
6 Computing in Science & Engineering 1521-9615/14/$31.00 © 2014 IEEE Copublished by the IEEE CS and the AIP May/June 2014

Guest editors’ introduction

Software Engineering for Computational
Science and Engineering

Jeffrey C. Carver | University of Alabama

Tom Epperly | Lawrence Livermore National Laboratory

S
oftware engineering for computational sci-
ence and engineering (CSE) is a topic of
increasing relevance for many scientific and
engineering domains. Historically, this topic

has fallen into a void among many related domains.
Traditionally, software engineering (SE) research has
focused more on the business/IT domain than the
scientific or engineering domain. SE researchers have
often made the implicit assumption that any solu-
tions they develop should likewise be applicable to
the development of CSE software. Conversely, com-
putational developers realize that their constraints

often differ from those found in more traditional
software development environments, and are wary to
use existing SE methods. Moreover, lessons learned by
computational developers generally aren’t publishable
as results, and therefore they often aren’t shared.

The ongoing SE-CSE workshop series provides
a venue to fill that void. The goal of this work-
shop series is to bring together SE researchers and
computational developers/researchers to discuss
problems, share experiences, and work towards so-
lutions. In previous years, some discussion themes
that emerged at the workshop included:

CISE-16-03-GEI.indd 6 29/05/14 11:04 AM

www.computer.org/cise 7

■■ the unique characteristics of computational soft-
ware that affect software development choices;

■■ the appropriate context dimensions to describe
computational software;

■■ the major software quality goals for computa-
tional software;

■■ crossing the communication chasm between
traditional software engineering and computa-
tional software;

■■ effectively involving scientists/engineers in
software development and training;

■■ measuring the impact of SE on scientific/engi-
neering productivity;

■■ SE tools and methods needed by the computa-
tional developers’ community; and

■■ how to effectively test computational software.1–4

The SE-CSE workshop described in this special
issue occurred during the 2013 International Confer-
ence on Software Engineering.5 The workshop had
two phases—it began with presentations by the au-
thors of accepted papers. Extended versions of some
of those papers are included in this special issue. The
second phase included breakout discussions based
upon topics raised during the morning presentations.
Here, we provide a brief overview of those discus-
sions. Full notes of the discussion can be found on
the workshop website (http://secse13.cs.ua.edu).

Overview of Workshop Discussion
The workshop discussions focused on six key areas:
adoption, Agile programming, the culture clash,
debugging, education, and verification and valida-
tion. These themes reflected the content of the ac-
cepted papers’ presentations and covered the main
challenges and opportunities for SE-CSE. In the
following, we briefly detail findings in each area.

Adoption of SE Practices by CSE Developers
The adoption of SE practices for CSE is compli-
cated by differing rewards systems. Scientists are
generally rewarded for having numerous influential
scientific publications rather than developing high-
quality software. In such a case, software is a means
to an ends rather than an end in itself. The key to
adoption is to focus on a “back to basics” approach
to SE rather than promoting cutting-edge SE tech-
niques. Thus, we should focus on the aspects of

SE with the highest return on investment, such as
source control, software carpentry tools, and light-
weight processes. Similarly, we must advocate a cul-
tural shift towards the importance of reproducible
results, a big component in other scientific fields
that’s often neglected in CSE research. A require-
ment for scientists and engineers to publish their
software in a form that other researchers can utilize
to reproduce the results would introduce cultural
pressure to produce higher-quality code.

Agile Software Development Philosophy
A number of SE and CSE professionals sense that
the Agile software development philosophy is a
good fit for CSE projects. Adherents to an Agile
software development approach use an iterative
process to design and develop the software. This
process mimics the process of scientific discovery,
where the research target may change as knowledge
is gained through early results from the software.
The Agile approach focuses on producing software
with complete functionality and minimal, but ad-
equate, documentation (as opposed to focusing on
extensive documentation). As a result, developers
produce software in small chunks and “document”
requirements as test cases. There are still challenges
with developing test cases when there’s no oracle for
correct answers—particularly for integrated model-
ing. However, the Agile approach is still seen as a
fairly lightweight, flexible process that can adapt to
community-driven priorities.

