

1

CLOUD COMPUTING

Failure Management for Reliable

Cloud Computing: A Taxonomy,

Model and Future Directions

The next generation of cloud computing must

be reliable to fulfil the end-user requirements,

which are changing dynamically. Presently,

cloud providers are facing challenges to

ensure the reliability of their services. In this

paper, we propose a comprehensive taxonomy of failure management in cloud computing. The taxonomy is used to

investigate the existing techniques for reliability that need careful attention and investigation as proposed by several

academic and industry groups. Further, the existing techniques have been compared based on the common

characteristics and properties of failure management as implemented in commercial and open source solutions. A

conceptual model for reliable cloud computing has been proposed along with discussion on future research directions.

Moreover, a case study of astronomy workflow is presented for reliable execution in cloud environment.

Keywords: Cloud Computing, Failure Management, Resilience, Montage Workflow, Reliable Computing

1. INTRODUCTION
Cloud computing paradigm delivers computing resources residing in providers’ datacentres as a service over the Internet. The

prominent cloud providers such as Google, Facebook, Amazon and Microsoft are providing highly available cloud computing

services using thousands of servers, which consists of multiple resources such as processors, network cards, storage devices and

disk drives [1]. With the growing adoption of cloud, Cloud Data Centres (CDCs) are rapidly expanding their sizes and increasing

complexity of the systems, which increases the resource failures. The failure can be Service Level Agreement (SLA) violation,

data corruption and loss and premature termination of execution, which can degrade the performance of cloud service and affect

the business [2]. For next generation clouds to be reliable, there is a need to identify the failures (hardware, service, software or

resource), their causes and manages them to improve their reliability [2]. To solve this problem, a model and system is required

that introduces replication of services and their coordination to enable reliable delivery of cloud services in cost-efficient manner.

The rest of the paper is organised as follows: Section 2 presents a systematic review of existing techniques for reliable cloud

computing and proposed a failure management based comprehensive taxonomy. Further, based on the taxonomy, techniques have

been compared. Section 3 presents the failure management in open source technologies. Section 4 presents the fault tolerance

resilience in practice. Section 5 covers approaches for creating reliable applications using modular microservices and cloud-native

architectures. Section 6 presents the resilience on Exascale systems. Section 7 presents the conceptual model for reliable cloud

computing. Section 8 presents the fault tolerance for scientific computing applications along with a case study of astronomy

workflow. Section 9 presents the future research directions. Finally, Section 10 concludes the paper.

Sukhpal Singh Gill and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory,

School of Computing and Information Systems

The University of Melbourne, Australia

2

2. RELIABLE CLOUD COMPUTING: A JOURNEY AND TAXONOMY
Reliability in cloud computing is defined as “the ability of a cloud computing system to perform the desired task or (provide a

required service) for stated time period under predefined conditions” [4]. The reliability of cloud computing system depends on

the different layers of cloud architecture such as software, platform and infrastructure.

2.1 State-of-the-Art

This section briefly describes the existing research work of reliable cloud computing. Deng et al. [11] proposed a Reliability-

aware Resource Management (RRM) approach for effective management of hardware faults in scientific computation, which

improves the reliability of cloud service. Further, it has been proved that RRM is effective in providing reliability and fault-

tolerance against the malicious attacks and failures. Lin and Chang [3] proposed a Maintenance Reliability Estimation (MRE)

approach for cloud computing network to measure the maintenance of data transfer with nodes failure and time constraints.

Further, sensitive analysis has been done to improve the transmission time and data transfer speed by selecting shortest and

reliable paths. Dastjerdi and Buyya [4] proposed a SLA based Autonomous Reliability-aware Negotiation (ARN) approach to

automate the negotiation process between cloud service providers and requesters. Moreover, ARN can evaluate the reliability of

proposals received from service providers. The proposed approach reduces the underutilization of resources and enables the

parallel negotiation with many resource providers simultaneously. Xuejie et al. [5] developed a Hybrid Method based Reliability

Evaluation (HMRE) model, which combines Continuous-Time Markov Chain (CTMC) and Mean Time To Failure (MTTF)

metrics to measure the effect of physical-resource breakdowns on system reliability. HMRE model can be used to design a reliable

system for cloud computing.

Chowdhury and Tripathi [6] proposed a security based Reliability-aware Resource Scheduling (RRS) technique to measure the

reliability of cloud datacenter. Moreover, RRS updates the reliability of cloud resources continuously for further scheduling of

resources for the execution of user workloads. Cordeschi et al. [7] developed an Adaptive Resource Management (ARM) model to

improve the reliability of cloud services in cloud-based cognitive radio vehicular networks. ARM manages the resources

effectively and provides the energy-efficient cloud service to perform traffic offloading. The distributed and scalable deployment

of ARM offers the hard reliability guarantees to transfer data using wireless sensor network. Zhou et al. [8] proposed a Cloud

Service Reliability Enhancement (CSRE) technique to improve the storage and network resource utilization. CSRE uses service

checkpoint to store the state of all the Virtual Machines (VMs), which are currently processing user workloads. Further, a node

failure predicator is developed to reduce the network resource consumption.

Li et al. [9] proposed a convergent dispersal based multi-cloud storage (CDStore) solution to provide the cost-effective, secure and

reliable cloud service. CDStore provides deterministic-based deduplication to improve storage and bandwidth savings, which

further protects the system from malicious attacks using two-stage deduplication. Azimzadeh and Biabani [10] proposed a Multi-

Objective Resource Scheduling (MORS) mechanism to reduce execution time and improve reliability of cloud service. Further, a

trade-off between execution and reliability has been established for the execution of High Performance Computing (HPC)

workloads.

