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1 MOTIVATION

Voronoi diagrams are fundamental data structures in computational
geometry with applications on different areas like on physics-based
simulations. For non-Euclidean distances the Voronoi diagram must
be performed over a grid-graph, where the edges encode the required
distance information. The major bottleneck in this case is a shortest-
path algorithm that must be computed multiple times during the simu-
lation. We present a GPU algorithm for solving the shortest-path prob-
lem from multiple sources using a generalized distance function. Our
algorithm was designed to leverage the grid-based nature of the un-
derlying graph that represents the deformable objects. Experimental
results report speed-ups up to 65x over a current reference sequential
method. We discuss the performance benefits of this GPU algorithm
for two Voronoi-based interpolation techniques: Sibson and Distance
Ratio. Such approaches can be used for soft object simulation algo-
rithms for real time physics engines.

2 VORONOI DIAGRAMS

The Voronoi diagram is a classical partitioning of the space into
closest-point regions. It has a vast application domain, being usually
employed for answering proximity queries, for example in classical
problems like Finding Nearest Site, Facility Location, Motion Plan-
ning and Coverage in sensor networks.

Figure 1. Voronoi diagram of a set of data points (in blue) in 2D Eu-
clidean space. The space is partitioned into closest-point regions called
Voronoi cells.

The Voronoi diagram is also a key for the "Natural Neighbor In-
terpolation"(NNI) method proposed by Sibson [15]. The Sibson’s in-
terpolation is a well-known method used for interpolating irregular
spaced data with applications in several different fields such as medi-
cal imaging, meteorological or geological modeling [3], flow map re-
construction [1] and scattered data visualization [13]. Natural Neigh-
bor based interpolations have also been applied to the field of solid
mechanics by Sukumar et Al. [17] in the Natural Element Method
(NEM) which uses Sibson and non-sibsonian (Laplace) interpolators
to perform crack simulations.

Still in the field of physics simulation, Voronoi-based interpolations
have also been applied to meshless simulation of complex deformable
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bodies [6]. In that work, the authors compute a Voronoi tessellation on
a non-Euclidean space by using a discrete distance map which encodes
"material-aware" distances that are biased according to the local rigid-
ity inside the simulated body (see use case on Figure 2). Although the
idea of a Voronoi partitioning of the space remains the same as in other
classical applications, its computation here is fundamentally different.
The distances are not defined on the Euclidean space, instead they rely
on shortest paths computation over an implicit grid-graph. Comput-
ing this variant of Voronoi diagrams is therefore significantly more
costly than the classical discrete Voronoi case. Using the Sibson’s In-
terpolation method on a graph space actually requires to compute a
shortest-path tree for each interpolated value queried.

A lot of effort has already been dedicated for improving the perfor-
mance of Sibson’s interpolation, particularly when interpolating on a
discrete grid in the Euclidean space (Discrete Sibson Interpolation).
A popular approach relies on the parallelization with Graphics Pro-
cessing Units (GPUs) of the Discrete Voronoi diagram like on [3] for
Digital Elevation Model (DEM) construction.

Early studies on the parallelization of the discrete Voronoi diagram
already exploited the GPU parallel processing capabilities [8]. With
the popularization of these architectures and evolution of the program-
ming tools, like CUDA and OpenCL, other algorithms for Voronoi
computation were proposed allowing a better utilization of their com-
puting power [19, 14].

The graph variant of the Voronoi diagram, referred as Graph
Voronoi Diagram [5], defines a vertex partitioning in a connected
graph G(V,E). Given a subset S ⊂ V of source vertices, each ver-
tex v ∈V is assigned to the partition Pi of the source vertex si ∈ S that
has the shortest path distance. Applications of this kind of Voronoi
diagram arises in several network problems and social data analysis
like, for instance, in community detection algorithms [4]. Sequential
algorithms and complexity analysis for building Voronoi diagrams on
graphs are discussed in [5].

Parallel solutions for computing the Graph Voronoi have to deal
with the shortest path problem. Dijkstra’s algorithm implemented with
a priority queue provides an efficient solution to this problem but is in-
herently sequential with lots o synchronizations. For graphs with grid
topology, a first parallel algorithm to compute the Voronoi diagram
was presented on [18]. The algorithm creates a distance map over a
discrete image by computing the shortest paths from each pixel to the
closest Voronoi seed (Figure 2(d)). The implementation is done on
GPUs and takes advantage of the grid connectivity to leverage par-
allelism. This implementation has a straightforward application in
the Voronoi-based interpolation methods used on [6] and other Natu-
ral Neighbor interpolations used in the SOFA real-time physics-based
simulation framework [16].

