
COMPUTING IN SCIENCE AND ENGINEERING 1

Software and Dependencies
in Research Citation Graphs

Stephan Druskat

Abstract—Following the widespread digitalization of scholarship, software has become essential for research, but the current
sociotechnical system of citation does not reflect this sufficiently. Citation provides context for research, but the current model for the
respective research citation graphs does not integrate software. In this paper, I develop a directed graph model to alleviate this,
describe challenges for its instantiation, and give an outlook of useful applications of research citation graphs, including transitive
credit.

Index Terms—software citation, citation graphs, transitive credit

F

1 INTRODUCTION

THE DIGITALIZATION of research changes research meth-
ods across disciplines, and produces new forms of

research and knowledge [1]. In the process, research soft-
ware has clearly become an integral part of digital research
methodologies [2]. It embeds research knowledge, imple-
ments algorithms and models, and is a central component
of digital scholarly integration and application [3]. It thus
presents a significant, and increasingly vital, intellectual
contribution to academic research.

Research software should therefore also be considered
a legitimate research product [3], [4], [5]. Research products
have the most value – and their outcomes can be understood
most fully – when they are considered in their context [1,
p. 10]. This context is standardly provided through citation.
Therefore, one aspect of research software gaining the status
of a research product is, that it must be integrated into the
scholarly citation system.

The citation system in current digital scholarship is
a sociotechnical system based on technical infrastructure,
and involves different stakeholders. Stakeholders include
domain-specific communities of researchers who use soft-
ware, research software engineers (RSEs) and other soft-
ware developers, research institutions, publishers, reposi-
tory providers, index providers, and funders (cf. [6]). Tech-
nical infrastructure upon which the citation system is built
most prominently include publication repositories; citation
indices and aggregators; publishing services including web-
sites; services provided by libraries; resolvers for digital
identifiers; metadata formats; reference management, text
processing, and other software.

• Stephan Druskat is with the German Aerospace Center (DLR), Berlin,
Germany, the Computer Science Department at Humboldt-Universität
zu Berlin, Berlin, Germany, and the Department of English Studies at
Friedrich Schiller University, Jena, Germany.
E-mail: stephan.druskat@dlr.de

c© 2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
DOI: https://doi.org/10.1109/MCSE.2019.2952840

Citation and the sociotechnical citation system broadly
provide the following functions:

• Context function: The provision of context for re-
search products by establishing a graph of research
products with links between the identified citing and
cited products, to enable traceability of outcomes,
both over the past to understand how present knowl-
edge was established, and into the future to under-
stand how present knowledge is being used (cf. [1],
[7], [8], [9])

• Social functions: The establishment of trust and
authority [9], [10], [11]; the recognition of the value
of a research product while providing credit to its
authors [4], [7]; the potential for evaluation of in-
dividual researchers [7, ch. 6], individual research
products [12], journals [13], and research groups,
institutions, and countries [7, ch. 6]

• Compliance function: The assertion of compliance
with good scholarly practice [7], [14]

• Discursive function: The organization and shaping
of discourses of scholarly credibility, authority, and
relevance through epistemic change via “dynami-
cally rewriting the past” [7, p. xvi], [11], [15], [16])

• Reproducibility function: The enablement of re-
search reproducibility through correct and complete
citation [17], [18], [19], [20]

Software as a research product can be subject to all of
the described functions – including the discursive function,
albeit to a limited degree, see below – only if it is fully
integrated in the citation system. While this is not currently
the case [3], [18], [21], [22], [23], [24], progress is being made,
driven by different stakeholders:

• Research software community initiatives such as
the FORCE11 Software Citation Implementation
Working Group (www.force11.org/group/software-
citation-implementation-working-group) build on
established community standards [4] and bring to-
gether stakeholders to shape technical infrastructure
and policy, and develop guidance [6]; their activities

https://doi.org/10.1109/MCSE.2019.2952840
https://www.force11.org/group/software-citation-implementation-working-group
https://www.force11.org/group/software-citation-implementation-working-group


COMPUTING IN SCIENCE AND ENGINEERING 2

concern the discursive and social functions directly,
and the remaining functions indirectly.

• Domain, infrastructure and software communities
develop software solutions for providing citation
metadata [25], [26], create repositories, information
services, and indices (e.g., [27], [28], [29], [30]), and
develop metadata formats [31], [32]; their activities
concern the context and social functions directly, and
the remaining functions indirectly.

• Research policy researchers develop procedures for
evaluating research software [33]; their activities con-
cern the social and compliance functions directly, and
the remaining functions indirectly.

• Funding agencies update funding policies (cf. [5])
and guidelines for scholarly practice [34] to incor-
porate citation of research software; their activities
concern the compliance function directly, and the
remaining functions indirectly.

• Publishers establish editorial policies that require
the citation of software, sometimes as a subset of
data [24], [35], or plan to do so [18]; their activities
concern the context, social and reproducibility func-
tions directly, and the remaining functions indirectly.

In this paper, I aim to contribute to the understanding of the
requirements for the implementation of research software
citation. To this end, I will investigate the output of the con-
text function of citation, research citation graphs (RCGs), with
the objective to answer the following research questions:

• RQ1: What are the necessary changes in the model of
research citation graphs to allow for the integration
of research software, and the adoption of the citation
functions?

• RQ2: What are the requirements for the implementa-
tion of software citation based on an updated model
of research citation graphs?

• RQ3: What are current challenges for the instantia-
tion of research citation graphs?

• RQ4: What applications do research citation graphs
enable?

2 RESEARCH CITATION GRAPHS

Research products and the references between them can
be modeled as a directed graph G1 = (V,E) where V is
a set of vertices (or “nodes”), and E is a set of ordered
pairs of nodes (i.e., “directed edges”). The nodes in V
represent research products, the edges represent reference
relations (i.e., citation) between source nodes (the citing
research product) and target nodes (the cited product).
This most basic model of a research citation graph (RCG)
enables the context function of citation: It helps understand
what other research products a specific product relied on
(“back-tracking”), or has led to (“forward-tracking”), in
order to build on this understanding in research, or conduct
evaluations and measurements. Both tracking methods can
be implemented as graph traversal, where back-tracking
follows outgoing edges, and forward-tracking follows in-
coming edges. The model also enables the social function
of establishing trust and authority, where it is based on
the citation of acknowledged trustworthy or authoritative

p1

a1

i1

a2

i2

p2

a3

i3

p3

a4

i4

c2c1

cite

cite

affil

affil

affil

affil

affil

affil

auth

auth

auth

auth
auth

pub-
in

pub-in

pu
b-

in

Fig. 1. Partial G2-type RCG for a research product which references two
other research products. The graph includes the respective G1 graph
(in bold print). Nodes: pn=research product, an=author, in=evaluable
affiliation, cn=evaluable publishing container; Edges: cite=“citation” re-
lation, auth=“authored by” relation, affil=“affiliated with” relation, pub-
in=“published in” relation.

research products rather than establishing references to their
authors.

In order to fully exploit the social citation function, RCGs
must model additional properties of research products:

• The provision of academic credit requires the in-
clusion of author nodes, and authorship relations
between them and research products, as does the
establishment of trust and authority if it is based on
individuals.

• Evaluation requires the inclusion of two classes of
entity nodes: affiliations (research groups, institu-
tions, countries, etc.), and respective affiliation rela-
tions between them and authors; “product contain-
ers” (journals, edited volumes, repositories, archives,
etc.), and respective published-in part-of relations
between them and research products.