Calheiros and Buyya [13] proposed a Task Replication-based Resource Provisioning (TRRP) algorithm for execution of deadline-

constrained scientific workflows. TRRP utilizes the extra budget and free time of resources to execute workflows within their

deadline and budget. Poola et al. [14] proposed a spot and on-demand instances-based Adaptive and Just-In-Time (AJIT)

scheduling algorithm to offer fault tolerance. AJIT minimizes execution cost and time through resource consolidation and

experimental results prove that AJIT is an effective in execute workloads under short deadlines. Qu et al. [15] proposed a

Heterogeneous Spot Instances-based Auto-scaling (HSIA) fault tolerant system for execution of web applications, which

effectively reduces the cost of execution and improves the availability and response time. Liu et al. [16] proposed a replication-

based state management system (E-Storm) for execution of streaming applications. E-Strom uses multiple state backups on

different worker nodes to improve reliability of the system and performs better the existing techniques in terms of latency and

throughput. Abdulhamid et al. [21] proposed a Dynamic Clustering League Championship Algorithm (DCLCA) based fault

management technique, which schedule tasks on cloud resources for execution and focuses on fault reduction in task failure. The

experimental results show that DCLCA performs better in terms of makespan and fault rate. Figure 1 shows the evolution of

existing techniques for reliable cloud computing and their focus of study.

Figure 1: Evolution of Reliable Cloud Computing

• RRM

• [11]
2010 MRE

[3]
2011 ARN

[4]
2012 HMRE

[5]
2013

• RRS
[6]

• TRR
P
[13]

2014 ARM
[7]

2015

• CSRE [8]

• CDStore
[9]

• AJIT [14]

• HSIA [15]

2016

• MORS
[10]

• E-Strom
[16]

2017 DCLCA
[21]

2018

Scientific

Computation

Data

Transfer
Parallel

Negotiation

Physical Resource

Breakdowns

Security Aware and

Scientific Workflows
Traffic

Offloading

Node Failure Prediction,

Multi-Cloud Storage,

Task Replication and

Fault Tolerance

HPC Cloud Workloads

and Streaming

Application

Dynamic

Resource

Scheduling

3

2.2 Failure Management

To offer reliable cloud services, there is a need of an effective management of failures. Literature [14-20] reported that various

failure management techniques and policies have been proposed for reliability assurance in cloud computing. A failure is defined

as “when a cloud computing system fails to perform a specific function according to its predefined conditions”. We have

identified four types of failures (service failure, resource failure, correlated failure and independent failure) and classified these

failures in into two main categories: 1) architecture based and 2) occurrence based. Table 1 describes the classification of failures

and their causes.

Table 1: Classification of Failures and their Causes

Type of Failures Classification Cause of Failure Percentage of Occurrence of Failure1,2,3,4

Service Failure

Architecture Based

 Software Failure
 Complex Design

 Software Updates

 Planned Reboot
 Unplanned Reboot

 Cyber Attacks

 Scheduling
 Timeout

 Overflow

18%

Resource Failure

 Hardware Failure
 Complex Circuit Design

 Memory
 RAID Controller

 Dis Drive

 Network Devices
 System Breakdown

 Power Outage

58%

Correlated Failure

Occurrence Based

 Based on Spatial Correlation between Two Failures

 Based on Temporal Correlation between Two Failures

14%

Independent Failure
 Denser System Packing

 Human Errors

 Heat Issue

10%

1https://blogs.gartner.com/thomas_bittman/2015/02/05/why-are-95-of-private-clouds-failing/
2https://esj.com/articles/2014/06/26/cloud-projects-fail.aspx
3http://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers
4https://docs.microsoft.com/en-us/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/design-to-survive-failures

2.2.1 Taxonomy

Based on failure management techniques and policies for reliability assurance in cloud computing, the components of the

taxonomy are: 1) design principle, 2) QoS, 3) architecture, 4) application type, 5) protocol and 6) mechanism (see Figure 2).

Figure 2: Taxonomy based of Failure Management in Clouds

2.2.1.1 Design Principle: Three different type of design principles are proposed for reliable cloud service such as: 1) design for

recoverability i.e. recover system with minimum involvement of human, 2) design for data integrity i.e. to ensure the accuracy

and consistency of data during transmission and 3) design for resilience i.e. enhance system resilience and reduce the effect of

failure to there is lesser interruption to cloud service.

2.2.1.2 Quality of Service (QoS): Three QoS parameters are considered to measure the reliability of cloud service [12]:

serviceability, resource utilization and security. Serviceability is defined in (Eq. 1), while resource utilization is defined in (Eq. 2).

Security in cloud computing is a deployment of technologies or policies to protect infrastructure, applications and data from

malicious attacks [2].

