python should consider open source tools, such as StarClu-
ster and now PiCloud, and deploy their own solution. "ey 
should consult their IT office and explore solutions around 
these options. On the other hand, if researchers don’t have 
such knowhow, it’s best they contact one of the commercial 
providers, discuss their computational needs, and obtain as-
surances about the platform’s continuity and viability. 
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