The model graph changes accordingly: Let P be the set of all
vertices {p1, . . . , pn} which represent research products, A
the set of all vertices {a1, . . . , an} which represent authors, I
the set of all vertices {i1, . . . , in} which represent evaluable
author affiliations, and C the set of all vertices {c1, . . . , cn}
which represent entities which contain research products.
Let V be the set of disjoint sets {P,A, I, C} of vertices in the
RCG G2 = (V,E). Define L : V → V to set

• L(v) = P when v ∈ P ∈ V ,
• L(v) = A when v ∈ A ∈ V ,
• L(v) = I when v ∈ I ∈ V ,
• L(v) = C when v ∈ C ∈ V .

See Figure 1 for an exemplary visualization. In the past, the
citation system, as the foundation of the academic credit and
evaluation system, focused on journal articles, books, and
conference papers [1], and G2-type RCGs are the output of
the system’s context function at this stage. In addition to
the more general reasons given above in section 1, research
software must be integrated in the citation system also to
realize the compliance and reproducibility functions of the
current sociotechnical citation system. Definitions of and



COMPUTING IN SCIENCE AND ENGINEERING 3

guidelines for good scholarly practice change to reflect the
digitalization of scholarship, and compliance with them
requires research software to be cited. The recently updated
guidelines for good scholarly practice by German funding
agency Deutsche Forschungsgemeinschaft, for example, re-
quire that “provenance of data, organisms, materials and
software used in the research process is indicated and re-
use documented; the original sources are cited” [34, p. 14,
my translation]. Computational reproducibility also natu-
rally requires, amongst other information, e.g., about the
computational environment, the correct identification of the
software that has been used in published research [17], [36],
and provision of this information through citation [4], [18],
[37], [38].

In order to enable these functions in RCGs, they must
model the citation-related specific properties which set soft-
ware apart from other research products. These properties
relate to the software citation principles of specificity, unique
identification, and attribution and credit [4]. Software differs
from textual research products in the form its artifacts can
take, in its notion of finality and the relationships between
its artifacts, in the citability of its concepts, in its dynamicity,
in the containment relationships between a product and its
contributions, and in the roles which contribute to it.

Take an academic paper as example: As a research prod-
uct, it is perceived to be a single artifact, available in a “final”
version. This finality is a function of peer review, editorial
acceptance, and “adequate” publication. Final published
papers cannot have a new version after publication. Instead,
any changes must again pass peer review, acceptance and
publication, at which stage the changed paper is considered
to be a discrete new research product. Papers may also have
non-final versions published as preprints.

In contrast, software development processes produce
artifacts at different stages. Every commit (or “revision”)
in a version control system produces an artifact, a collection
of source code and other files, and build processes may ad-
ditionally produce one or more binary artifacts. The notion
of a “final” software product does not exist as such. This
is due to the lack of a standardized publication process for
software which is based on peer review. Instead, software
can evolve over time, and any revision can be tagged as
a version and “released”. None of the versions can be
considered “final”, as at any time, any changes produce
a newer version of the same software, not a discrete new
research product. Also, while versions of papers may or
may not differ in content – preprints may have the same
content as a final publication – versions of software will
usually represent differing source codes. When we talk
about “software”, we usually mean a version of a software
that has been released or used. Alternatively, “software”
can also refer to the concept of a software (cf. [6]), rather
than a version, revision, or artifact: “Microsoft Excel” refers
to the concept of a spreadsheet application, of which its
versions are realizations. Although a paper and its preprints
are arguably also different realizations of the same concept,
these paper concepts are never explicitly cited, whereas
software concepts may be cited, e.g., in the case of pipelines
or frameworks [6], or to understand the development of
a software in computer science research, or in software
comparison. In analogy, software concepts may be iden-

tifiable by unique identifiers as issued by repositories for
digital research products such as Zenodo [39]. For papers,
identifiers for concepts are not issued across repositories.
Usually, preprints and final publications will be archived
on separate platforms. Although preprint repositories such
as arXiv do issue versioned identifiers, which point to the
latest version when stripped of the version information,
there are no cross-repository identifiers that can uniquely
identify concepts of papers.

Defined as a “set of instructions that direct a computer
to do a specific task” [40, p. 2], software is “functionally
active” [41, p. 2] (“dynamic”), i.e., it performs functions
on data, whereas papers are clearly static. A software may
have different states, and execute along different paths
at runtime. The final states and execution paths depend
on configuration, interaction, and possibly the data that
is being processed. States and execution paths define the
actual “dynamic product” that is used to perform a specific
software task.

A further difference between software and papers is
the containment relationship between a product and the
contributions to it. Contributions to a research product can
be active or passive, and direct or indirect. In direct active
contributions to papers, contributors influence the product
directly through contributions of text, analyses, ideas, etc.
Direct active contributions to software can take the form
of source code, code comments, documentation, architec-
tural design, API design, UI design, tests, code reviews,
bug reports, etc. With direct passive contributions, a paper
uses another product or parts thereof, by building on it,
refuting it, refining its analyses, contextualizing its findings,
etc. Direct passive contributions to software are mainly
its “dependencies” – i.e., other software – but can also
include other research products, such as publications that
describe algorithms, models or methods implemented in
the software. Indirect contributions to a research product are
direct or indirect contributions to passive contributions to
that product. Indirect software contributions to software are
transitive dependencies.

“Dependencies” of a software S are software compo-
nents to which S exhibits a degree of coupling. If S relies
on functions of another software S1, without which S will
not function as intended, S1 is a dependency of S. This
usually means that S calls functions from S1, or uses its
API in another way, e.g., through inheritance. Dependencies
can take different forms, as libraries, code fragments, or
algorithms. The defining quality of a dependency is that
it is not part of the original, directly contributed, source
code of a software. Therefore, functions defined in a file
X that are called from functions defined in another file Y ,
are part of a dependency iff file X is not part of the same
codebase as file Y . This may include that file X has other
authors than file Y . Original source code and dependency
source code form the common codebase of a software. At
runtime, direct passive contributions (dependencies) and
indirect passive contributions (transitive dependencies, i.e.,
the dependencies of direct dependencies) become part of
the same “software object”, as execution paths transcend
boundaries between a software and its dependencies. In
contrast, direct passive contributions to papers are part
of the product in the form of references; indirect passive



COMPUTING IN SCIENCE AND ENGINEERING 4

contributions are not part of a paper at all, but must instead
be retrieved via backtracking traversal of an RCG.

Direct active contributions to papers are recognized
through authorship, and direct passive contributions
through citation. Indirect contributions are not recognized,
but can be discovered in RCGs. Similarly, direct active
contributions to a software should be recognized through
authorship – or acknowledged contributorship, see below –
whereas reliance on dependencies as direct passive contri-
butions should be recognized through citation. This holds
despite the part-of relationship between dependencies, tran-
sitive dependencies, and the depending software at run-
time, when dependencies arguably become direct active
contributions to a software product. The software citation
principles motivate this, by suggesting that software citation
should generally address software source code [4], which
makes dependencies passive contributions. Additionally,
under a standard definition of authorship [42], the default
recognition type for direct active contributions, authors of
dependencies do not qualify for authorship of depending
software: The contribution to a software through a depen-
dency is substantial, but neither will they draft or revise
the depending software, nor will they approve the version
of the depending software to be published, or agree to be
accountable for it. This categorically rules out authorship
and motivates citation of dependencies instead.