Failure Management in Cloud Computing

QoS

Serviceability Security
Resource

Utilization

Design Principle

Data
Integrity

Recoverability Resilience

Mechanism

Reactive Proactive

Application Type

Web
App

Compute
Intensive

Data
Intensive

Scientific
Workflow

Streaming
Application

Architecture

Homogenous Heterogenous Centralized Decentralized

Technology

Checkpointing

Replication

VM

Migration

Logging

Hadoop Kafka Spark Storm Zookeeper Cassandra Flink Beam Apex Samza

https://blogs.gartner.com/thomas_bittman/2015/02/05/why-are-95-of-private-clouds-failing/
https://esj.com/articles/2014/06/26/cloud-projects-fail.aspx
http://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/design-to-survive-failures

4

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
Service Uptime

Service Uptime + Service Downtime
 (1)

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
Actual Time Spent by a Resource to Execute Workload

Total Uptime of a Resource
 (2)

2.2.1.3 Architecture: There are four types of architecture: homogenous, heterogenous, centralized and decentralized. A

homogenous architecture has the same type of configuration, such as operating systems, networking, storage and processors, while

a heterogeneous datacenter combines different type of configurations of operating systems, networking, storage and processors to

process user applications. In centralized architectures, there is a central controller, which manages all the tasks that are required to

be executed, and further it executes the task using scheduled resources. The central controller is responsible for the execution of

all tasks. In decentralized architectures, resources are allocated independently to execute the tasks without any mutual

coordination. Every resource is responsible for their own task execution.

2.2.1.4 Application Type: For application management, there are five types of application that are considered for reliable cloud

computing: web applications, streaming applications, compute-intensive, data-intensive and scientific workflows. The

applications that can execute anytime but its execution should be completed before their deadline are called compute-intensive like

HPC. Web applications are those applications which are required to run all time i.e. 24 X 7 like delay torrent, Internet services etc.

The applications with lot of data crunching is called data-intensive. In scientific workflows, real-world activities can be simulated

like flight control system, weather prediction and climate modelling, aircraft design and fuel efficiency, oil exploration etc., which

requires high processing capacity to execute user requests. A streaming application is a program, which downloads the required

components instead of installing components before its use and it is used to provide virtualized applications.

2.2.1.5 Mechanism: There are two types of mechanisms: reactive and proactive. Reactive management works based on feedback

methods and manages the system based on their current state to handle faults. There is a need of continuous monitoring of

resource allocation to track the system status. If there is some system error then corrective action will be taken to manage that

fault. Proactive management manages the system based on the future prediction of the performance of the system instead of its

current state. The resources are selected based on the previous executions of the system in terms of reliability, throughput etc. The

predictions are required to be identified based on previous data, and plan their appropriate action to manage that fault during

system execution.

2.2.1.6 Protocol: The mechanisms are further divided into different protocols: checkpointing, replication, logging and VM

migration. To incorporate fault tolerance into system, a snapshot of the application's state is saved, so that system can reboot from

that point in case of system crash, this process is called checkpointing. To improve the reliability of system, information is shared

among redundant resources (hardware or software), is called replication. Logging is required to save the information related to

cyber-attacks, auditing, anomalies, user access, troubleshooting etc. to building a reliable system. Failure can be avoided

proactively by migrating the VM from one cloud datacenter to another is called VM migration.

The various open source technologies uses by different reliability-aware approaches that are discussed in Section 3. Table 2 shows

the comparison of reliability-aware approaches based on taxonomy of failure management.

Table 2: Comparison of Reliability-aware Approaches based on the Taxonomy

Technique Author Design

Principle

QoS Architecture Application

Type

Mechanism Protocol Technology Open Issues

RRM Deng et al.

[11]

Design of

Resilience

Serviceability Decentralized Scientific

workflows

Reactive and

Proactive

Logging and

VM Migration
Hadoop Privacy protection for

cloud user information is

not provided.
MRE Lin and

Chang [3]

Serviceability Heterogenous Data-

Intensive

Reactive Checkpointing Spark Secure data transmission

paths are required.
TRRP Calheiros et

al. [13]

Serviceability Centralized Scientific

Workflows

Reactive Replication Storm nad

Hadoop

Execution cost can be

reduced.

DCLCA Abdulhamid

et al. [21]

Resource

Utilization

Centralized Web

Applications

Reactive Replication Kafka Execution cost is not

considered.

ARN Dastjerdi and

Buyya [4]

Design of

Recoverability

Security and

Resource

Utilization

Homogenous Scientific

workflows

Reactive Replication Zookeeper The effect of

heterogeneous negotiation

on the profit is needed to

be analysed.
HMRE Xuejie et al.

[5]

Security and

Serviceability

Centralized Web

Applications

Proactive VM Migration Cassandra Resource utilization is not

considered.
RRS Chowdhury

and Tripathi

[6]

Security and

Resource

Utilization

Heterogenous Compute-

Intensive

Reactive Checkpointing Flink and

Hadoop

This technique only

considers homogenous

workloads.
ARM Cordeschi et

al. [7]

Security and

Serviceability

Homogenous Compute-

Intensive

Proactive VM Migration Beam and

Hadoop

The bandwidth efficiency

of network is required to

be improved.
AJIT Poola et al.

[14]

Resource

Utilization

Decentralized Scientific

workflows

Reactive Replication Apex and

Zookeeper

Secure cloud services are

required.

HSIA Qu et al. [15] Serviceability Heterogenous Web Reactive Replication Samza and Resource utilization can

5

Applications Strom be considered.

CSRE Zhou et al.

