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Abstract—A fundamental problem of Einstein’s theory of
classical general relativity is the existence of singularities such as
the big bang. All known laws of physics end at these boundaries of
classical space-time. Thanks to recent developments in quantum
gravity, supercomputers are now playing an important role
in understanding the resolution of big bang and black hole
singularities. Using supercomputers, explorations of the very
genesis of space and time from quantum geometry are revealing
a novel picture of what lies beyond classical singularities and the
new physics of the birth of our universe.

Introduction: Einstein’s theory of general relativity (GR)

unifies the notion of classical space-time and gravity. Its main

lesson is that gravity is the dynamics of geometry of 4D space-

time, and gravitational attraction occurs because the fabric

of space-time gets curved due to the mass of objects. GR

has been profoundly successful in describing the gravitational

dynamics of bodies in our universe, and of the Universe

itself. A recent notable example of this success was the

observation of two binary black hole mergers, as detected

by the Laser Interferometer Gravitational-Wave Observatory,

which confirmed predictions of GR to a great accuracy.

Despite remarkable success, it is widely believed that neither

GR nor the notion of classical space-time are fundamental

descriptions of nature because of the problem of singularities

in the classical description of gravity.

Singularities are events during which gravitational attraction

or the curvature of the space-time geometry diverges. An

example is the big bang singularity, which occurs when our

universe has vanishing volume. As a result, energy density

of matter and space-time curvature explode to infinity. Such

singularities are common in classical physics. In classical elec-

trodynamics, Coulomb’s law predicts that electric field due to a

point charge is infinite at the location of the point charge. In the

early days of GR, singularities were thought to arise as a result

of certain assumptions in the model, similar to considering a

point charge a mathematical abstraction. Big bang singularity

was first found in the Friedmann-Lemaı̂tre-Robertson-Walker

(FLRW) cosmological model, which is homogeneous and

isotropic, meaning that the geometry of the space is the same

everywhere and in each direction, a reasonable approximation
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of our universe at large scales. Researchers initially believed

that the big bang singularity in the FLRW model arose because

of the drastic assumption of homogeneity and isotropy at

all scales. But Penrose’s and Hawking’s powerful theorems,

formulated in the 1960s, showed that singularities in GR do

not occur under special circumstances, but rather they are

generic features of Einstein’s theory. At singularities, GR

breaks down. Its failure to resolve singularities leads to an

important question: Is there a more complete fundamental

description of space-time in which singularities do not occur?

As discussed below, the answer appears to be yes.

It has long been believed that singularities such as the big

bang are a result of assuming classical continuum of space-

time at all scales, and will be resolved when space-time is

quantized in a quantum theory of gravity – a marriage of

classical gravity and quantum theory. A fundamental lesson

from the latter is that physical quantities that classically take

continuous values will, upon quantization, take discrete values.

Classical physics is an approximation of the limit at which

quantum discreteness vanishes. In a quantum world, an electric

charge can’t be localized to a point, and naturally, there is

no classical singularity of the electric field. A fundamental

question is, can quantum discreteness similarly resolve space-

time singularities? For big bang and black hole singularities,

the volume of the spatial region vanishes, causing space-

time curvature to blow up. If in quantum gravity, space-

time geometry is not continuous but rather discrete with a

nonvanishing minimum volume, then the problem of space-

time singularities can be successfully addressed.

As we will see, departure from the classical continuum

space-time to quantum discrete space-time brings many

challenges to the extractions of physics using numerical

simulations. Whereas various numerical simulations to

address interesting problems in GR could be performed on

a single core, and HPC is used to tackle complex problems,

the situation in quantum gravity is quite different. To answer

even the simplest questions, using supercomputers becomes

necessary. In recent years, tools have been developed

to overcome the challenges associated with performing

simulations on quantum discrete space-times, and many

numerical simulations using HPC have been performed.

The resulting physics is strikingly different from GR in the

sense that there is no big bang singularity when the quantum

discreteness of space-time is considered.

http://arxiv.org/abs/1809.01747v1
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From classical to quantum geometry: One of the main

candidate theories of quantum gravity is loop quantum gravity

(LQG) [1], [2], [3]. Unlike other approaches to quantum

gravity, it is nonperturbative and background independent. In

simple words, it means that LQG treats gravity as dynamics of

space-time in the true spirit of Einsteinian gravity, not just as

another force on a spectator space-time, which is a central

theme of Newtonian gravity and other fundamental forces.