Citation should attribute contributions to a research
product to all contributors, and enable the provision of
credit for a contribution. There is increasing acknowledg-
ment of the fact that direct contributions to research prod-
ucts can take different forms than text production [43],
and that metadata should represent different contribution
types [44]. This is the case for all types of research product,
and specifically for software, where creditable contributions
greatly differ from those to papers, and include not just
the writing of source code, but also contributions to the
architecture, design, documentation, engineering, manage-
ment, verification, validation, repair, maintenance, etc., of a
software [45], [46], [47]. However, there is not yet a com-
mon understanding of which types of acknowledgable and
creditable contributions there are across different types of re-
search software. It has also not yet been established whether
there are qualitative differences between contribution types
that may motivate a tiered concept of contributions, such
as primary and secondary contributions. The schema.org
ontology, for example, defines a term contributor as “a
secondary contributor” [48], whereas community initiatives
such as All Contributors [47] suggest to reward “every
contribution, not just code” without defining differently
valued contributions. It is therefore not possible to add
contributor types to a model of RCGs at this stage in a mean-
ingful and future-proof way. Instead, different stakeholders
– software producers, researchers, publishers, institutions,
policy makers, and others – should collaborate to develop
and implement policies and ontologies that allow for a more
differentiated model of author- and contributorship across
all acknowledgable research products. This model should
replace the traditional authorship model and be reflected
in the metadata for research products that is provided at
publication, for purposes of citation, credit, etc.

In summary, the described specific properties of soft-

ware yield new requirements for a G3 RCG model which
integrates software research products, and supports the
compliance and reproducibility functions:

• The versionability of software (and other) research
products requires no new model elements, but the
re-definition of the set P as the set of all vertices
{p1, . . . , pn} which represent versions of research
products.

• The specific relationship between versions as realiza-
tions of concepts and the respective concepts requires
the addition of concept nodes, i.e., a new set O ∈ V ,
which is the set of all vertices {o1, . . . , on} which
represent concepts of research products. Alternatively,
P could be re-defined as the set of all vertices
{p1, . . . , pn} which represent versions or concepts of
research products. For reasons of clarity, I will pursue
the first option in the following.

• The relationships between versions and concepts
also require the addition of realization relations, i.e.,
edges from nodes in P to nodes in O.

• For cases where concepts that overarch versions of a
research product remain unidentifiable – as is usually
the case with papers – the relationships between
versions of a research product require the addition
of order relations, i.e., edges from nodes in P to
other nodes in P which define one version (the
source node) as the predecessor of another version
(the target node). These edges allow for the analysis
of cumulative impact over versions of a research
product.

• A differentiated model of contributorship to research
products, and specifically software, requires the ad-
dition of edges representing different contribution
types. As this is currently not possible in lieu of
an agreed-upon model of acknowledgable contrib-
utorship, the relations formerly denoting authorship
have been labeled contrib* in Figure 2, instead of auth,
where the label is to be understood to reflect differ-
ent types of contributions, including both traditional
authorship and the more fine-grained contributions
to digital research products.

These changes take into account almost all of the specific
properties of software as a research product. “Dynamic
products” have not been included here because they rep-
resent objects different from the principle target of software
citation, i.e., source code (cf. [4]). They will be discussed
further in section 3. See Figure 2 for a visualization showing
an example of the updated G3 model for RCGs. The figure
shows a paper p8, which cites a software version p1. p1 has
been contributed to by two contributors, one of which (a1)
has made contributions of two different types, e.g., writing
source code and writing documentation. p1 also cites two
dependencies p3 and p4. p3 cites its own dependency p5,
making p5 a transitive dependency of p1. p4 is a realization
of software concept o1, and precedes another version of
the same software, p6, which is also a realization of o1. p1
also cites a paper p2, e.g., describing an algorithm which
p1 implements. p2 in turn has a predecessor in the preprint
p7, with which it shares one contributor. For p2 and p7, no
concept has been published.



COMPUTING IN SCIENCE AND ENGINEERING 5

p8 p1
q ú

p2
q

p3
ú

p4
ú

p5
ú

p6
ú

p7
q

a4

a1 a2 a3

o1

c1

c2 c3

i1 i2 i3 i4

cite cite

ci
te cit

e

ci
te

co
ntri

b*
co

ntri
b* contrib* co

ntri
b* contrib*

contrib*

contrib*

pr
ec

prec

rea
l

re
al

pub-in

pub-in

pu
b-

in

pub-in
pub-in

pu
b-

in

affil

affil

affil affi
l affil

Fig. 2. Partial G3-type RCG for an exemplary textual research product
(p8) which cites an exemplary software (p1) with two software depen-
dencies (p3, p4), and a citation to a paper (p2). Additional and changed
elements in comparison to the G2 model in bold print. Software products
marked with ú, textual products marked with q. Nodes: pn=version
of a research product, an=acknowledged contributor, in=evaluable
affiliation, cn=evaluable publishing container; Edges: cite=“citation” re-
lation, contrib*=“contributed to by” relation, affil=“affiliated with” relation,
pub-in=“published in” relation, prec=“precedes” relation, real=“realizes”
relation.

Taken together, the updated G3 model for research ci-
tation graphs enables all functions of the current sociotech-
nical system of citation for research software (RQ1). With
regards to the discursive function, some systemic limitations
apply. First of all, the acknowledgement of direct passive
software contributions to a research software, or failure to
do so, can only be used to shape and organize discourses
of scholarly credibility, authority, and relevance to a certain
extent. As dependencies are hard-wired into the software
product, only the preference of dependencies over function-
ally equivalent others before or while creating the product
have the potential to affect a given discourse. To neglect, or
favour, a specific dependency over another usually means
a trade-off of functionality for a research software. These
choices will be determined by the functional and/or engi-
neering needs of any given software project, and are not
likely to be used as discursive actions. A “re-writing of the
past”, by wilfully neglecting to reference specific dependen-
cies and their import in the scholarly discourse, becomes
impossible as soon as they are used, and thus become an
inseparable part of, a software. Some build systems have a
concept of optional dependencies. Optional dependencies,
i.e., those that can optionally be used in a software which
also defines a fallback mechanism for the case that the op-
tional dependency cannot be resolved and used on a given
system, may be more prone to allow discursive actions, but
the discussion of this corner case is out of scope for this
paper. Another case where the discursive function may be
of interest is in references from a software to a text-based
research product. This could be the case when a software

implements an algorithm described in a paper, and the
paper should be cited to enable due credit for its contrib-
utors. Choosing to not cite the paper when it should be, is
arguably discursive action with respect to creditability and
relevance of research products. On the other hand, this goes
against currently promoted good scholarly practice [34], and
presents another corner case. Finally, and most importantly,
the discursive function does not influence RCGs directly in
terms of elements in a graph. Rather, its output must be
studies on what is not in a given RCG instance when it
should be, or what is in a graph when it should not be.

Based on the discussion and development of a useful
model of research citation graphs that integrate software
in this section, I will discuss current challenges for the
instantiation of RCGs in the following section.