Culture Clash
One approach to promoting the adoption of SE prac-
tices for CSE development is to use multidisciplinary
teams of software engineers and scientists. Often, this
approach encounters difficulties due to the clash of
cultures between these groups of people. Scientists
generally are indifferent to SE, because they believe
that they lack the time and resources to implement
such practices. Their priority is on producing scien-
tific publications. For software engineers, software
quality is important for providing confidence in the
scientific findings produced by the software. They
view the use of SE practices as a long-term invest-
ment that will ultimately lead to increased scientific
productivity. In many cases, the funding is controlled
by the scientists, with the software engineers lacking

The adoption of SE practices for CSE is complicated by differing
rewards systems.

CISE-16-03-GEI.indd 7 30/05/14 1:33 PM

Guest editors’ introduction

8 May/June 2014

the standing or resources required to get everyone to
adopt a consistent set of SE practices.

Debugging
Debugging CSE software on supercomputers is a
particularly difficult challenge. Many bugs only
manifest themselves at scales that even surpass the
capabilities of today’s most advanced debuggers.
Nondeterministic bugs that are exceedingly rare at
small scales become quite common at larger scales.
Due to their random nature, these bugs are noto-
riously difficult to isolate and debug. For super-
computers involving millions of computing cores,
hardware faults will become increasingly common
and may be indistinguishable from software faults.
Debugging large systems is like finding the needle
in the haystack. Statistical analysis can be used to
automatically identify normal and abnormal behav-
ior, with developers focusing their attention on the
abnormal cases.

Education
Everyone acknowledges there’s an education gap in
the SE-CSE community. CSE professionals typi-
cally don’t take any SE courses in their academic
programs and may not have taken a single program-
ming course from a computer science department.
They often pick up whatever they know from their
thesis advisor and their research group. At this
point, it’s also difficult to know what to teach, be-
cause the SE-CSE community hasn’t yet completely
discovered which SE approaches are most appropri-
ate for the development of CSE software and how
those approaches should be tailored. The Software
Carpentry project (http://software-carpentry.org),
founded by Greg Wilson, seems like a good ap-
proach to instill some basic principles for CSE
developers.

Verification and Validation
The level of verification and validation (V&V) var-
ies a great deal in the CSE community. Convincing
CSE team members to perform regular testing can
be challenging, because it requires time and effort.
Some teams have high standards of testing and code
coverage, while others have practically none. For cut-
ting-edge research, it’s often difficult to test systems,
because there’s no prior work or experimental data to
compare against. Even when data is available, many

CSE applications aren’t able to produce bit-for-bit re-
producible results, due to inherent nondeterminism
in parallel algorithms. Testing might require access to
a supercomputer; but supercomputing centers don’t
like to provide cycles for testing.

In This Issue
Now that we’ve outlined some of the issues in the
field, let’s look at the articles for this special issue.
Each article has a unique take on the topic of SE-CSE
and provides a novel approach or solution. There are
six articles, with each being an extension of a paper
presented at the workshop. For each paper, the au-
thors were invited to revise to include a significant
amount of new content beyond the workshop paper.

In the first article, “Streamlining Develop-
ment of a Multimillion-Line Chemistry Code”
Robin Betz and Ross Walker describe the use of a
standard software engineering practice, continuous
integration, to support the development of the mo-
lecular dynamics code, AMBER. The team used a
customized version of Cruise Control to support
continuous integration. To implement this prac-
tice, the team followed five key practices:

1. Maintain a single source repository.
2. Automate the build and tests.
3. Simplify deployment and executable distribution.
4. Every push should result in a build on the

 integration machine.
5. Development should be communicative and

collaborative.

The authors’ work describes the implementation
details, barriers faced, and methods used to address
those barriers.

Next, Stan Ahalt and his colleagues describe
the application of open source mechanisms and
software engineering to research about water sci-
ence in their article, “Water Science Software In-
stitute: Agile and Open Source Scientific Software
Development.” After providing an overview of the
computational challenges faced by the water re-
search community and a brief introduction to the
Water Sciences Institute, the article describes the
Open Community Engagement Model. The piece
provides an example of how this model works in
practice. The evaluation of this exercise showed
positive results.