Conventionally, quantization of GR, such as in the Wheeler-

DeWitt theory – named after pioneers John Wheeler, who

made many seminal contributions to GR and quantum gravity

and also coined the term black hole, and Bryce DeWitt, a

founding father of canonical quantum gravity approach – has

been studied using the metric and its momentum as basic

variables. A metric quantifies distance between objects on

spatial geometry, and its momentum tells us the way the metric

changes under time evolution. It turns out that the resulting

Hamiltonian, a primary quantity that reveals a systems dy-

namics and energy levels, in these variables is unmanageable

at the quantum level. In 1980’s, Ashtekar found that instead

of the metric, if one considers triads and their momentum

(connection), then the Hamiltonian is manageable [4]. Triads

are just a different way to capture spatial geometry encoded in

the metric through three orthogonal vector fields; connection,

which is conceptually similar to the vector potential in elec-

trodynamics, captures the way geometry changes over time. A

decade of rigorous mathematical work in the 1990’s showed

that the resulting theory, LQG, is kinematically different at

the quantum level from the Wheeler-DeWitt theory. Instead of

the classical continuum space-time of GR and the Wheeler-

DeWitt theory, the quantum space-time turns out to be discrete

in LQG. The classical differential geometry is replaced by

a quantum geometry in which geometrical operators such as

area and volume have discrete spectrum with nonvanishing

minimum eigenvalues.

A consequence of quantum geometry is the boundedness of

energy density and space-time curvature. This is straightfor-

ward to understand by recalling that in quantum mechanics,

if one of the phase space variables is discrete, its conjugate

variable is bounded. It turns out that energy density and space-

time curvature are conjugate to geometric operators that have

a discrete spectrum in LQG. Since the space-time curvature

is bounded, in cosmological space-times that have been rigor-

ously quantized using LQG, quantum discreteness results in a

nonsingular evolution. An important caveat is that all the loop

quantized space-times so far are homogeneous. Nevertheless,

they are still quite nontrivial, including the FLRW space-time

capturing the dynamics of our universe.

Important features of the quantum evolution of the above

space-times in LQG include the following. Unlike the dif-

ferential equations of GR, the evolution equation in LQG

is a finite difference equation with discreteness fixed by the

underlying quantum geometry. In particular, the Hamiltonian

is a finite difference equation with a uniform spacing in

volume of the Universe. As is expected from a consistent

quantum gravitational theory, it approximates the Hamiltonian

in GR, which is a differential equation, when space-time

curvature is much smaller than the Planck curvature (defined

as c3/h̄G ≈ 3.83× 1065cm−2). When such a high curvature

is reached, there are important differences between the two.

As a result, if one considers a quantum state peaked on a

classical expanding solution of GR and evolves it backward

toward the big bang using LQG, the state follows the classical

trajectory for a long time but shows significant departures

when space-time curvature becomes very large. Near the

Planck curvature, the volume of the universe stops shrinking,

and starts increasing. As a result, the big bang is replaced

by a turnaround of volume – a nonsingular big bounce! The

bounce is caused by quantum gravitational repulsion at Planck

scale resulting from the discreteness of quantum geometry.

Unlike in GR, energy density and space-time curvature remain

finite in LQG. Interestingly, there exists an effective continuum

description with modifications to differential equations of GR

that capture the loop quantum dynamics quite successfully, at

least for quantum states that bounce at volumes much larger

than the Planck volume. These novel results were first obtained

for isotropic and homogeneous space-times about a decade

ago using numerical simulations performed on a single core

[5], [6]. Avoidance of the big bang and occurrence of the

big bounce have since been shown to be a common feature of

various cosmological models based on LQG [7], using various

analytical and numerical techniques [8], [9].

If the big bounce truly reflects the fundamental physics

of the very early universe, then this prediction of LQG

must pass some stringent robustness tests. First, how

generic is the bounce in different cosmological and black

hole space-times. In particular, does the bounce occur for

anisotropic space-times that capture the generic approach

to singularities? Second, does the bounce occur for generic

states or is it a feature of only specific quantum states?