3 CHALLENGES FOR THE INSTANTIATION OF
RCGS

Research citation graphs have a number of potential appli-
cations, which I will discuss in section 4. A prerequisite for
these applications is the instantiation of research citation
graphs for actual research products, including software.
RCGs are built from distributed metadata, probably repre-
sented as linked data. An example of this is CodeMeta [32],
a linked data exchange schema for software metadata which
extends the schema.org vocabulary and is implemented
in JSON-LD. CodeMeta files can, for example, represent
software as well as other research products as references
of a software. For journal papers, JATS [49] can be used to
retrieve metadata and resolve references. Instantiated RCGs
can, e.g., be stored in (graph) databases, represented in main
memory, or visualized as graphs.

In theory, RCGs are instantiated by recursive resolution
of references from a “root” research product to retrieve the
set P ∈ V for a graph G = (V,E); for each p ∈ P , retrieval
of the product-specific metadata to retrieve the sets A, I , C ,
and O for G; deduplication of the vertices in V for G.

This process yields requirements for an implementation
of software citation (RQ2), which also reflect the software
citation principles [4] (in parentheses):

• Publications and publication metadata – including
references – are available digitally, and metadata are
machine-actionable (“Persistence”, “Accessibility”);

• research products duly and correctly cite references
including software in publications (“Importance”,
“Specificity”, “Credit and attribution”);

• publications are uniquely identifiable through
a machine-actionable identifier (“Accessibility”,
“Unique identification”);

• contributors, research institutions and other evalu-
able entities as well as publication platforms can be
deduplicated, i.e., are uniquely identifiable.

To meet these requirements for research software, a num-
ber of challenges (RQ3) have to be overcome first. The
publication process for textual research products is well-
established and involves peer review, editorial acceptance
and adequate publication together with curated and com-
plete metadata and unique identification to enable the cita-
tion use case. No such process is yet in place for software,



COMPUTING IN SCIENCE AND ENGINEERING 6

although software journals such as JORS [50] or JOSS [51]
aim to provide a similar workflow, but do not meet the
“Importance” principle [4], as they publish metapapers,
and not the software itself. Additionally, while references
to text publications are recorded in their metapapers, soft-
ware references (dependencies) are not. Alternatives include
automated deposits from source code repositories such as
GitHub to general purpose archives such as Zenodo, which
provide unique identification, but do not require or curate
citation-relevant metadata, including references. Similarly,
Software Heritage [52] harvests source code and provides
unique identification, but does not require citation-relevant
metadata, including references.

In order to establish a publication process for software
similar to that of papers, action is required from many
different stakeholders. Research software creators will have
to embed publication steps into their workflows, which also
reflect short, iterative cycles of software development. These
publication steps should be supported by repositories and
archives, as well as publishers, which need to adopt and
process metadata schemas that include references to other
research products, and make reference metadata available
in addition to product metadata [53]. Software publications
must further be considered in evaluation processes by re-
search institutions and funders, and thereby creating incen-
tives for creators and institutions to publish research soft-
ware. It will also have to be determined at which stage peer
review and editorial acceptance – including the required
curation of metadata – may be integrated. Peer review,
editorial oversight, and metadata curation for software may
be in the scope of publishers collaborating with archives.
Instead of publishing metapapers, software journals could
manage the peer review and acceptance process for a soft-
ware deposit in archives. Suitable business models for this
will have to be established, especially as software products
can usually be published in cycles much shorter than those
for papers. Another option for the curation of metadata
would be for libraries to engage and adopt this task, again in
collaboration with archives and research data management.
Suitable metadata and exchange formats exist [31], [32].

Such adequate publication practices for software may
also support the due citation of research software, which
is still not widely established [3], [18], [21], [22], [23], [24]. In
order to establish due citation of software, a culture change
needs to take place across research, which can be driven
from two directions: top-down by policy makers, institu-
tions, funders, publishers and publishing platforms which
can require the citation of software in research, and the pro-
vision of suitable metadata for software publications, and
reward it based on adapted evaluation practices; bottom-up
by educators, peer reviewers, editors, researchers, research
software engineers, etc., which educate about, insist on,
enable, and practice due citation of software and provision
of citation metadata for software.

The unique identification of software products can be
achieved through publication via archives that provide
DOIs or similar persistent identifiers. While this solves the
technical side of unique identification of software, the cul-
tural challenge, i.e., the adoption of respective publication
practices, remains to be solved as discussed above.

The unique identification of contributors and institutions

can be achieved through the use of identifiers such as
ORCID. Again, this solves the technical side, but adoption
remains a cultural challenge. This can be tackled through
encouragement, request and requirement of adoption of
identifiers from funders, publishers, and institutions, as
well as through education and exemplary practice by re-
searchers, software creators, and institutions.

While the requirements discussed above apply to all
types of research products, there are two particular aspects
of research software which further affect the instantiation of
RCGs. As mentioned in section 2, software has two states:
the static state of its source code, and the dynamic state
at runtime. While strictly speaking, the dynamic state is
irrelevant in a discussion of software citation as defined by
the software citation principles [4], there are solutions that
may enable the instantiation of RCGs constricted to a single
software at runtime. Software that documents the executed
paths taken in a complex software product to produce a re-
search outcome at runtime can potentially produce an RCG
for this execution. Duecredit [26] implements this concept
for software written in Python. It registers references for
portions of code at the module and function levels, and
can inject references for dependencies. Its output is a list of
references that represent the code that has been called dur-
ing execution. This output can potentially be transformed to
an RCG, albeit a local one which will usually contain only
first and second level references of a software, depending
on the downstream provision of the respective metadata by
dependency projects. Additionally, the manually provided
reference metadata cannot be verified.

While duecredit may not be suitable for the instantiation
of non-local, larger-scale static RCGs, it brings into focus the
fact that research software will often include dependencies
or transitive dependencies that are not research products,
and which will therefore not be published in an adequate
way, and not come with citation-relevant metadata. In
order to provide relevant context for research products,
and enable all functions of citation for research software,
these “hidden” contributions to research must be included
in RCGs. This touches, in fact, the core of the discursive
function of citation [16]. In lieu of publications, unique
identifiers, and curated metadata for non-research software,
this can be done by applying software engineering methods.
Through static code analysis using manifests, build configu-
rations, or import statements in conjunction with repository
mining methods, a dependency graph can be retrieved for a
given software, which can be transformed into a partial RCG
for research software dependencies for which no machine-
actionable metadata or unique identifiers are provided. I
will investigate this method in future research.

In summary, the feasibility of instantiating RCGs that
include research software is currently limited. This is due
to unsatisfactory software publication practices, lack of
provided correct and complete metadata, and insufficient
software citation practices induced by lack of incentive
and requirement to cite software. Solutions are being pro-
posed and developed in technology [31], [32], policy [34],
theory [4] and other areas [6]. These solutions support a
culture change towards software citation implementation.
Progress in software citation implementation will gradually
unlock applications for RCGs. I will provide an outlook on



COMPUTING IN SCIENCE AND ENGINEERING 7

exemplary applications in the following section.

4 APPLICATIONS FOR RESEARCH CITATION
GRAPHS

RCGs enable different analyses of the context of research
products (RQ4). In this section, I will outline potentially
useful analyses based on the visualization of the G3 model
for RCGs in Figure 2. The exemplary analyses also serve as
indirect evaluation of the model.