[8]

Design for Data

Integrity

Resource

Utilization

Decentralized Web

Applications

Reactive Checkpointing Spark Resource utilization is

lesser.
CDStore Li et al. [9] Resource

Utilization

Centralized Data-

Intensive

Reactive and

Proactive

VM Migration Storm Backup restore

mechanism is a time-

consuming process.
MORS Azimzadeh

and Biabani

[10]

Serviceability

and Resource

Utilization

Homogenous Compute-

Intensive

(HPC)

Proactive VM Migration Hadoop Secure cloud services are

required.

E-Strom Liu et al. [16] Serviceability

and Resource

Utilization

Centralized Streaming

Application

Reactive Replication Zookeeper

and Hadoop

Execution cost can be

reduced.

3. FAILURE MANAGEMENT IN OPEN SOURCE TECHNOLOGIES

In literature [5-15], the various types of open source technologies is identified for failure management in reliability-aware

approaches such as Hadoop, Storm, Spark, Kafka, Zookeeper, Cassandra, Flink, Beam, Ape and Samza. Table 3 presents the

description of open source technologies along with their comparison based on different parameters such as type of service, their

features, language used to develop technology, type of data processing and fault tolerance mechanism by different technologies.

Table 3: Comparisons of Open Source Technologies based on Different Parameters

Name Description Type of Service Feature Language

Used

Data

Processing

Fault Tolerance Mechanism (FTM)

Hadoop It uses different systems to

handle massive amounts of

data and computation

Data storage, data processing,

data governance and security

Map-Reduce programming

model based distributed

storage and processing of big

data

Java Batch Hadoop uses Hadoop Distributed File

System (HDFS) to handle faults by the

process of replica creation and data can be

accessed from replication.

Spark It provides APIs in Java, Scala

and Python to allow data

workers to execute streaming

using in-memory.

To build applications that

exploit machine learning and

graph analytics

Runs iterative Map-Reduce

jobs

Scala Stream Spark uses Resilient Distributed Dataset

(RDD) to replicate data among multiple

Spark executors in worker nodes in the

cluster.

Storm It processes unbounded

streams of data.

Stream processing, continuous

computation and distributed

remote procedure call

Scalable and real-time

computation systems

Clojure1 &

Java

Stream Storm restarts automatically if a node dies,

the worker will be restarted on another

node and resets it to the latest successful

checkpoint.

Kafka It builds real-time data

pipelines and streaming

applications.

Message passing High throughput, low latency

and persistent messaging

Scala Stream Kafka maintains replication of data on a

regular basis and cluster manager restarts

automatic driver in case of failure and use

checkpointing mechanism to start data

processing form the place when it crashed.

Zookeeper It is a centralized service for

keeping configuration

information and offers

distributed synchronization.

i) Enables coordination using

Locks and Synchronization and

ii) naming service

Provides hierarchical

namespace and form cluster of

nodes

Java Hybrid It maintains replication using multiple

servers and it makes client-server model

for servers, which works in coordination

manner to handle failure.

Cassandra It handles a massive amount

of data across many

commodity servers

Provides high availability with

no single point of failure

Low latency and masterless

replication

Java Hybrid It maintains data replication and then it

repairs the crashed node or replace with

more reliable node while maintaining the

consistency

Flink It executes arbitrary dataflow

programs in a data-parallel

and pipelined manner.

Performs data analytics using

machine learning algorithms

High-throughput and low-

latency stream processing

Java and

Scala

Stream It captures consistent snapshots of the

operator state and distributed data stream

and which will act as checkpoints in case

of failure

Beam It defines and executes data

processing workflows

Analyses data streams to solve

real-world challenges of stream

processing

Execute pipelines on multiple

execution environment

Java and

Python

Hybrid The logging of the current pipeline state

used for fault tolerance

Apex It processes distributed big

data-in-motion for real-time

analytics

Distributed data processing Scalable and secure Java and

Scala

Hybrid It maintains checkpoints automatically and

it recovers failed containers using

Heartbeat mechanism [11].

Samza It provides distributed stream

processing using a separate

Java Virtual Machine (JVM)

for each stream processor

container

Message passing It runs multiple stream

processing threads within a

single JVM

Java and

Scala

Stream Whenever a machine in the cluster fails,

Samza works with Yet Another Resource

Negotiator (YARN) to transparently

migrate user tasks to another reliable

machine.

1Cloujure is a dynamic programming language for multithreading and it runs on Java virtual machine

4. FAULT-TOLERANCE AND RESILIENCE IN PRACTICE

There are various commercial clouds such as Amazon Web Services, Window Azure, Google App Engine, IBM Cloud, and

Oracle, which focuses on fault tolerance to deliver reliable cloud service. In this section, we have explored the recent advances of

commercial cloud providers based on eight different types of fault tolerance parameters [5] [6] [11] [13] [14] [18] [22]. To

improve the reliability of system, information is shared among redundant resources (hardware or software), is called replication.

The capability of a system to deliver 24×7 service in case of failure - a disk, a node or a network is called availability. The

capability of a system to protect against data loss during write, read, and rewrite operations on storage media is called durability.

Archiving-cool storage means lower cost tier for storing data which is accessed infrequently and long-lived. Backup offers off-site

protection against data loss by allowing data to be backed-up and recovered from the cloud at later stage. Disaster recovery

provides automatic replication and protection of VMs using recovery plans and its testing. Relational database provides

6

organization of data to develop data-driven websites and applications without demanding to manage infrastructure. Caching offers

effective storage space, which is used to off-load non-transactional work from a database. Table 4 shows the comparison of

commercial clouds based on fault tolerance parameters.