Finally, the bounce can potentially leave invaluable signatures

of LQG in cosmic microwave background (CMB) and

primordial gravitational wave background originating in the

very early universe. For this, it is important to understand

the regime of validity of effective continuum space-time

description. To answer the above questions, and to potentially

connect LQG with CMB and primordial gravitational wave

observations, certain computational challenges associated

with performing numerical simulations on quantum geometry

must be overcome.

Computational challenges of quantum geometry: The quan-

tum Hamiltonian in LQG is a difference equation in the

variables capturing spatial geometry, an example being the

spatial volume of the universe in the FLRW model. The dis-

creteness in the difference equation is completely determined

by LQG, with no parameter freedom to change it. In contrast,

in GR, the fundamental equations are differential and finite

difference equations are used as approximations in numerical

computation with a freedom to vary discreteness for better

accuracy. But, in LQG numerical simulations must carefully

take in to account the underlying quantum discreteness which

fixes the allowed numerical grid. In particular, for a stable

evolution, the Courant-Friedrichs-Lewy (CFL) condition must

be satisfied [10]. In the continuum limit, where the quantum

discreteness becomes negligible, the difference equation re-



3

sults in a hyperbolic partial differential equation, which is

the Wheeler-DeWitt equation in Wheeler-DeWitt quantization

of cosmological space-times. In the latter, the space-time is

continuous as in GR, and states evolved using Wheeler-DeWitt

equation follow classical trajectory of GR at all times [6].

The CFL condition implies that given a discreteness in spatial

grid, the temporal grid discreteness must be small enough such

that the numerical speed of propagation is greater than the

characteristic speed in the Wheeler-DeWitt equation. For a

stable evolution, the fixed discreteness poses certain challenges

and results in the demand for huge computational resources.

We illustrate this for the case of isotropic cosmological

model sourced with a massless scalar field φ - a toy model

to describe matter, whose strength varies monotonically. The

latter property allows φ as a clock to study quantum dynamics

of the universe. In canonical description of gravity, physical

solutions are obtained from a constraint which the Hamiltonian

must satisfy. The “energy balance” of matter and gravity

requires that it must vanish. This Hamiltonian constraint using

LQG turns out to be a difference equation in volume of the

spatial slices of the universe denoted by v [6],

∂2
φΨ(v, φ) = B−1(v)(C+(v)Ψ(v + 4, φ) + C0(v)Ψ(v, φ)

+ C−(v)Ψ(v − 4)), (1)

where C+, C0, C− and B are determined by the action of

geometrical operators in quantum theory, with eigenvalues:

C−(v) = C+(v − 4) =
πG

4× 33/4
|v − 2| ||v − 3| − |v − 1|| ,

(2)

C0(v) = −C+(v)− C−(v) (3)

and

B(v) =
35/4

4
|v|||v + 1|1/3 − |v − 1|1/3|3 . (4)

This equation couples the wavefunction Ψ of the universe in

uniform steps of four times the Planck volume. In quantum

theory, Ψ plays a central role in providing information about

the values a physical quantity takes through computation of

expectation values. Using Ψ, expectation values of volume

operator at different times can be computed, finding exactly

when the universe bounces. Eq. 1 results in a stable evolution

and classical solutions at late times [8]. At large volumes it

yields the Wheeler-DeWitt equation

∂2Ψ

∂φ2
= 12πGv

(

∂

∂v

(

v
∂Ψ

∂v

))

(5)

which has characteristic speeds: λ± = ±
√
12πGv. The CFL

condition constrains the maximum time step ∆φ as ∆φ ≤
4/|λ±| ∝ v−1. Thus, a large spatial grid requires a very fine

time grid. Therefore, investigating cosmological space-times

in LQG turns out to be very expensive. As an example, on

a single core a typical simulation with spatial grid of 1012

volume in Planck units requires approximately 1010 years [11].