Back-tracking exploration The context of research prod-
ucts can be explored using RCGs to find out which pre-
ceding research a research product builds on. This can be
done by traversing the graph starting from p8 and following
outgoing edges of type cite. The analysis shows for example,
that the paper p8 indirectly builds on research published in
p2. The implementation of software citation solicited above
makes this insight possible, as without citation of p1 in p8,
and citation of p2 in p1, the relation between p8 and p2
would remain hidden.

Citation tracking The context of research products can
be explored using RCGs to find out which research builds
upon a given research product. This can be done, e.g., by
traversing the graph starting from a given research prod-
uct node and following incoming edges of type cite. The
analysis shows, for example, that paper p2 has been cited
by software p1, in addition to any other papers citing it
(not visualized). Again, software citation makes this insight
possible by providing not only references to software, but
also references of other products from software.

Tracking of concept citation G3-type RCGs enable cita-
tion analyses for concepts in addition to products. This can
be done by traversing the graph starting at o1, following
incoming nodes of type real to products realizing the concept
published in o1, and consecutively following outgoing cite
relations from the realizing products. Given the citation of
p4 in p1, and assuming that p6 was cited in another product
p9 (not visualized), this analysis yielded a citation count of
2 for the concept of a software which has been realized in
two implementation versions of the software.

Contribution role analysis Traversing the graph starting
from p1 and following outgoing contrib* relations allows an
analysis of how roles are distributed over contributors to a
research product. Once a sufficient model for contributions
to research has been established, this also allows for a fine-
grained evaluation of contributors with respect to their skill
sets and creditable contributions.

Self-citation analyses RCGs enable self-citation analyses
by finding nodes in A (for contributor-based analyses) or
C (for, e.g., journal-based analyses) with more than one
incoming relation of type contrib*, and looking at whether
their source nodes are connected directly with a cite relation.

Analysis of software development practices Traversing
the graph from a software product node, e.g., p6, following
incoming (or outgoing) prec relations, creates a timeline of
versions of a software. Provided the respective publication
dates deposited in the respective machine-readable meta-
data (not visualized), the common target node of the real
relations can be taken into account to analyse the software
development model employed for the implementation of

software concepts, e.g., o1. Given short timespans between
versions, for example, an agile process could be assumed.

Credit for “hidden” contributions to research Assum-
ing that p5 is a commercially-developed software which
was never intended to be published as a research product,
and given that p1 is research software, traversing the graph
from p1 following outgoing cite relations enables attribution
of and credit for the contributors to p5 (not visualized)
for their contribution to the research published as p1. One
obvious challenge here is the retrieval of complete and
correct contributor information so that contributors to p5
are correctly attributed and can receive credit.

Retrieval of transitive credit The last exemplary analysis
(Credit for “hidden” contributions to research) already hints at
the usability of RCGs for calculating fractional credit to be
recorded in transitive credit maps for a research product.
When fractional credit for a research product is not only
distributed over authors – as is currently done implicitly
through the order of authors lists for papers – but also over
contributors and cited research products, a complete credit
map for a research product is created. A credit map for a
product A also feeds into the credit map of a product B that
cites A. The main principle of transitive credit [9], [54] is
that a contributor to product A can therefore receive credit
for product B. If a fractional credit weight is determined
for all contributors and references (i.e., built-upon research
products), the credit weight for a single contributor or cited
product can be determined transitively. If a software S is
jointly developed by two people who share credit equally,
both receive .5 fractional credit of the summary credit of 1
that can be distributed for any given research product. If S
is cited in a paper P, and the fractional credit for S for its
contribution to P is weighted to .2 (of 1), each contributor to
S receives fractional credit of .1 transitively for P.

Different systems of weighting have been suggested
for fractional credit, such as contribution taxonomies [43],
[47] which could define default credit weights for different
contribution types as templates for fractional credit. The
same could be done for dependencies, which could be
assigned a fixed (small) weight template for contributions
to another software. However, this would disregard the fact
that, for example, a software A has a different weight for
a software B which provides a wrapper API for A, than
for a software C which uses a single function of A and
has a large number of additional dependencies. In future
research, I will develop a weighting system of fractional
credit for software dependencies which instead is based on
software engineering metrics such as function call frequen-
cies and complexity. In contrast to the retrieval of credit
weights for other products than software, such a system
does not rely on access to publication metadata, as it can
use software engineering artifacts such as manifests and
build configurations. It thus exploits the actual conditions
found in the software and dependencies, rather than a meta-
representation. The fractional credit weights will still need
to be registered for publications, which requires solutions to
challenges described in section 3.

Once fractional credit values are registered in metadata
for research products during publication, RCGs make it easy
to ascribe transitive credit to contributors to cited references,
including dependencies. RCGs embed dependencies on a



COMPUTING IN SCIENCE AND ENGINEERING 8

par with other research products, following the software
citation principles of “Importance” [4], while preserving
the actual reference chains between software and its de-
pendencies. In contrast, alternatives to the representation
of dependencies for credit in RCGs (cf. [55]) may obfuscate
these chains of references by citing software more granularly
from a research product, i.e., software and dependencies
are cited at one and the same depth rather than at the
depth they have in the actual dependency graph; or, they
place acknowledgable contributions outside of citations al-
together, and instead provide provenance information on
software websites for example, thereby disregarding the
“Importance” principle [24].

5 CONCLUSION

In this paper, I have introduced a directed graph model for
research citation graphs that integrates software and depen-
dencies (RQ1). This model can be used to determine require-
ments for the implementation of software citation based
on established principles [4] (RQ2). These requirements are
not currently met, and the current state of software citation
poses challenges for the instantiation of the model (RQ3).
These include: a lack of standardized publication practices
for software; insufficient metadata provision and curation
practices; a lack of incentives to cite software and give due
credit to contributors to research software; insufficient use of
unique identifiers for researchers and institutions. Some of
these challenges can be tackled with software engineering
methods and the application of good scholarly practice,
others rely on a culture change concerning the attitude to
software as a research product, and the implementation of
respective practices. Once these challenges are overcome,
research citation graphs based on the presented model
enable a number of useful applications (RQ4), such as
bibliometric and scientometric studies, analyses of software
development workflows applied in research, and transitive
credit.

ACKNOWLEDGMENTS

I would like to thank the discussion group on citation and
rewarding systems at the Workshop on Sustainable Software
Sustainability 2019 on 25 April 2019 in The Hague, Nether-
lands (www.software.ac.uk/wosss19). Discussion within
the group has helped me to better understand the context
for embedding software in the citation graph of research.
The members of this group were: Neil Chue Hong, Ger-
ard Coen, James Davenport, Leyla Garcia, Robert Haines,
Catherine Jones, Adriaan Klinkenberg, Rachael Kotarski,
Mateusz Kuzak, Brett Olivier, Esther Plomp, Shoaib Sufi,
Stephanie van de Sandt, and Bettine van Willigen. I would
also like to thank three anonymous reviewers for their very
helpful suggestions.

REFERENCES

[1] C. L. Borgman, Scholarship in the Digital Age: Information, Infrastruc-
ture, and the Internet. Cambridge, Mass: MIT Press, 2007, oCLC:
ocm76794695.