Table 4: Comparison of Commercial Clouds based on Fault Tolerance Parameters

Cloud

Provider

Replication

Technique

Availability

Zones

Durability Service Archiving-Cool

Storage

Backup Disaster

Recovery

Relational

Database

Caching

Amazon

Web

Services

Zerto Virtual

Replication

54

Availability

Zones

Elastic Block Store

(EBS)

Amazon Simple

Storage Service (S3)

Infrequent Access (IA)

Glacier

Foolproof AWS

Backup Strategy

Virtual Tape

Library (VTL)

and Virtual

Tape Shelf

(VTS)

Relational

Database

Service (RDS)

Elastic Cache

Windows

Azure

Locally Redundant

Storage (LRS) and

Geo-Redundant

Storage (GRS)

42

Availability

Zones

Binary Large OBject

(BLOB) Storage

Storage-Hot, Cool and

Archive Tier

Volume Shadow

Copy Service

(VSS)

On-Site

Recovery

SQL Database Redis Cache

Google App

Engine

Built-in Redundancy 45

Availability

Zones

Google Cloud

Storage

Google Cloud Storage

Coldline

Snapshots Google Cloud

Storage

Nearline

Google Cloud

SQL

Memcache

Cache

IBM Cloud Zerto Virtual

Replication

33

Availability

Zones

Tivoli Storage

Manager

IBM Cloud Object

Storage standard, cold

and vault tiers

Infraworx Cloud

Backup

Off-Site

Recovery

SQL Database solidDB

Universal

Cache

Oracle Snapshot Replication 23

Availability

Zones

Enterprise

Management

Console (EMC)

XremIO Optimized

Flash Storage

Flashback Data

Archive

CloudBerry

Backup

Fusion

Middleware

Disaster

Recovery

NoSQL

Database

Oracle In-

Memory

Database

Cache

5. RELIABILITY VIA MICROSERVICES AND CLOUD-NATIVE ARCHITECTURES

Microservice-based design of applications make them loosely coupled from other services, modular and independent. Therefore, a

microservice will not impact on other services and thus improve the fault-tolerance and availability [7] of applications. To achieve

fault-tolerance in microservice, it has to be designed with the following objectives: i) minimum interdependencies among services,

ii) include built-in resilience using API gateway (e.g. Zuul) [8], iii) contains built in self-healing capabilities (e.g. Kubernetes) [9]

and iv) protects against intermittent service failures or load spikes using cache request in stream processor (e.g. Apache Kafka)

[11]. Further, automated testing mechanism should be incorporated to perform application testing with ultra-high loads or

randomized input/wrong input, which can further improve the fault tolerance in microservices. There are two types of micro

profiles can be used for microservice implementation for fault tolerance: CircuitBreaker and Fallback [23]. To prevent the

repeated calls that likely to fail, CircuitBreaker service permits microservice to fail instantly. After main service failure, Fallback

service runs to offer failure or may continue operation of the original microservice.

Cloud-native architectures enable the creation of applications using IaaS (Infrastructure-as-a-Service) and PaaS (Platform-as-a-

Service) capabilities and services supported by Cloud computing platforms. Such applications are called Cloud-native applications

[28], as they seamlessly benefit from reliability, scalability, and elasticity features offered by PaaS platforms. Moreover, many

Cloud PaaS platforms are designed to run on a variety of computing infrastructures, from networked desktop computers to public

Clouds. That means, engineering reliable system applications becomes easier, seamless, and cost-effective. For example,

application designed using Cloud PaaS platforms such Aneka [29] can run on networked desktop computers within an enterprise,

leased resources from public Clouds, or hybrid Clouds by harnessing both enterprise and public Cloud resources along with

seamlessly benefiting from reliable and cost-efficient execution services offered by the platform.

6. RESILIENCE ON EXASCALE SYSTEMS

Exascale systems uses multicore processors to offer massive parallelism, which executes more than thousand floating point

operations per second. The probability of partial failures will be increased due to participation of large number of heterogenous

functional components such as network interfaces, memory chips and computing cores [3]. Therefore, fault tolerance at system

level is required to handle dynamic reconfigurations at runtime. In past, checkpoint/restart technique is used to prevent

computation to be lost due to failures for long running jobs, but this technique is not very effective due to slow communication

channels between RAM and parallel file system [5]. Replication can be used in addition to checkpoint/restart to improve fault

tolerance. In replication, same computation is performed by multiple processors, therefore, processor failure does not affect

application execution [24]. There are two different types of approaches for replication has been developed: 1) process replication

and 2) instance replication. In process replication, it replicates every process in a single instance of a parallel application while in

instance replication, it replicates the instances of entire application. The trade-off between power consumption and cost for

resilience on Exascale systems is an open issue.

7

7. A CONCEPTUAL MODEL FOR RELIABLE CLOUD SERVICE

Figure 3 shows the conceptual model for reliable cloud computing in the form of layered architecture, which offers effective

management of cloud computing resources, to make cloud services more reliable. The three main components of proposed

architecture are discussed below:

1. Cloud Users: At this layer, cloud user submits their requests and defines required services in terms of SLA. Workload

manager is deployed to handle the incoming user workloads, which can be interactive or batch style and transfer to the

middleware for resource provisioning.