This computational cost dramatically increases for

anisotropic cosmological space-times such as Bianchi models,

for which geometry, in contrast to FLRW space-time, in

each direction is different, and for black holes which have

a central singularity similar in properties as the big bang

singularity. Bianchi spacetimes are important to study as they

are believed to capture the generic approach to singularities

in GR [12]. If matter is absent then the numerical grid is

3-dimensional, composed of three directional volumes vi,
measuring spatial volume in each direction. Of these one (or

its conjugate variable) can be used as a ‘clock’ to measure

the other two spatial directions. Unlike the example of the

isotropic cosmology where temporal grid is determined by

the CFL condition, here numerical grid in all the directions

is completely fixed by quantum geometry. The number of

spatial grid points for the computations grows by N2, where

N is the number of grid points required in the isotropic

case. As discussed later, a typical simulation for quantum

states which are sharply peaked require about 1015 floating

point operations and about 500 GB of memory. For wider

states, and states probing deep quantum geometry, typical

simulations require 1019 floating point operations with

memory requirements exceeding ∼ 5 TB. For Bianchi space-

times with a scalar field, one deals with a three dimensional

spatial grid and a temporal grid in the scalar field whose

discreteness is constrained by the CFL condition. In this case,

the number of floating point operations climb to 1025 for a

typical simulation involving just sharply peaked states.

To answer questions about the resolution of singularities

and probing the deep Planck regime to understand the

emergence of the space-time as we know it from quantum

geometry, one needs to perform many simulations such as

above with a wide range of parameters. Given the high

computational cost of performing numerical simulations on

quantum geometry, especially for anisotropic space-times,

we must bring forth smarter algorithms which can be

efficiently used in high performance computing. In the

following we first describe one such algorithm, the Chimera

method [11], which has been successfully implemented to

understand singularity resolution for a wide variety of states

including those which have very wide spreads, squeezing and

non-Gaussian properties [13], [14]. Next, we describe the

computational implementation for investigating the resolution

of singularities in anisotropic and black hole space-times,

where above algorithms can be used.

Chimera – a hybrid of quantum and classical geometry

grids: The Chimera algorithm [11] reduces the computational

cost for numerical simulations on quantum geometry by using

some of the key properties of the quantum Hamiltonian

obtained for isotropic and anisotropic space-times in LQG.

As noted earlier, at large volumes compared to the Planck

volume, which also correspond to small space-time curvatures,

the quantum Hamiltonian is approximated extremely well by

the Wheeler-DeWitt equation. Since Wheeler-DeWitt states are

peaked on classical solutions of GR, one thus finds that classi-

cal continuous space-time emerges from the quantum geome-

try when the space-time curvature becomes much smaller com-

pared to the Planck curvature scale. In fact, the eigenfunctions

of the quantum Hamiltonian obtained using LQG are found

to be superposition of the eigenfunctions of the Wheeler-

DeWitt equation at large volumes [6]. Further, the most non-

trivial quantum gravitational effects are concentrated in the
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Fig. 1. From big bang to big bounce. The magnitude of the wavefunction of the universe is plotted versus the volume of the isotropic universe, while the
scalar field φ plays the role of time. The big bang and big crunch are avoided in the quantum theory as the plot demonstrates. This figure corresponds to the
case of a cyclic universe which classically encounters the big bang singularity in the past and the big crunch singularity in the future. Only a snapshot of the
evolution of the state in a region near the classical singularity is shown.

regime close to the bounce. At the bounce, the eigenfunctions

decay exponentially and vanish near the singularity [6], [15].

Thus, if one can consistently split the numerical grid in two

parts: an inner grid where finite difference equation from LQG

is used, and an outer grid where one can approximate the

finite difference equation using Wheeler-Dewitt equation, then

above observations suggest negligible difference in numerical

simulations carried over a full quantum geometric grid and

the one where only inner grid is quantum geometric. The

interface of the inner and outer grids is to be located at a

carefully chosen large volume. It should be large enough such

that the approximation is excellent and does not introduce

any numerically significant errors. On the other hand the

interface should be at a small volume such that the constraints

from the CFL condition are alleviated. An additional input

further reduces the computational cost by changing the time

discretization through the CFL condition. Since the outer grid

is not constrained by the quantum geometry, one is free to do

a coordinate transformation x = ln v as a result of which the

characteristic speeds for the corresponding evolution equation

in x become λ± = ±
√
12πG. The CFL condition then

implies that the maximum time step ∆φ is proportional to

the discreteness in volume only and is independent of the

size of the outer grid. This change in coordinates brings a

significant reduction in the computational cost because of the

following reasons. On the outer grid, since the coordinate

is logarithmic one needs less refined spatial grid, and even

if the outer grid is very large the discreteness in temporal

grid does not need to be made smaller for stability. Further

reduction in computational resources can be achieved by using

a Discontinuous Galerkin method to approximate derivatives

on the outer grid. Using such a higher order scheme one can

perform numerical simulations with same accuracy as before

with a much lower resolution. Rigorous analysis with different

interface boundaries and a variety of quantum states shows that

the usage of two different grids to solve finite difference quan-

tum Hamiltonian is quite successful in significantly reducing

the computational cost [11], [13], [14].