[2] C. Goble, “Better Software, Better Research,” IEEE Internet
Computing, vol. 18, no. 5, pp. 4–8, Sep. 2014. [Online]. Available:
https://doi.org/10.1109/MIC.2014.88

[3] L. Hafer and A. E. Kirkpatrick, “Assessing Open Source
Software As a Scholarly Contribution,” Commun. ACM, vol. 52,
no. 12, pp. 126–129, Dec. 2009. [Online]. Available: https:
//doi.org/10.1145/1610252.1610285

[4] A. M. Smith, D. S. Katz, K. E. Niemeyer, and FORCE11 Software
Citation Working Group, “Software citation principles,” PeerJ
Computer Science, vol. 2, no. e86, 2016. [Online]. Available:
https://doi.org/10.7717/peerj-cs.86

[5] H. Piwowar, “Altmetrics: Value all research products,” Nature,
vol. 493, pp. 159–159, Jan. 2013. [Online]. Available: https:
//doi.org/10.1038/493159a

[6] D. S. Katz, D. Bouquin, N. P. C. Hong, J. Hausman, C. Jones,
D. Chivvis, T. Clark, M. Crosas, S. Druskat, M. Fenner, T. Gillespie,
A. Gonzalez-Beltran, M. Gruenpeter, T. Habermann, R. Haines,
M. Harrison, E. Henneken, L. Hwang, M. B. Jones, A. A. Kelly,
D. N. Kennedy, K. Leinweber, F. Rios, C. B. Robinson, I. Todorov,
M. Wu, and Q. Zhang, “Software Citation Implementation
Challenges,” arXiv:1905.08674 [cs], May 2019. [Online]. Available:
https://arxiv.org/abs/1905.08674

[7] N. De Bellis, Bibliometrics and Citation Analysis: From the Science
Citation Index to Cybermetrics. Lanham, Md: Scarecrow Press, 2009,
oCLC: ocn268952958.

[8] E. Garfield, “Citation Indexes for Science: A New Dimension
in Documentation through Association of Ideas,” Science, vol.
122, no. 3159, pp. 108–111, Jul. 1955. [Online]. Available:
https://doi.org/10.1126/science.122.3159.108

[9] D. Katz, “Transitive Credit as a Means to Address Social
and Technological Concerns Stemming from Citation and
Attribution of Digital Products,” Journal of Open Research
Software, vol. 2, no. 1, p. e20, Jul. 2014. [Online]. Available:
https://doi.org/10.5334/jors.be

[10] D. Nicholas, A. Watkinson, R. Volentine, S. Allard, K. Levine,
C. Tenopir, and E. Herman, “Trust and Authority in Scholarly
Communications in the Light of the Digital Transition: Setting the
scene for a major study,” Learned Publishing, vol. 27, no. 2, pp. 121–
134, 2014. [Online]. Available: https://doi.org/10.1087/20140206

[11] S. A. Greenberg, “How citation distortions create unfounded
authority: Analysis of a citation network,” BMJ, vol. 339, p. b2680,
Jul. 2009. [Online]. Available: https://doi.org/10.1136/bmj.b2680

[12] C. Neylon and S. Wu, “Article-Level Metrics and the Evolution
of Scientific Impact,” PLOS Biology, vol. 7, no. 11, p. e1000242,
Nov. 2009. [Online]. Available: https://doi.org/10.1371/journal.
pbio.1000242

[13] E. Garfield, “Citation Analysis as a Tool in Journal Evaluation:
Journals can be ranked by frequency and impact of citations for
science policy studies,” Science, vol. 178, no. 4060, pp. 471–479,
Nov. 1972. [Online]. Available: https://doi.org/10.1126/science.
178.4060.471

[14] A. Morin, J. Urban, P. D. Adams, I. Foster, A. Sali, D. Baker,
and P. Sliz, “Shining Light into Black Boxes,” Science, vol.
336, no. 6078, pp. 159–160, Apr. 2012. [Online]. Available:
https://doi.org/10.1126/science.1218263

[15] M. Bunge, “Epistemic Change,” in Epistemology &
Methodology II: Understanding the World, ser. Treatise on
Basic Philosophy, M. Bunge, Ed. Dordrecht: Springer
Netherlands, 1983, pp. 157–193. [Online]. Available:
https://doi.org/10.1007/978-94-015-6921-7 4

[16] M. Foucault, The Archaeology of Knowledge. New York, NY:
Pantheon Books, 1982, oCLC: 254102097.

[17] A. L. Berez-Kroeker, L. Gawne, S. S. Kung, B. F. Kelly, T. Heston,
G. Holton, P. Pulsifer, D. I. Beaver, S. Chelliah, S. Dubinsky, R. P.
Meier, N. Thieberger, K. Rice, and A. C. Woodbury, “Reproducible
research in linguistics: A position statement on data citation and
attribution in our field,” Linguistics, vol. 56, no. 1, pp. 1–18, 2018.
[Online]. Available: https://doi.org/10.1515/ling-2017-0032

[18] “Giving software its due,” Nature Methods, vol. 16, no. 3, pp.
207–207, Mar. 2019. [Online]. Available: https://doi.org/10.1038/
s41592-019-0350-x

[19] H. Cousijn, A. Kenall, E. Ganley, M. Harrison, D. Kernohan,
T. Lemberger, F. Murphy, P. Polischuk, S. Taylor, M. Martone,
and T. Clark, “A data citation roadmap for scientific publishers,”
Scientific Data, vol. 5, p. 180259, Nov. 2018. [Online]. Available:
https://doi.org/10.1038/sdata.2018.259

[20] R. D. Peng, “Reproducible Research in Computational Science,”
Science, vol. 334, no. 6060, pp. 1226–1227, Dec. 2011. [Online].
Available: https://doi.org/10.1126/science.1213847

https://www.software.ac.uk/wosss19
https://doi.org/10.1109/MIC.2014.88
https://doi.org/10.1145/1610252.1610285
https://doi.org/10.1145/1610252.1610285
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.1038/493159a
https://doi.org/10.1038/493159a
https://arxiv.org/abs/1905.08674
https://doi.org/10.1126/science.122.3159.108
https://doi.org/10.5334/jors.be
https://doi.org/10.1087/20140206
https://doi.org/10.1136/bmj.b2680
https://doi.org/10.1371/journal.pbio.1000242
https://doi.org/10.1371/journal.pbio.1000242
https://doi.org/10.1126/science.178.4060.471
https://doi.org/10.1126/science.178.4060.471
https://doi.org/10.1126/science.1218263
https://doi.org/10.1007/978-94-015-6921-7_4
https://doi.org/10.1515/ling-2017-0032
https://doi.org/10.1038/s41592-019-0350-x
https://doi.org/10.1038/s41592-019-0350-x
https://doi.org/10.1038/sdata.2018.259
https://doi.org/10.1126/science.1213847


COMPUTING IN SCIENCE AND ENGINEERING 9

[21] J. Howison and J. Bullard, “Software in the scientific literature:
Problems with seeing, finding, and using software mentioned in
the biology literature,” Journal of the Association for Information
Science and Technology, vol. 67, no. 9, pp. 2137–2155, 2016. [Online].
Available: https://doi.org/10.1002/asi.23538

[22] K. Li, X. Lin, and J. Greenberg, “Software citation, reuse
and metadata considerations: An exploratory study examining
LAMMPS,” Proceedings of the Association for Information Science
and Technology, vol. 53, no. 1, pp. 1–10, 2016. [Online]. Available:
https://doi.org/10.1002/pra2.2016.14505301072

