
8 Computing in Science & Engineering 1521-9615/15/$31.00 © 2015 IEEE Copublished by the IEEE CS and the AIP January/February 2015

Guest editors’ introduction

Scientific Software Communities

Andy Terrel | Continuum Analytics

Michael Tobis | Planet 3.0

George K. Thiruvathukal | Loyola University Chicago

I
f simulation is the third tier of science, then
the communities that build the simulation
software are the engine of innovation. Yet
the scientific community as a whole tends to

avoid issues surrounding the building of software.
With a preference for more traditional scientific
achievements, such as experimental results or
theoretical derivations, the average scientist has
attributed the writing, maintaining, and dis-
tribution of software as a tax that must be paid
 rather than a process that’s rewarding in its own
right. The scientific community as a whole, in its
turn, neglects to reward producers of polished,

 shareable extensible software. The consequence
is typically software that, while generally suitable
for task, is brittle and problematic when viewed
as an asset to the long-term needs of the scientific
enterprise.

The importance of software to the modern
world cannot be understated and software’s impor-
tance to science is no different. Whereas successful
software efforts lead to a fruitful, celebrated career
in industry, the scientific software writer is often
forgotten. To highlight this uncherished group,
this issue of CISE has been devoted to presenting
the challenges and the collective efforts of scientific

www.computer.org/cise 9

software communities. The scientific software com-
munity has produced so many huge innovations in
our society that it’s vital that we make the process
of building such communities well understood and
well supported.

The Community’s Role and Its Importance
In this issue, we hear two different approaches to
reproducible software practices, an approach on
maintaining documentation for important base
libraries, and a discussion on ways of extending a
software library’s functionality to keep it relevant
as a community evolves over time. These topics
challenge the boundaries of what software can be
for an individual and for a community. They ex-
pose weaknesses in our state-of-the-art practices
with an eye towards a sustainable future. By using
these techniques, we avoid numerous withdrawn
results—a current crisis due to reliance on software
without verification.

Our authors’ insights into these problems give
us an occasion to pause and ask what the funda-
mental role of the scientific software community
should be. We posit that writing simulation soft-
ware is transitioning from an activity that can be
accomplished by a few coders who learned on the
job to a full profession requiring years of study.
This transition has prompted a few institutions to
build centers to give a scientific software writer a
place to have a career in academe, but this trend
is new and is only appearing after a massive drain
of talent to private enterprise. Certainly, building a
community that supports and sustains the careers
of our novice software developers is critical to the
path of science.

The transition of scientific software from an oc-
casionally used skill to a demanding career also re-
quires additional policies, practices, and structures
to motivate excellence in the field. One often-used
analogy for scientific software is the comparison
to a piece of experimental equipment. While the
physics experimental instruments will have hun-
dreds of authors, even though the software has a
similar numbers of contributors, our papers usually
only list the very few and very dedicated authors.
Additionally, these large efforts directly pursue a
grand challenge that unites a large portion of the
field, while software communities tend to be the
foundation that must be strong to allow further
growth in all sciences.

Perhaps the analogy to the university li-
brary is more apt. As the center of an institution’s
 knowledge, libraries are the base of knowledge for

an institution to retain and teach its pupils. Soft-
ware communities similarly build tools and librar-
ies that enable future generations. Additionally, as a
librarian’s role is to help researchers answer difficult
questions through previously collected and stored
knowledge, the scientific software community’s job
is to enable researchers to answer difficult questions
through knowledge collected and stored in code.
In this regard, the scientific software community’s
role has become an extension of the librarians’ role,
as our scientific knowledge has become a product of
the code we write.

As the librarian stands as the guide for knowl-
edge throughout the university, the scientific soft-
ware developer stands as the trailblazer for new,
computationally intensive intellectual enterprises.
The trail is one that leads to further science results
and a healthy dialog feeding more software innova-
tion as a result. This feedback loop of science result
to new idea to software implementation to contri-
bution to software library is vital to the continued
success of scientific innovation. The need for recog-
nition and maintenance of our software communi-
ties is critical.

In This Issue
Articles in this issue provide some examples of how
a more considered focus on the software develop-
ment process can feed the development of science.

Victoria Stodden and her colleagues write
about the needed infrastructure to support re-
producible science in “ResearchCompendia.org:
Cyberinfrastructure for Reproducibility and Col-
laboration in Computational Science.” They
 describe their ResearchCompendia effort, a Web
portal for uploading and managing a compendium
surrounding a scientific result. Addressing issues
with the “ubiquity of errors” in science, including
the specialized errors that occur in simulations,
requires a complete pipeline that’s documented,
published, and managed. Such an effort requires a
dedicated community to oversee the resource and
help its adoption.