An example of the application of the Chimera method

described above in conjunction with HPC is shown in Fig. 1,

which shows a bounce for a quantum state initially peaked at

large volume instead of encountering the big bang singularity

at vanishing volume. The role of time is played by the scalar

field φ. The model corresponds to a cyclic universe with a

negative potential term in eq. (1) which causes a classical

turn-around at large volumes. In GR, cycles are not possible

because of big bang singularity. Starting from positive values

of φ, in the backward evolution the state turns around at very

small volume due to quantum gravity effects, avoiding the

big bang and undergoes a bounce to an expanding branch

at φ ∼ 2 (in Planck units). After the classical turnaround at

large volumes occurring at φ ∼ 1, the state evolves again

towards a big bang which is once again avoided by quantum

geometry. The cycle repeats in further evolution.

Supercomputing implementation for quantum space-times:

In the above discussion we saw the way Chimera method [11]

can cut the computational cost significantly. The method can

be used both for isotropic and anisotropic space-times. Recall

that for latter, spatial geomtery in different directions is quite

different which has many consequences. First, anisotropies

dictate the structure of a generic singularity. The big bang in

an anisotropic universe may not be a point as in FLRW model,

but a cigar because of the way different directions contract.

Further, for our universe to isotropize from anistropic initial

conditions is non-trivial, and there can be phenomenological

signatures of this process occurring in very early universe in

CMB and primordial gravitational waves. On the numerical

side, computational cost of studying such space-times is high

because of the increase in number of distinct directions to

three captured by three directional volumes vi. Here Chimera

method plays a supplemental role in the main computational

kernel. We now describe the primary elements of the compu-

tational algorithm (see [16] for details).
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As for the case of the FLRW model, loop quantization

of the Bianchi-I space-time yields the quantum Hamiltonian

constraint as the following difference equation [17]:

Ĥ = − 2

γ2

(

Θ̂1Θ̂2 + Θ̂1Θ̂3 + Θ̂2Θ̂3

)

≈ 0, (6)

where ≈ 0 indicates that the physical solutions are obtained

from the vanishing of the Hamiltonian constraint. Here Θ̂i

have the following action of the eigenstates corresponding to

directional volumes vi

Θ̂i|vi〉 = −i
∆Q

2
√
3
(f+(vi)|vi + 2〉 − f−(vi)|vi − 2〉) , (7)

where ∆Q ≈ 1.35× 10−65cm2 is the minimum eigenvalue of

the area operator computed in LQG, and

f±(vi) = g(vi ± 2)s±(vi)g(vi) (8)

with

s±(vi) = sgn(vi ± 2) + sgn(vi) (9)

and

g(vi) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +
1

vi

∣

∣

∣

∣

1/3 ∣
∣

∣

∣

1− 1

vi

∣

∣

∣

∣

1/3
∣

∣

∣

∣

∣

−1/2

(10)

if vi 6= 0, and is zero otherwise. The uniform discreteness is of

two Planck units of directional volumes vi. Physical states can

be constructed using the eigenfunctions eωi
of Θ̂i operators

with eigenvalues ωi which capture the way anisotropy changes

in different directions. Using the operator Θ̂i, one finds that

eigenfunctions satisfy following relations:

eǫiωi
(2 + ǫi) = −i

√
3ωi

∆Q

eǫiωi
(ǫi)

g(2 + ǫi)g(ǫi)
, (11)

and

eǫiωi
(2n+ 2 + ǫi) =

g(2n− 2 + ǫi)

g(2n+ 2 + ǫi)
eǫiωi

(2n− 2 + ǫi)

−i

√
3ωi

∆Q

eǫiωi
(2n+ ǫi)

g(2n+ 2 + ǫi)g(2n+ ǫi)

(12)

where n > 0 and labels the lattice of vi, and 0 < ǫi ≤ 2. Using

above recursion relations we can evaluate the wavefunction in

the entire range of vi’s starting from some initial values.