In the following sections we will focus on the Discrete Voronoi
diagram using graph distances (geodesic). We will show how this
structure is used in the context of shape function computation for real-
time physics-based simulations. We then present our parallel Voronoi
implementation [18] applied to the Natural Neighbor Interpolation
method.

3 DISCRETE VORONOI DIAGRAMS IN SOFA

The Discrete Voronoi diagram is used in a real-time simulation frame-
work called SOFA [16]. SOFA is a modular and extendable architec-
ture that allows researchers of different fields related to physics-based
simulation to implement and compare their own algorithms.



(a) T-bone Steak (b) Stiffness (c) Material-aware distances (d) Voronoi Partitions (e) Natural Neighbors Interpola-
tion

Figure 2. Use case example: (a) The T-bone steak from the SOFA dataset [6, 16] contains a mixture of flexible meat, softer grease and a rigid
bone. As input we take the voxelized material map of stiffness values (b) and the coordinates of the simulation nodes. Distances to the nodes
inside the object (c) are biased according to the stiffness values and used to compute the Voronoi diagram (d) of the nodes. This diagram will be
used to compute the natural neighbors interpolation (e) on the other voxels of the domain.

3.1 Deformation using Shape Functions

In [6], Faure et Al. proposed a method for simulation of complex ob-
jects which are composed of mixed types of materials with different
stiffness. This method relies on meshless models using sparse samples
to capture the displacements at the simulation nodes which are then in-
terpolated within the object using a novel material-aware shape func-
tion. This shape function uses a special distance metric that is scaled
according to the local material rigidity of the simulated object (Figures
2(b) 2(c)). This technique allows to easily take into account the ma-
terial heterogeneity during the simulation. The material properties of
the object, like stiffness, is usually represented as a volumetric image
of voxels containing the property values. To determine the material-
aware distance, the shortest-path is computed over this 3D grid of vox-
els. Each voxel represents a vertex of a grid-graph with 26 neighbors,
and the edges’ weights are defined as a function of the stiffness of the
adjacent voxels.

To understand the role of shape functions in numerical simulations
consider the following steps:

1. The displacement of a deformable object is sampled at discrete
locations called degrees of freedom (DoFs). Each DoF has a
shape function associated that defines where and how it will in-
fluence other points in the object. The area of influence is often
referred as the support of the shape function (Figure 3).

2. The goal is then to interpolate these sampled displacements
within the rest of the object.

3. The displacement at a given point is interpolated as a weighted
sum of the nodes displacements, where the weights are the values
of the shape function for each DoFs influencing this point.

Finally, it remains the problem of defining how weights should be
computed. This will tell how shape functions from different DoFs
would be blended on the rest of the domain. Voronoi diagrams have
been used in the so called Voronoi Shape Functions to compute these
weights. In the following section we describe different schemes of
interpolating nodal values using the Voronoi diagram generated from
the simulation nodes.

3.2 Voronoi-based Interpolations

One of the most well-known interpolation methods based on the
Voronoi diagram is the Natural Neighbor Interpolation (NNI) pro-
posed by Sibson [15]. Consider the problem of finding neighbors in
a set of non uniform distributed data points. By taking the Voronoi
tessellation induced by these points, the natural neighbors are the data
points whose Voronoi cells share a common frontier.

Figure 3. Shape-functions’ weights for the 3 simulation nodes (from Fig-
ure 2) computed with two different interpolation methods: Sibson (top)
and Distance Ratio (bottom). Weights are normalized starting at 1 at
the node locations (Voronoi cell center) and decreases until it vanishes
outside of the support.

The Sibson interpolation is defined as a ratio of areas in 2D (vol-
umes in 3D). We insert the query point q in the initial Voronoi
Tessellation of sample points. The interpolating weight of each
data point is given by the ratio between the area stolen from the
neighbor Voronoi cell and the area of the newly inserted Voronoi
cell (Figure 2(e)).