[23] K. Li, E. Yan, and Y. Feng, “How is R cited in research outputs?
Structure, impacts, and citation standard,” Journal of Informetrics,
vol. 11, no. 4, pp. 989–1002, Nov. 2017. [Online]. Available:
https://doi.org/10.1016/j.joi.2017.08.003

[24] H. Park and D. Wolfram, “Research software citation in the
Data Citation Index: Current practices and implications for
research software sharing and reuse,” Journal of Informetrics,
vol. 13, no. 2, pp. 574–582, May 2019. [Online]. Available:
https://doi.org/10.1016/j.joi.2019.03.005

[25] C. Boettiger, “Citing R packages,” Mar. 2012. [Online].
Available: http://web.archive.org/web/20190823120400/https:
//www.carlboettiger.info/2012/03/20/citing-r-packages.html

[26] Y. Halchenko, Matteo Visconti di Oleggio Castello, jason gors,
M. Szczepanik, P. R. Raamana, emirvine, C. Barnes, C. Markiewicz,
J. Wilk, O. F. Gulban, O. Beckstein, L. Estève, K. Leinweber,
and D. Völgyes, “Duecredit/duecredit 0.7.0,” Zenodo, Aug. 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.3376261

[27] GitHub, “Making Your Code Citable ·
GitHub Guides,” Oct. 2016. [Online]. Avail-
able: http://web.archive.org/web/20190823123222/https://
guides.github.com/activities/citable-code/

[28] L. Shamir, J. F. Wallin, A. Allen, B. Berriman, P. Teuben,
R. J. Nemiroff, J. Mink, R. J. Hanisch, and K. DuPrie,
“Practices in source code sharing in astrophysics,” Astronomy
and Computing, vol. 1, pp. 54–58, Feb. 2013. [Online]. Available:
https://doi.org/10.1016/j.ascom.2013.04.001

[29] S. Bönisch, M. Brickenstein, H. Chrapary, G.-M. Greuel, and
W. Sperber, “swMATH – A New Information Service for Mathe-
matical Software,” in Intelligent Computer Mathematics, ser. Lecture
Notes in Computer Science, J. Carette, D. Aspinall, C. Lange,
P. Sojka, and W. Windsteiger, Eds. Springer Berlin Heidelberg,
2013, pp. 369–373.

[30] K. C. London, S. N. D. Service, F. S. S. D. Archive,
University of Tartu, U. P. Fabra, and CentERdata, TERESAH:
Tools E-Registry for E-Social Sciences And Humanities. King’s
College London, Swedish National Data Service, Finnish
Social Science Data Archive, University of Tartu, Universitat
Pompeu Fabra and CentERdata, 2014. [Online]. Available:
https://github.com/DASISH/TERESAH

[31] S. Druskat, J. H. Spaaks, N. Chue Hong, R. Haines, and J. Baker,
“Citation File Format (CFF),” Aug. 2018. [Online]. Available:
https://doi.org/10.5281/zenodo.1003149

[32] M. B. Jones, C. Boettiger, A. C. Mayes, A. Smith, P. Slaughter,
K. Niemeyer, Y. Gil, M. Fenner, K. Nowak, M. Hahnel, L. Coy,
A. Allen, M. Crosas, A. Sands, N. C. Hong, P. Cruse, D. Katz,
and C. Goble, CodeMeta: An Exchange Schema for Software Metadata.
Version 2.0, 2017, published: KNB Data Repository. [Online].
Available: https://doi.org/10.5063/schema/codemeta-2.0

[33] T. Gomez-Diaz and T. Recio, “On the evaluation of research
software: The CDUR procedure,” F1000Research, vol. 8, p.
1353, Aug. 2019. [Online]. Available: https://doi.org/10.12688/
f1000research.19994.1

[34] D. F. (DFG), “Leitlinien zur Sicherung guter wissenschaftlicher
Praxis (Kodex) [Guidelines for Safeguarding Good Scientific
Practice (Code)],” p. 32, Aug. 2019. [Online]. Available:
http://web.archive.org/web/20190903173540/https://www.dfg.
de/download/pdf/foerderung/rechtliche rahmenbedingungen/
gute wissenschaftliche praxis/kodex gwp.pdf

[35] B. Hanson, A. Sugden, and B. Alberts, “Making Data Maximally
Available,” Science, vol. 331, no. 6018, pp. 649–649, Feb. 2011.
[Online]. Available: https://doi.org/10.1126/science.1203354

[36] Y. AlNoamany and J. A. Borghi, “Towards computational
reproducibility: Researcher perspectives on the use and sharing
of software,” PeerJ Computer Science, vol. 4, p. e163, Sep. 2018.
[Online]. Available: https://doi.org/10.7717/peerj-cs.163

[37] V. Stodden, M. McNutt, D. H. Bailey, E. Deelman, Y. Gil,
B. Hanson, M. A. Heroux, J. P. A. Ioannidis, and M. Taufer,

“Enhancing reproducibility for computational methods,” Science,
vol. 354, no. 6317, pp. 1240–1241, Dec. 2016. [Online]. Available:
https://doi.org/10.1126/science.aah6168

[38] The Yale Law School Round Table on Data and Core Sharing,
“Reproducible Research,” Computing in Science Engineering,
vol. 12, no. 5, pp. 8–13, Sep. 2010. [Online]. Available:
https://doi.org/10.1109/MCSE.2010.113

[39] L. H. Nielsen, “Zenodo now supports
DOI versioning!” May 2017. [Online]. Avail-
able: http://web.archive.org/web/20190905092756/https://
www.openaire.eu/blogs/zenodo-now-supports-doi-versioning-1

[40] W. H. K. Chun, “On Software, or the Persistence of Visual
Knowledge,” Grey Room, vol. 18, pp. 26–51, Jan. 2005. [Online].
Available: https://doi.org/10.1162/1526381043320741

[41] D. S. Katz, K. E. Niemeyer, A. M. Smith, W. L. Anderson,
C. Boettiger, K. Hinsen, R. Hooft, M. Hucka, A. Lee, F. Löffler,
T. Pollard, and F. Rios, “Software vs. data in the context of
citation,” PeerJ Inc., Tech. Rep. e2630v1, Dec. 2016. [Online].
Available: https://doi.org/10.7287/peerj.preprints.2630v1

[42] International Committee of Medical Journal Editors,
“ICMJE Recommendations: Defining the Role of
Authors and Contributors.” [Online]. Available:
http://web.archive.org/web/20190905080833/http://www.
icmje.org/recommendations/browse/roles-and-responsibilities/
defining-the-role-of-authors-and-contributors.html#two

[43] A. Brand, L. Allen, M. Altman, M. Hlava, and J. Scott, “Beyond
authorship: Attribution, contribution, collaboration, and credit,”
Learned Publishing, vol. 28, no. 2, pp. 151–155, 2015. [Online].
Available: https://doi.org/10.1087/20150211

[44] M. K. McNutt, M. Bradford, J. M. Drazen, B. Hanson,
B. Howard, K. H. Jamieson, V. Kiermer, E. Marcus, B. K. Pope,
R. Schekman, S. Swaminathan, P. J. Stang, and I. M. Verma,
“Transparency in authors’ contributions and responsibilities to
promote integrity in scientific publication,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 115, no. 11, p. 2557, Mar. 2018. [Online]. Available:
https://doi.org/10.1073/pnas.1715374115