Next, in “Reproducible Research as a Commu-
nity Effort: Lessons from the Madagascar Project,”
Sergey Fomel gives us a perspective on reproduc-
ibility from leading a scientific software commu-
nity. Admirably, the Madagascar project holds
reproducibility as its foundational goal. This goal
requires a dedicated team maintaining the previous
work and using tools that automate the reproduc-
tion of the work. Fomel argues very well that while
this burden often falls out of possibility for a single

Guest editors’ introduction

10 January/February 2015

author, a community dedicated to lifting its mem-
bers to their full potential benefits all of science.

In “Crowdsourcing Scientific Software Docu-
mentation: A Case Study of the NumPy Documen-
tation Project,” Aleksandra Pawlik and her colleagues
turn our attention to documentation, a task dreaded
by all software developers but vital for community
projects. A potential solution to this gap in needs
of the community and dedication of developer time
is to crowdsource. The authors take us through the
journey of creating infrastructure, maintaining
the service, and engaging the user base to allow such
a documentation procedure. By lowering the barriers
of entry into contributing to the projects, we see the
quality of the documentation grow and the commu-
nity around the project grow as well.

Finally, Jed Brown and his colleagues take us
on a thought experiment about what mass-market
software would be like without run-time extensi-
bility in “Run-Time Extensibility and Librarization
of Simulation Software.” The nightmare sce-
nario that would drive end users away from their
browsers is offered as an analogy to the standard
operating practice of scientific computation. They
propose adopting methods of run-time extensibil-
ity, allowing code methods to progress from the ad
hoc methods of a small project toward the develop-
ment of infrastructure for sustaining the innova-
tion of an entire community.

In summary, the articles in this issue show us the
benefits of applying professional software devel-

opment standards to scientific software. Software
projects which build in best practices such as ex-
tensibility, reproducibility, deployment, and test-
ing, encourage further productivity among their
users and subsequent developers. The road to mak-
ing software that can be tested, understood, re-
used, and extended without undue hardship helps
all of science, even though the cost of development
will initially be higher.

Analogously, developing an academic environ-
ment which rewards domain specialists for atten-
tion to the methods of good software will have
costs. An academic environment which provides
reliable and rewarding career paths for developers
who have the rare overlap of skillsets of numerical,
statistical, or combinatorial algorithmics as well as
systematic, testable, and extensible software devel-
opment will have costs, too, especially in a world
where a subset of those skills is in great commercial
demand.

All of these approaches have been proven on
various occasions to have enormous payoffs in vari-
ous computing domains. The articles in this issue
testify to the proposition that science is no excep-
tion in this regard.

Our sincerest hope is that this issue gives vis-
ibility to some of the challenges that software com-
munities encounter and benefits they provide in
supporting the science. Whether tenured professor,
scientific staff, or new research assistant, commu-
nity members’ diligence in creating community-
minded scientific software is critical to sustained
innovation. Just as a river must have many feeding
streams, scientific computation requires constant
sources of ideas and implementations so that all of
science reaps its benefit.

Andy Terrel is the Chief Science Officer at Continuum
Analytics and President of the NumFOCUS Foundation,
a foundation dedicated to sustaining scientific computing
tools. His research includes utilizing supercomputers with
Python and studying methods for speeding up computa-
tional fluid dynamics. Terrel has a PhD in computer science
from the University of Chicago. He has contributed to nu-
merous open source projects, notably the FEniCS Project
and Sympy. Contact him at andy.terrel@gmail.com.

Michael Tobis is the editor-in-chief and cofounder of
Planet 3.0, a site dedicated to scientifically informed con-
versations about sustainable technologies and cultures.
His interests focus on the interface between science and
public policy. Tobis has a PhD in atmospheric and oce-
anic sciences from the University of Wisconsin-Madison.
Contact him at mtobis@gmail.com.

George K. Thiruvathukal is a full professor in the Com-
puter Science Department at Loyola University Chicago,
where he also directs the Center for Textual Studies and
Digital Humanities. He is also a guest faculty member
at Argonne National Laboratory in the Mathematics and
Computer Science Division, working on runtime envi-
ronments and software to support computational biology
applications. His research interests span multiple areas
of computer science and interactions with science and
the humanities. Thiruvathukal has a PhD in computer
 science from the Illinois Institute of Technology. He is
the editor in chief of CiSE and an associate editor for
Computing Now. Contact him at gkt@cisemagazine.org.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