To extract physical predictions, one can study the relational

dynamics of directional volumes v2 and v3 with respect to v1
or its conjugate b1. The latter turns out to be the preferred

choice, because unlike v1 it is monotonic which is a required

property of a good clock. The physical state for any fixed

lattice ǫi, with b1 playing the role of the clock, is

Ψb1(v2, v3) =

∫

dω2dω3Φ̃(ω2, ω3)eω1(b1)eω2(v2)eω3(v3),

(13)

where Φ̃ provides the profile of the quantum state, chosen to

be a Gaussian peaked at ω∗
2 and ω∗

3 , with spreads σ2 and σ3:

Φ̃(ω2, ω3) =
1√
πσ2

e
−

(ω2−ω
∗

2
)2

2σ2
2 eiβ2ω2

1√
πσ3

e
−

(ω3−ω
∗

3
)2

2σ2
3 eiβ3ω3 .

(14)

We can then obtain the expectation values of v̂2 and v̂3 which

act as multiplication operators.

With b1 playing the role of clock, for each value of b1,

the physical state which is a three dimensional object, can

be stored as an array of size n2 × n3, where n2 and n3 are

the sizes of the spatial grid in v2 and v3. At any given time

step, computation of a physical state can be parallelized in v2
and v3 directions. If the grid in b1 is labeled by n1, then

to compute the physical state and expectation values over

this time interval, we need to evaluate integrals in eq.(13)

n1×n2×n3 times. Φ̃(ω2, ω3)eω1 is a double precision complex

array of size nω2 × nω3 × n1 which is computed initially

using discrete FFT and is stored as a vector of grid arrays

distributed among processors in ω2 and ω3 directions but not

in b1 direction to compute the physical state and expectation

values. This particular array requires a large amount of storage.

As an example, for n1 = 131072 and nω2 = nω3 = 256, one

requires storage of 128 GB. Using MPI, computation of FFTs

is parallelized by evaluating FFTs serially for different values

of ω2 and ω3 on different processors. Integrals are computed

using Gauss-Legendre quadrature with eigenfrequencies in

range ω∗
i ± 10σi. At each time step, we have a double loop

over spatial grid in v2 and v3, and for each spatial grid point

there is a double loop in ω2 and ω3. Including all steps, 22

multiplications and 22 additions are required in each loop. The

number of floating point operations are thus:

N = 44× n1 × n2 × n3 × nω2 × nω3 . (15)

MPI parallelization is done using Cactus framework [18], [19],

which is extensively used in numerical relativity. In Cactus, the

central core called “flesh” is connected to different modules

called “thorns.” Cactus implementation for solving finite dif-

ference quantum Hamiltonian in LQG was accomplished by

introduction of a new “thorn” for evaluating physical state and

expectation values of relevant operators [16]. The LQG thorn

works in conjunction with other computational thorns and the

flesh. Outer loops are parallelized with OpenMP and the inner

loops are written such that they can be auto vectorized by

compilers. The main computational kernel has been ported to

GPUs using OpenACC, and to Intel Xeon Phis using OpenMP

with Intel’s offload compiler directives. In both cases the code

can use both CPUs and accelerators at the same time by

dynamical adjustment of the computational work.

The computational kernel achieves 60% of the theoretical

peak performance on the single core. On a 16 core shared

memory node using OpenMP parallelization, kernel achieves

about 50% of the peak performance using CPUs. On the other

hand, using Intel’s Xeon Phi accelerator cards the performance

is about 20% due to data cache misses. The performance

on GPUs is about 25 − 30%. Strong and weak scaling tests

on Stampede supercomputer at Texas Advanced Computing

Center using XSEDE resources [20] give excellent results

[16]. On Stampede, for strong scaling, increasing the nodes

from 3 to 256 (with each node having 16 cores and 1 Xeon

Phi) increases the speedup 68 times, less than the ideal case

where the speedup should be 85.33 times. Here the speedup

is the ratio of the time taken to perform the same computation

using 3 nodes to the time taken with 256 nodes. For the weak
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Fig. 2. Bounce in anisotropic space-time. This plot shows the bounce of a quantum state initially peaked at the classical trajectory (upper solid black curve)
in logarithmic variables in two directions of the Bianchi-I space-time. As before only the region close to singularity is shown. The classical curves are singular
and are disconnected. Quantum gravity effects cause a bounce of the state from one curve to the other. The quantum expectation values, shown by black dots,
and corresponding dispersions are captured extremely well by an effective space-time trajectory (red curve).

scaling, as the number of nodes are increased the grid size

n2 × n3 is increased accordingly keeping other parameters

fixed. Increasing the nodes from 3 to 1024, the code slows

down by only 10%.