The Laplace (non-Sibsonian) interpolation ([2] as cited in [17])
uses the same notion of natural neighbor but it computes the ratio
between segments in 2D (areas in 3D). Instead of taking the area
of the neighbor cells it uses the ratio between the length of the
Voronoi frontier (line in 2D / facet in 3D) and the distance from
q its natural neighbor nodes.

Both natural neighbors interpolation methods described above require
the computation of a new Voronoi diagram for each query point q
added to the input diagram of the data samples. This results in Q exe-
cutions of the Voronoi diagram where Q is the interpolation resolution
desired.

To reduce the complexity in terms of number of Voronoi dia-
grams computed per query point [6] propose a alternative interpolation
method where the number of Voronoi diagrams computed is a constant



Figure 4. Comparison of Voronoi diagrams generated with the same set
of seeds on two different material maps. Left: with an uniform stiffness.
Right: with a stiffness gradient

factor of the amount of data samples S.

The Distance Ratio interpolation introduced by [6], applies a par-
ticular scheme that computes the ratio between the distance from
the point to the Voronoi border and the distance to the node (cen-
ter of the Voronoi cell). Although less formal guaranties on the
properties were presented for this interpolant, this algorithm is
implemented on SOFA [16] and shows good practical results,
with the advantage of being more computationally efficient.

4 PARALLEL VORONOI DIAGRAM COMPUTATION

As shown in the previous sections, the Voronoi diagram is an impor-
tant building block for several other algorithms, in particular on the
physics-based simulation domain. In real-time simulations, changes
on the topology may modify the computed distances, for examples
due to cut on the object. It is then necessary to be able to efficiently
recompute the shape functions.

Parallel Voronoi computation on euclidean distance have been ex-
tensively studied on previous work [8, 19, 14]. However, such ap-
proaches cannot be directly applied on the physics simulation use
cases described in this paper, where distance measures are actually
shortest path computed on a graph. We show in this section that paral-
lel Voronoi Diagrams on geodesic distances can be computed in par-
allel using GPUs.

Geodesic distance is closely related to the well studied single-
source shortest-path (SSSP) problem from the graph theory domain.
Parallel algorithms for solving the SSSP problem on general graphs
have been proposed by [7, 9, 10, 12] . This solutions are usually based
either on Dijkstra’s or Bellman-Ford algorithm. Using these general
graph algorithms for resolving the Voronoi Shape Functions in physics
based simulation would imply an over-killing management of a full
graph data-structure (like an adjacency matrix or list). Targeting effi-
ciency, we presented in [18] a parallel algorithm using GPUs for com-
puting the graph-Voronoi diagram on voxelized 3D grid. This solution
is well suited for the physics simulations used in SOFA as it exploits
the grid topology that implicitly represent edges. The solution is based
on parallel wavefront expansions starting at each Voronoi seed. By us-
ing the massive amount of parallel threads of the GPU we are able to
compute each Voronoi cell concurrently.

4.1 Parallel Voronoi Performance
We present here some experimental results of speed-up of the par-
allel Voronoi Computation. The experiments where conducted on a
NVIDIA GPU GTX480 with 1.5 GBytes of global memory and 15
Multiprocessors with 32 cores each, totaling 480 CUDA cores. The
speed-up presented are related to the base sequential version from
SOFA [16] and executed on an Intel CoreTM i7 CPU model 930 with
4 cores running at 2.89Ghz and 12 GB memory .

The benchmark consists in computing the Voronoi diagram on a
3D volume for a given set of randomly distributed data points. The

dataset used varies in volume dimensions, distance map distribution
and number of seeds. Figure 4 shows an example of two Voronoi dia-
grams computed with same dimensions and seeds but using different
distance distribution. The right diagram was computed considering an
image with a gradient of stiffness increasing from right to left whereas
the left one has constant stiffness. These two distances distributions
are referred as Gradient and Constant on the bar plots of Figure 5.
Note that the distance between two neighbor voxels is given by a func-
tion of the stiffness between them. As seen in Figure 4 the shape of
the Voronoi diagram greatly depends on the stiffness properties of ma-
terial map of the object simulated .

In the parallel algorithm implemented each CUDA thread processes
a single voxel. With larger input volumes more parallelism is exposed,
therefore we note a increase of speed-up (Figure 5). At 2563 the speed-
up for the constant topology slightly decreases. We attribute this to
an overhead of scheduling an excessive number of idle threads. This
happens because with a volume of 256 and only 10 seeds the Voronoi
diagram becomes overly sparse.