2. Middleware: This is the main layer of model, which includes five subcomponents such as accounting and billing, workload

manager, resource provisoner, resource monitor and security manager.

a) Accounting and billing module includes the information about expenses of cloud services, cost of ownership, user

budget etc.

b) Workload Manager manages the incoming workloads from the application manager and identifies the Quality of Service

(QoS) requirement for every workload for their successful execution and transfer the QoS information of workload to

the resource provisoner.

c) Resource provisoner have three modules: SLA manager, VM manager and Fault manager. SLA manager module

manages the official contract between user and provider in terms of QoS requirements. Based on the availability of

VMs, VM manager provisions and schedules the cloud resources for workload execution based on QoS requirements of

workload using physical machines or VMs. Fault manager keep tracks of system, detects the faults along with their

causes and correct them without degradation of performance. Further, it finds the future faults and their impacts on the

system’s performance.

d) Resource monitor keeps a continuous record of activities of underlying infrastructure to assure the availability of

services. Moreover, it also monitors the QoS requirements of incoming workloads.

e) Security Manager deploys the virtual network security policies to provide secure: 1) data transmission between cloud

users and providers and 2) workload and VM migration between cloud datacenters.

3. Physical Infrastructure: This layer consists of cloud datacentres (which consists of multiple resources such as processors,

network cards, storage devices and disk drives), which are used to execute cloud workloads. Based on the VM manager

policy, VM migration or consolidation is performed for execution.

Figure 3: Conceptual Model for Reliable Cloud Computing

Cloud Users

Middleware

Physical Infrastructure

Accounting

and Billing

Resource

Monitor

Virtualization Layer

VM VM VM

Virtualization Layer

VM VM VM

Resource Provisoner

Fault

Manager

SLA

Manager
VM

Manager

VM Consolidation

Cloud Datacenters

Security

Manager

Workload

Manager

8

8. FAILURE MANAGEMENT FOR SCIENTIFIC COMPUTING APPLICATIONS

There are different areas such as astronomy, bioinformatics, genomics, quantum chemistry, life-sciences and high-energy physics

represent their applications as scientific workflows. To obtain their scientific experimental results, these applications are executed

using distributed systems [26]. These applications can be I/O or data or compute intensive applications, which have exponentially

adopted cloud computing environments [25]. The workflow management systems use on-demand dynamic provisioning model to

execute application on multi-cloud environment, which improves the fault tolerance in scientific workflow based applications

[27]. The Cloudbus workflow management system execute applications on multiple clouds using dynamic provisioned resources.

8.1 Montage: A Case Study of Astronomy Workflow

This section presents the reliable execution of astronomy application on cloud environment to validate the conceptual model.

Astronomy studies spiritual bodies and space through image datasets that cover a wide range of electromagnetic spectrum [27].

Further, astronomers use these images in different ways such as spatial samplings, pixel densities, image sizes and variety of map

projections [25]. As astronomy application is expressed as workflow made up thousands of interrelated tasks; any failure in task

execution as resources faults will have a cascading effect. Figure 4 shows the system architecture, which shows the interactions

among different components for application execution and the need for handling failures explicitly. The system architecture

comprises of following subcomponents:

Figure 4: System Architecture

 Montage Workflow: Montage application is a complex astronomy workflow, which produces a mosaic of astronomic images.

 Cloudbus Workflow Management System: It uses decentralized scheduling architecture for workflow execution, which allows

tasks to be scheduled by multiple schedulers.

 Fault Tolerance Manager: Two different types of fault tolerance techniques (retry and task replication) are used, which helps

to mitigate failures during execution on distributed systems. Retry method reschedules a failed job to an available resource,

while task replication method replicates a task on more than one resource.

In a demonstrated application, Melbourne CLOUDS Lab researchers [27] created a montage workflow consisting of 110 tasks,

where the number of images used are represented by the number of tasks. Montage toolkit is used to process tasks that compute

such mosaics through independent modules using simple executables. Workflow management systems requires three type of

resources such as master node (hosted in the OpenStack private cloud), storage host (hosted in the AWS EC2 public cloud) and

worker node (hosted in the AWS EC2 public cloud, which performs workflow execution). Resource failures was orchestrated to

demonstrate the fault-tolerance of the workflow management system. The experimental results show that makespan (execution

time) increases with the increase of the number of failures using retry fault-tolerant technique. After a resource fails, it remaps all

tasks that where scheduled on the failed resource, thus saving execution time. The workflow makespan is higher as it schedules

the resources on two cloud infrastructures because of data transfer time and the data movement time between tasks. Experimental

results demonstrate that execution of an application using two cloud infrastructures would increase the time but will reduce the

cost significantly than running the entire application on a public cloud. The interested readers can refer [27] for more details.

9. FUTURE RESEARCH DIRECTIONS

As discussed in Table 2, there are many open challenges in ensuring reliability of cloud computing services. To address them, we

proposed the following directions that helps in practical realization of proposed conceptual model:

Montage Workflow

Cloudbus Workflow

Management System

Fault

Tolerance

Manager

OpenStack Private Cloud AWS EC2 Public Cloud

9

1. Energy: To provide a reliable cloud service, it is required to identify that how the occurrences of failures effect the energy

efficiency of cloud computing system. Moreover, it is necessary to save the checkpoints with minimum overhead after

predicting an occurrence of failure. Therefore, workloads or VMs can be migrated to more reliable servers, which can save

the energy consumption and time. Further, consolidation the multiple independent instances (web service or email) of an

application can improve the energy efficiency, which improves the availability of cloud service.