In a typical simulation, a quantum state is considered at

large volumes peaked at the classical trajectory. This state

serves as an input to determine the physical state (13) allowed

by the quantum Hamiltonian constraint (6). Results from a

typical simulation are shown in Fig. 2. The plot corresponds

to a sharply peaked Gaussian state with ω∗
2 = 100, ω∗

3 = 1000,

with spreads σ2 = 14 and σ3 = 40. For this state, one

requires n1 = 211, n2 = n3 = 212 and nω2 = nω3 = 28.

Using eq.(15), the total number of required floating point

operations are N = 44 × 251 ≈ 1017 flops. In the figure,

classical trajectories shown by solid black curves are compared

with the expectation values (shown with black dots) of the

logarithm of directional volume v2 plotted versus expectation

values of logarithm of directional volume v1, along with the

dispersions. In the classical theory, there are two solutions for

the above values of parameters which are both singular and

disjoint. Starting from any of the classical curves, a big bang

singularity is encountered at vanishing values of v1 and v2.

The quantum state is chosen at the large values of directional

volume, peaked at the upper classical curve. The quantum state

follows the classical curve for a long time until it reaches

the Planck regime where departures from the classical theory

become significant. Instead of going towards the singularity,

the quantum state bounces from the singular classical solution

towards another classical solution. Thus the classical singu-

larity is avoided in LQG. Interestingly, using coherent states

the finite difference quantum Hamiltonian constraint (6) can be

approximated by a differential effective Hamiltonian constraint

which captures the quantum gravitational effects quite well.

The resulting effective Hamiltonian is given by [16]

Heff =−72πℓ4Planck

[

sin(b1)v1 sin(b2)v2

+sin(b2)v2 sin(b3)v3 + sin(b3)v3 sin(b1)v1

]

. (16)

Note that the above Hamiltonian is significantly different from

the classical Hamiltonian which is obtained in the limit when

bi the conjugate variables to vi are very small. It captures

the discrete quantum gravitational effects in an effective

continuum space-time. In a sense, it can be used to extract

quantum dynamics in terms of the variables of the classical

continuum space-time. We see from Fig. 2, that the effective

dynamical trajectory obtained from the above Hamiltonian

matches quite well with the classical curves at late times, and

with quantum expectation values at all the times within the

value of dispersions. As with the quantum theory, the effective

dynamics captures the singularity resolution.

Since many phenomenological predictions are extracted

from effective dynamics, understanding the validity of

effective space-time is an important problem in LQG.

As we mentioned above, effective space-time provides a

continuum description of underlying quantum geometry up

to the scale of singularity resolution. If we can understand

at what scales the effective dynamics is trustable, we can

then understand the scale at which the continuum space-time

emerges from quantum gravity and the phenomenological

predictions are reliable. A measure of this validity is to

explore the prediction about the volume at which the bounce

occurs in the quantum dynamics and the effective space-time

description. Due to the wide range of volume between the

classical singularity and the bounce regime in LQG, for a

better visualization it is helpful to plot the relative difference

in logarithm of volumes. This relative difference in v2
direction is δ = (ln(v2) − ln(v2)

eff)/ ln(v2)
eff , computed

at the bounce of directional volume v2. If this difference is

small, the effective dynamics can be trusted and the resulting

physics, which includes signatures in CMB are reliable. It

was earlier thought that decreasing the spread in volume

would cause a better agreement between the quantum theory

and the effective dynamics because the state will be more
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Fig. 3. Validity of the effective space-time description. The relative difference in the expectation value of ln(v2) at the bounce and the value predicted by
the effective theory are plotted for various simulations. Each dot corresponds to a simulation performed using LQG thorn in Cactus. For each value of ω2

at which the state is peaked, a non-monotonic behavior is found. The difference between quantum theory and effective theory decreases as the spread in the
state decreases only up to a certain value. The lowest values of δ are found for larger spreads. The non-monotonic behavior, cross-over between different
curves and change in sign of δ reveals a non-trivial dependence on the value of ω2 and the spread. Each dot corresponds to one numerical simulation with
at least 1016 flops.