The amount of parallel work available also increases with the num-
ber of seed in the Voronoi diagram (Figure 6). When many Voronoi
cells are being computed concurrently more threads are active at the
same time.
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Figure 5. Speed-up for different input sizes. Gradient and constant
topologies are presented for synthetic benchmarks only. Steak’s topol-
ogy corresponds to the dataset shown in the use case of Figure 2.
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Figure 6. Average speed-up when increasing the number of seeds of
the Voronoi diagram. The instance used has a volume size of 1283 and
a gradient material map.



5 PARALLEL NATURAL NEIGHBOR INTERPOLATIONS

In the classical Natural Neighbor Interpolation, each queried point is
inserted, one at a time, to the Voronoi diagram of initial data samples.
For each seed added, the initial diagram is updated to generate the new
Voronoi cell which will then be used to compute the interpolation.

As seen in the experimental results, the number of seeds computed
in the Voronoi diagram has a big impact on the amount parallelism that
will be exposed. Computing a single Voronoi cell in parallel reduces
the possibilities of parallelization. This situation is even worse when
we consider to update an existing Voronoi diagram with the addition of
a new seed (we refer to this as the query seed). In this case, only a lim-
ited region (around the query seed) would be recomputed (e.g. Figure
2(e)). Performing NNI interpolation simply as sequence of (parallel)
Voronoi computations on the GPU doesn’t pay-off the overheads of
memory transfers and thread scheduling inherent to this architecture.

The evident strategy to generate interpolated values over a grid
would be to perform multiple queries concurrently in parallel. This
approach was used in [3] to generate a interpolation of regular grid
using the assumption that every sample has limited radius of influ-
ence. This allowed to decompose the domain in independent blocks
where queries could be answered in parallel batches. In [13], Park et
Al. propose a more efficient implementation of Sibson’s interpolation
on raster images. Their method avoid the explicit construction of a
new Voronoi diagram for each query point. Instead they use a Kd-tree
structure to find the closest seed to the current query point and use this
distance as a radius of influence to increment the interpolation weight.
Again, these techniques make assumptions that are valid for euclidean
space but not trivially generalized for geodesic (graph) distances.

Parallelization can still be implemented for Natural Neighbor Inter-
polation over graph spaces if we duplicate some data structures. More
precisely, for each NNI query, we copy the input Voronoi diagram of
data sample and update it with the addition of a new seed at the coor-
dinates of this query.

Table 1 shows the computation time spent for the parallel Sibson
algorithm on a NVidia Tesla K40 GPU. The interpolation is performed
over a uniform grid of dimensions 100× 40× 20 (80000 voxels) and
20 data points. The GPU algorithm performs batches of parallel NNI
queries in sequence iteratively until all the grid is computed. We show
the average amount of time spend by each batch of parallel queries and
the total time for interpolating the whole grid. Note that the parallel
version manages to amortize the overhead when more than 10 NNI
queries are done in parallel.

Table 1. Computation time for parallel NNI queries. Avg. Sibson Query
corresponds to time spent for querying a whole batch.

Batch Size Avg. Sibson Query (ms) Total time ( ms)
CPU 1 (seq) 1.003 81057.226
GPU 1 9.745 779657.756
GPU 10 12.413 99309.125
GPU 100 29.537 23629.870
GPU 150 34.807 18587.130

6 CONCLUSION AND FUTURE WORK

In this work we review a non-usual application of a classical geomet-
rical structure: the Voronoi diagram applied to meshless simulations.
We show that the parallelization with GPUs can be used to speed-up
the computation of the Voronoi diagram variant required by this do-
main.

Considering the characteristics of this application - interpolation on
a discrete grid and non-euclidean distances - we build upon our parallel
Voronoi algorithm to show how it can be used to parallelize the well-
know Natural Neighbor Interpolation method.

The parallel Voronoi implementation presented has a valuable ap-
plication in soft object simulation methods. It provides a performance
solution to the physics-based simulation community that wants to em-
ploy Voronoi shape-functions in their meshless simulations.

Finally, recent work have proposed to also use Voronoi Shape-
functions on grids with "extended" connectivity (non-manifold grids
[11]) which would allow to represent objects with more complex
topologies in meshless frameworks. Possible extensions of this work
will consider the application of our parallel algorithm in these new
domains.
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