[45] J. Cheng and J. L. C. Guo, “Activity-Based Analysis of
Open Source Software Contributors: Roles and Dynamics,”
arXiv:1903.05277 [cs], Mar. 2019. [Online]. Available: http:
//arxiv.org/abs/1903.05277

[46] E. Constantinou and G. M. Kapitsaki, “Developers Expertise and
Roles on Software Technologies,” in 2016 23rd Asia-Pacific Software
Engineering Conference (APSEC), Dec. 2016, pp. 365–368. [Online].
Available: https://doi.org/10.1109/APSEC.2016.061

[47] “Recognize all contributors.” [Online]. Available: http://web.
archive.org/web/20190906132859/https://allcontributors.org/

[48] “Contributor - schema.org.” [Online]. Avail-
able: http://web.archive.org/web/20190906141516/https://
schema.org/contributor

[49] J. Beck, “NISO Z39.96 The Journal Article Tag Suite (JATS):
What Happened to the NLM DTDs?” The Journal of Electronic
Publishing, vol. 14, no. 1, Aug. 2011. [Online]. Available:
https://doi.org/10.3998/3336451.0014.106

[50] “Journal of Open Research Software.” [Online]. Available:
http://openresearchsoftware.metajnl.com/

[51] A. M. Smith, K. E. Niemeyer, D. S. Katz, L. A. Barba,
G. Githinji, M. Gymrek, K. D. Huff, C. R. Madan, A. C.
Mayes, K. M. Moerman, P. Prins, K. Ram, A. Rokem, T. K.
Teal, R. V. Guimera, and J. T. Vanderplas, “Journal of Open
Source Software (JOSS): Design and first-year review,” PeerJ
Computer Science, vol. 4, p. e147, Feb. 2018. [Online]. Available:
https://doi.org/10.7717/peerj-cs.147

[52] J.-F. Abramatic, R. Di Cosmo, and S. Zacchiroli, “Building
the Universal Archive of Source Code,” Commun. ACM,
vol. 61, no. 10, pp. 29–31, Sep. 2018. [Online]. Available:
https://doi.org/10.1145/3183558

[53] D. Shotton, A. Dutton, S. Peroni, and T. Gray, “Setting our
bibliographic references free: Towards open citation data,” Journal
of Documentation, vol. 71, no. 2, pp. 253–277, Feb. 2015. [Online].
Available: https://doi.org/10.1108/JD-12-2013-0166

[54] D. S. Katz and A. M. Smith, “Transitive Credit and JSON-LD,”
Journal of Open Research Software, vol. 3, no. 1, p. e7, Nov. 2015.
[Online]. Available: https://doi.org/10.5334/jors.by

[55] S. Ahalt, T. Carsey, A. Couch, R. Hooper, L. Ibanez, R. Idaszak,
M. B. Jones, J. Lin, and E. Robinson, “NSF Workshop on
Supporting Scientific Discovery through Norms and Practices for

https://doi.org/10.1002/asi.23538
https://doi.org/10.1002/pra2.2016.14505301072
https://doi.org/10.1016/j.joi.2017.08.003
https://doi.org/10.1016/j.joi.2019.03.005
http://web.archive.org/web/20190823120400/https://www.carlboettiger.info/2012/03/20/citing-r-packages.html
http://web.archive.org/web/20190823120400/https://www.carlboettiger.info/2012/03/20/citing-r-packages.html
https://doi.org/10.5281/zenodo.3376261
http://web.archive.org/web/20190823123222/https://guides.github.com/activities/citable-code/
http://web.archive.org/web/20190823123222/https://guides.github.com/activities/citable-code/
https://doi.org/10.1016/j.ascom.2013.04.001
https://github.com/DASISH/TERESAH
https://doi.org/10.5281/zenodo.1003149
https://doi.org/10.5063/schema/codemeta-2.0
https://doi.org/10.12688/f1000research.19994.1
https://doi.org/10.12688/f1000research.19994.1
http://web.archive.org/web/20190903173540/https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
http://web.archive.org/web/20190903173540/https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
http://web.archive.org/web/20190903173540/https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
https://doi.org/10.1126/science.1203354
https://doi.org/10.7717/peerj-cs.163
https://doi.org/10.1126/science.aah6168
https://doi.org/10.1109/MCSE.2010.113
http://web.archive.org/web/20190905092756/https://www.openaire.eu/blogs/zenodo-now-supports-doi-versioning-1
http://web.archive.org/web/20190905092756/https://www.openaire.eu/blogs/zenodo-now-supports-doi-versioning-1
https://doi.org/10.1162/1526381043320741
https://doi.org/10.7287/peerj.preprints.2630v1
http://web.archive.org/web/20190905080833/http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html#two
http://web.archive.org/web/20190905080833/http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html#two
http://web.archive.org/web/20190905080833/http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html#two
https://doi.org/10.1087/20150211
https://doi.org/10.1073/pnas.1715374115
http://arxiv.org/abs/1903.05277
http://arxiv.org/abs/1903.05277
https://doi.org/10.1109/APSEC.2016.061
http://web.archive.org/web/20190906132859/https://allcontributors.org/
http://web.archive.org/web/20190906132859/https://allcontributors.org/
http://web.archive.org/web/20190906141516/https://schema.org/contributor
http://web.archive.org/web/20190906141516/https://schema.org/contributor
https://doi.org/10.3998/3336451.0014.106
http://openresearchsoftware.metajnl.com/
https://doi.org/10.7717/peerj-cs.147
https://doi.org/10.1145/3183558
https://doi.org/10.1108/JD-12-2013-0166
https://doi.org/10.5334/jors.by


COMPUTING IN SCIENCE AND ENGINEERING 10

Software and Data Citation and Attribution,” Tech. Rep. [Online].
Available: http://web.archive.org/web/20190911211016/https:
//softwaredatacitation.renci.org/Workshop%20Report/
SoftwareDataCitation workshop report 2015 April 20 with
logo.pdf

Stephan Druskat holds an MA in English, Mod-
ern German Literature and Linguistics from the
Free University of Berlin, Germany. He is a Re-
search Software Engineer, working in linguistics,
and a PhD candidate in Software Engineering
at the German Aerospace Center (DLR) and
the Computer Science Department at Humboldt-
Universitt zu Berlin in Berlin, Germany. In his
work, he focuses on research software sustain-
ability and software citation. He is a Special Col-
laborator of the Software Sustainability Institute

(UK), and a board member of de-RSE e.V. - Society for Research
Software (Germany).

http://web.archive.org/web/20190911211016/https://softwaredatacitation.renci.org/Workshop%20Report/SoftwareDataCitation_workshop_report_2015_April_20_with_logo.pdf
http://web.archive.org/web/20190911211016/https://softwaredatacitation.renci.org/Workshop%20Report/SoftwareDataCitation_workshop_report_2015_April_20_with_logo.pdf
http://web.archive.org/web/20190911211016/https://softwaredatacitation.renci.org/Workshop%20Report/SoftwareDataCitation_workshop_report_2015_April_20_with_logo.pdf
http://web.archive.org/web/20190911211016/https://softwaredatacitation.renci.org/Workshop%20Report/SoftwareDataCitation_workshop_report_2015_April_20_with_logo.pdf

	Introduction
	Research citation graphs
	Challenges for the instantiation of RCGs
	Applications for research citation graphs
	Conclusion
	References
	Biographies
	Stephan Druskat