sharply peaked in volume and any effects from quantum

fluctuations will not cause significant errors between quantum

and effective dynamics. Thanks to the extensive numerical

simulations carried out for a large set of parameters, the

actual picture turns out to be strikingly different. Fig. 3

shows that relative difference in the bounce volume v2 in

logarithmic variables for various values of eigenfrequency ω2

on which the quantum state is peaked plotted versus absolute

fluctuation in the logarithm of the volume v2. Each point in

the plot corresponds to a numerical simulation involving more

than 1016 flops. We find some surprising results. First, for

each value of ω2 at which the state is peaked the magnitude

of relative difference between the bounce volume between

quantum and effective theory is not smallest for smallest

∆ ln(v2), rather is is smallest for some larger value. That

is, the agreement between quantum dynamics and effective

description does not increase monotonically when the state

becomes more peaked. This shows that the conventional

wisdom of increasing agreement between quantum geometry

and effective space-time description for states which are

more sharply peaked needs revision. In fact, for any given

value of ω2, there is a minimum allowed value of ∆ ln(v2).
The magnitude of relative difference between quantum and

effective dynamics, δ, shows a non-monotonic behavior for

each value of ω2 at which the state is peaked. Each curve

has turnaround point, which for larger values of ω2 occurs

at smaller values of δ. Interestingly, for large enough values

of the spread, the relative difference becomes negative. All

this shows that the reliability of the effective dynamics

depends on the quantum state in a non-trivial way. For most

cases, the effective dynamics causes a bounce at smaller

volume than the quantum dynamics making δ positive.

In all such cases, effective dynamics underestimates the

quantum gravitational repulsion. However, there exist cases

of large fluctuations where the opposite happens and effective

dynamics overestimates quantum effects. These are important

clues to the reliability of effective dynamics and the new

physics at the Planck scale in LQG. We emphasize that

all these results are possible only because of the extensive

numerical simulations with HPC for loop quantized Bianchi-I

space-times. The analytical understanding of turnaround,

negative values of δ and non-monotonic behavior in Fig. 3

is yet to be fully established. In fact, the latter behavior was

not anticipated through analytical studies so far. This is an

example where numerical simulations lead to discovery of the

new physics in the Planck regime where detailed analytical

understanding is still lacking.

Summary: In GR, singularities are the final boundaries at

which evolution stops and all known laws of physics break

down. The hope has been that a quantum theory of gravity will

eliminate these boundaries, extending the space-time beyond

the big bang. But understanding properties of quantum space-

time is a very hard problem. At the analytical level, the

theory is yet to be fully deciphered, and direct observational

tests are absent. However, thanks to the significant analyt-

ical understanding of quantization in LQG achieved in the

past three decades, interesting cosmological and black hole

space-times can be loop quantized and singularity resolution

can be studied. In LQG, quantum geometry brings forth

computational challenges never before encountered in GR.

Supercomputers become necessary to answer even the most

basic questions, and play an important role in deciphering

the physics of quantum space-time. The key prediction for

loop quantized isotropic cosmological and anisotropic space-

times is the absence of a big bang, which is replaced by a

big bounce. For loop quantum black hole space-times, similar

results are emerging [21]. These results radically change our

understanding of the origin of our universe and the central

singularity of black holes. If the prediction of bounce holds,

then LQG tells us that there existed a large universe before

what we observe as the big bang. Numerical studies using
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HPC reveal the existence of an effective space-time description

that sheds important light on the way continuum space-time

emerges from quantum geometry and potentially links LQG

with astronomical observations. In coming years, one chal-

lenge is to extend these results to inhomogeneous space-times

where the understanding of analytical aspects in quantum

gravity is yet to be completed. Given the progress over the past

couple of years, it can be expected that supercomputers will

prove to be an invaluable and essential tool for the complete

discovery of the new physics at the Planck scale, and to go

beyond the limitations of Einstein’s GR.
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