Debugging large systems is like finding the needle in the haystack.

CISE-16-03-GEI.indd 8 29/05/14 11:04 AM

www.computer.org/cise 9

In the third article, “Leveraging Expertise to
Support Scientific Software Process Improvement
Decisions,” Erika Mesh and her colleagues describe
the development of the Scientific Software Process
Improvement Framework (SciSPIF). This frame-
work is designed to provide a flexible approach for
scientific developers to make decisions that are rel-
evant to their own projects while still having ac-
cess to a library of standard software engineering
practices. The article details the use of a grounded
theory approach to analyze the literature and to
conduct a series of case studies to provide informa-
tion for initially populating the framework.

Fourth, in “Building CLiiME via Test-Driven
Development: A Case Study,” Aziz Nanthaamorn-
phong and his colleagues describe a case study of
using test-driven development (TDD) to support
the development of a computational science soft-
ware package. Using TDD enabled the development
team to create a software package that’s extensible
by other developers. The article provides a number
of lessons learned, based on the authors’ experience
with applying TDD for the first time. The piece also
discusses some of the benefits that Agile methods
in general—and TDD specifically—can provide to
computational science projects.

Alan Humphrey and his colleagues address the
problem of latent defects in large, high-performance
computing scientific software in the fifth article, “Sys-
tematic Debugging Methods for Large-Scale HPC
Computational Frameworks.” The authors introduce
a new debugging approach based on coalesced stack
trace graphs that supports a systematic debugging
process. The article then illustrates the new approach
with a case study in which the authors identified
and fixed a real defect in the Unitah Computational
Framework.

Finally, in “A Case Study on a Quality Assurance
Process for a Scientific Framework,” Hanna Remmel
and her colleagues describe the results of a case study
to evaluate the feasibility and developer acceptance of
two quality assurance practices. First, the case study
showed that developers found variability modeling—a
technique to assist developers in systematically creating
system tests—useful and easy to learn, and they report-
ed on their intent to use variability modeling in their
work. Second, the case study showed that the tech-
nique of desk checking also was useful and easy to learn.

We hope you find these articles beneficial in
understanding the complexity of issues for

SE-CSE. We also hope this special issue creates an

awareness of the work being done in the field, while
also bridging the gap between traditional software
engineering and computational software.

References
1. J.C. Carver, “First International Workshop on Soft-

ware Engineering for Computational Science & Engi-
neering,” Computing in Science & Eng., vol. 11, no. 2,
2009, pp. 7–11.

2. J.C. Carver, “Report: The Second International
Workshop on Software Engineering for CSE,” Com-
puting in Science & Eng., vol. 11, no. 6, pp. 14-19,
November/December, 2009.

3. J.C. Carver, “Third Int’l Workshop Software Engi-
neering for Computational Science and Engineer-
ing,” Procedia Computer Science, vol. 1, no. 1, 2010,
pp. 1485–1486.

4. J.C. Carver, “Software Engineering for Computa-
tional Science and Engineering,” Computing in Sci-
ence & Eng., vol. 14, no. 2, 2012, pp. 8–11.

5. J.C. Carver et al., “5th International Workshop on
Software Engineering for Computational Science
and Engineering,” Proc. 2013 Int’ l Conf. Software
Eng., 2013, pp. 1547–1548.

Jeffrey C. Carver is an associate professor in the Depart-
ment of Computer Science at the University of Alabama.
His research interests include empirical software engi-
neering, software quality, software engineering for com-
putational science and engineering, software architecture,
human factors in software engineering, and software pro-
cess improvement. Carver has a PhD in computer science
from the University of Maryland. He’s a senior member
of the IEEE Computer Society and the ACM. Contact
him at carver@cs.ua.edu.

Tom Epperly is the Computer Science Group Leader
in the Center for Applied Scientific Computing at
Lawrence Livermore National Laboratory. He holds a
Ph.D. in Chemical Engineering from the University of
Wisconsin-Madison, and his research interests involve
integration technology and frameworks for compu-
tational science & engineering. He can be reached at
 epperly2@llnl.gov.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

CISE-16-03-GEI.indd 9 29/05/14 11:04 AM