2. Security: Real cloud failure traces can be used to perform the empirical or statistical analysis about failures to test the

performance in terms of the security of the system. Security during VM migration is also an important issue because a VM

state can be hijacked during its migration. To solve this problem, there is a need of encrypted data transfer to stop user

account hijacking, which can provide a secure communication between user and provider. To improve the reliability of cloud

service to next level, homomorphic encryption methods can be used to provide security against malicious attacks like denial

of service, password crack, data leakage, DNS spoofing and eavesdropping. Further, it is required to understand and address

the causes of security threats such as VM level attacks, authentication and authorization and network-attack surface for

efficient detection and prevention from cyber-attacks. Moreover, data leakage prevention applications can be used to secure

data, which also improves the reliability of cloud computing system.

3. Scalability: The unplanned downtime can violate the SLA and effects the business of cloud providers. To solve this problem,

a cloud computing system should incorporate dynamic scalability to fulfil the changing demand of users without the violation

of SLA.

4. Latency: Virtualization overhead and resource contention are two main problems in computing systems, which increases the

response time. Reliability-aware computing system can minimize the problems for real time applications such as video

broadcast and video conference, which can reduce latency while transferring data.

5. Data Management: Computing systems are also facing a challenge of data synchronization because data is stored

geographically, which overloads the cloud service. To solve this problem, rapid elasticity can be used to find the overloaded

cloud service and it adds new instances to handle the current workloads. Further, there is a need of efficient data backup to

recover the data in case of server downtime.

6. Auditing: To maintain the stable and health situation of the cloud service, there is a need of periodic auditing by third parties,

which can improve the reliability and protection of computing system.

10. CONCLUSIONS

We proposed a taxonomy for identifying the research issues in reliable cloud computing. Further, the existing techniques of

reliable cloud computing have been analysed based on the taxonomy of failure management. We have discussed the failure

management in open source technologies and the fault tolerance resilience in practice for commercial clouds. Further, fault

tolerance in modular microservices and the resilience on Exascale systems is discussed. We propose a conceptual model for

effective management of resources to improve reliability of cloud services. Moreover, a case study of astronomy workflow is

presented for reliable execution in cloud environment. Our study has helped to determine research gaps in reliable cloud

computing as well as identifying future research directions.

ACKNOWLEDGMENTS

This work is supported by the Melbourne Chindia Cloud Computing (MC3) Research Network and ARC (DP160102414).

REFERENCES

1. Sukhpal Singh and Inderveer Chana, “QoS-aware Autonomic Resource Management in Cloud Computing: A Systematic Review”, “ACM Computing

Surveys”, Volume 48, Issue 3, pp. 1-46, 2015.

2. Gill, Sukhpal Singh, and Rajkumar Buyya. "SECURE: Self-Protection Approach in Cloud Resource Management." IEEE Cloud Computing 5, no. 1 (2018):

60-72.

3. Yi-Kuei Lin and Ping-Chen Chang. "Maintenance reliability estimation for a cloud computing network with nodes failure." Expert Systems with

Applications 38, no. 11, 14185-14189, 2011.

4. Amir Vahid Dastjerdi and Rajkumar Buyya. "An autonomous reliability-aware negotiation strategy for cloud computing environments." In Proceedings of
the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp. 284-291. IEEE Computer Society, 2012.

5. Zhang Xuejie, Wang Zhijian and Xu Feng. "Reliability evaluation of cloud computing systems using hybrid methods." Intelligent automation & soft

computing 19, no. 2, 165-174, 2013.
6. Abishi Chowdhury, and Priyanka Tripathi. "Enhancing cloud computing reliability using efficient scheduling by providing reliability as a service." In

Parallel, Distributed and Grid Computing (PDGC), 2014 International Conference on, pp. 99-104. IEEE, 2014.
7. Nicola Cordeschi, Danilo Amendola, Mohammad Shojafar and Enzo Baccarelli. "Distributed and adaptive resource management in cloud-assisted cognitive

radio vehicular networks with hard reliability guarantees." Vehicular Communications 2, no. 1, 1-12, 2015.

8. Ao Zhou, Shangguang Wang, Zibin Zheng, Ching-Hsien Hsu, Michael R. Lyu and Fangchun Yang. "On cloud service reliability enhancement with optimal
resource usage." IEEE Transactions on Cloud Computing 4, no. 4, 452-466, 2016.

9. Mingqiang Li, Chuan Qin, Jingwei Li and Patrick PC Lee. "CDStore: Toward reliable, secure, and cost-efficient cloud storage via convergent dispersal."

IEEE Internet Computing 20, no. 3, 45-53, 2016.
10. Fatemeh Azimzadeh and Fatemeh Biabani. "Multi-objective job scheduling algorithm in cloud computing based on reliability and time." In Web Research

(ICWR), 2017 3th International Conference on, pp. 96-101. IEEE, 2017.

11. Jing Deng, Scott C-H. Huang, Yunghsiang S. Han and Julia H. Deng. "Fault-tolerant and reliable computation in cloud computing." In GLOBECOM
Workshops (GC Wkshps), 2010 IEEE, pp. 1601-1605. IEEE, 2010.

10

12. Sukhpal Singh and Inderveer Chana. "Q-aware: Quality of service based cloud resource provisioning." Computers & Electrical Engineering 47, 138-160,

2015.
13. Rodrigo N. Calheiros and Rajkumar Buyya, Meeting Deadlines of Scientific Workflows in Public Clouds with Tasks Replication, IEEE Transactions on

Parallel and Distributed Systems (TPDS), Volume 25, Issue 7, Pages: 1787 - 1796, ISBN: 1045-9219, IEEE CS Press, Los Alamitos, CA, USA, July 2014.

14. Deepak Poola, Kotagiri Ramamohanarao, and Rajkumar Buyya, Enhancing Reliability of Workflow Execution Using Task Replication and Spot Instances,
ACM Transactions on Autonomous and Adaptive Systems (TAAS), Volume 10, Number 4, Pages: 1-21, ACM Press, New York, USA, February 2016.

15. Chenhao Qu, Rodrigo N. Calheiros and Rajkumar Buyya, A Reliable and Cost-Efficient Auto-Scaling System for Web Applications Using Heterogeneous

Spot Instances, Journal of Network and Computer Applications (JNCA), Volume 65, Pages: 167-180, Elsevier, Amsterdam, The Netherlands, April 2016.
16. Xunyun Liu, Aaron Harwood, Shanika Karunasekera, Benjamin Rubinstein and Rajkumar Buyya, E-Storm: Replication-based State Management in

Distributed Stream Processing Systems, Proceedings of the 46th International Conference on Parallel Processing (ICPP 2017, IEEE CS Press, USA), Bristol,
UK, August 14-17, 2017.

17. Sukhpal Singh, Inderveer Chana and Maninder Singh. "The Journey of QoS-Aware Autonomic Cloud Computing." IT Professional 19, no. 2, 42-49, 2017.

18. Jay Aikat, Aditya Akella, Jeffrey S. Chase, Ari Juels, Michael K. Reiter, Thomas Ristenpart, Vyas Sekar and Michael Swift. "Rethinking Security in the Era
of Cloud Computing." IEEE Security & Privacy 15, no. 3, 60-69, 2017.

19. Chunming Rong, Son T. Nguyen and Martin Gilje Jaatun. "Beyond lightning: A survey on security challenges in cloud computing." Computers & Electrical

Engineering 39, no. 1, 47-54, 2013.
20. Jadin, Mathieu, Gautier Tihon, Olivier Pereira, and Olivier Bonaventure. "Securing MultiPath TCP: Design & Implementation." In IEEE INFOCOM 2017.

2017.

21. Latiff, Muhammad Shafie Abd, Syed Hamid Hussain Madni, and Mohammed Abdullahi. "Fault tolerance aware scheduling technique for cloud computing
environment using dynamic clustering algorithm." Neural Computing and Applications 29, no. 1 (2018): 279-293.

22. Jhawar, Ravi, and Vincenzo Piuri. "Fault tolerance and resilience in cloud computing environments." In Computer and Information Security Handbook

(Third Edition), pp. 165-181. 2017.
23. Haselböck, Stefan, Rainer Weinreich, and Georg Buchgeher. "Decision guidance models for microservices: service discovery and fault tolerance." In

Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems, p. 4. ACM, 2017.

24. Casanova, Henri, Frédéric Vivien, and Dounia Zaidouni. "Using replication for resilience on exascale systems." In Fault-Tolerance Techniques for High-
Performance Computing, pp. 229-278. Springer, Cham, 2015.

25. Day, Charles. "Astronomical Images before the Internet." Computing in Science & Engineering 17, no. 6 (2015): 108-108.

26. Remmel, Hanna, Barbara Paech, Christian Engwer, and Peter Bastian. "A case study on a quality assurance process for a scientific framework." Computing
in Science & Engineering 16, no. 3 (2014): 58-66.

27. Deepak Poola Chandrashekar, Robust and Fault-Tolerant Scheduling for Scientific Workflows in Cloud Computing Environments, Ph.D. Thesis, The

University of Melbourne, Australia, August 2015.
28. Mahajan, Ajay, Munish Kumar Gupta, and Shyam Sundar. Cloud-Native Applications in Java: Build microservice-based cloud-native applications that

dynamically scale. Packt Publishing Ltd, 2018.

29. Toosi, Adel, Richard Sinnott, and Rajkumar Buyya, “Resource Provisioning for Data-intensive Applications with Deadline Constraints on Hybrid Clouds
using Aneka”, Future Generation Computer Systems, Volume 79, No. 2, Pages: 765-775, Elsevier Press, Amsterdam, The Netherlands, February 2018.

ABOUT THE AUTHORS

Sukhpal Singh Gill is a Postdoctoral Research Fellow within the University of Melbourne’s Cloud Computing and Distributed

Systems (CLOUDS) Laboratory. Contact him at sukhpal.gill@unimelb.edu.au.

Rajkumar Buyya is a Redmond Barry Distinguished Professor and Director of the Cloud Computing and Distributed Systems

(CLOUDS) Laboratory at the University of Melbourne, Australia. He is one of the most highly cited authors in computer science

and software engineering worldwide. He was recognized as a “Web of Science Highly Cited Researcher” in both 2016 and 2017

by Thomson Reuters, a Fellow of IEEE, and Scopus Researcher of the Year 2017 with an Excellence in Innovative Research

Award by Elsevier for his outstanding contributions to Cloud computing. Contact him at rbuyya@unimelb.edu.au.

http://buyya.com/papers/RPDI-Deadline-HybridClouds.pdf
http://buyya.com/papers/RPDI-Deadline-HybridClouds.pdf

