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Scientific data have traditionally been distributed via downloads from data server
to local computer. This way of working suffers from limitations as scientific
datasets grow toward the petabyte scale. A “cloud-native data repository,” as
defined in this article, offers several advantages over traditional data repositories—
performance, reliability, cost-effectiveness, collaboration, reproducibility, creativity,
downstream impacts, and access and inclusion. These objectives motivate a set of
best practices for cloud-native data repositories: analysis-ready data, cloud-
optimized (ARCO) formats, and loose coupling with data-proximate computing. The
Pangeo Project has developed a prototype implementation of these principles by
using open-source scientific Python tools. By providing an ARCO data catalog
together with on-demand, scalable distributed computing, Pangeo enables users to
process big data at rates exceeding 10 GB/s. Several challenges must be resolved in
order to realize cloud computing’s full potential for scientific research, such as
organizing funding, training users, and enforcing data privacy requirements.

Contemporary science abounds with large,
complex datasets used by many researchers.
For example, thousands of climate scientists

do research using the same multipetabyte Climate
Model Intercomparison Project (CMIP) simulation
datasets.1 The Human Cell Atlas and the Sloan Digital
Sky Survey play similar roles in biology and astronomy,
respectively. These datasets offer exciting potential
for new discoveries on important scientific problems
and also represent an ideal target for exploitation by
emerging machine-learning approaches. The science

community’s approach to infrastructure, however,
may be holding us back from realizing this potential.

Traditionally, scientific data have been distributed
via a “download model,” wherein scientists download
individual data files to local computers for analysis.
This model requires that datasets be relatively small,
or that users only want to look at a small piece of a
larger dataset. But many of the most exciting scientific
problems involve looking at the entirety of very large
datasets in order to identify universal patterns and
answer grand challenges. The download model poses
several challenges for this mode of analysis. After
downloading many files, scientists typically have to do
extensive processing and organizing to make them
useful for the data analysis; this creates a barrier to
reproducibility, since a scientist’s analysis code must
account for this unique “local” organization. Further-
more, the sheer size of the datasets (many terabytes
to petabytes) can make downloading effectively
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impossible. Analysis of such data volumes also can
benefit from parallel / distributed computing, which is
not always readily available on local computers.
Finally, this model reinforces inequality between privi-
leged institutions that have the resources to host
local copies of the data and those that don’t. This
restricts who can participate in science.

Cloud computing, with its ability to place large
datasets and massive computational resources in
close proximity, seems to offer an ideal solution to
these problems. However, there are many different
possible ways to organize and structure cloud com-
puting for data-driven science. Proprietary platforms,
like Google Earth Engine,2 are one-stop-shop solutions
that provide both data and computing. They are pow-
erful but generally controlled by a single company,
with limited flexibility and modularity. In contrast,
open architectures assume data will be distributed
over the Internet and seek interoperability between
different data catalogs and computational tools.3 We
contend that open architectures are the best path for-
ward for big-data scientific infrastructure.

Cloud-based science platforms built on open archi-
tecture require many elements: software for interactive
data analysis, machine learning, and visualization; elas-
tically scaled computing resources; and access to
data—not to mention examples and documentation,
and resources for maintenance. As with any good sys-
tem architecture, these components should be asmod-
ular as possible. While cloud computing frameworks
are fairly well established, we feel that the data compo-
nent is a missing link which is holding back adoption of
cloud computing inmultiple scientific domains.

In this article, we attempt to define a cloud-native
data repository and explain how it is different from a
traditional data repository. We put forward a set of
objectives motivating the need for such repositories
and outline an opinionated set of best practices for
implementing cloud-native data repositories. We then
describe a specific implementation by the Pangeo
Project and conclude by enumerating some future
challenges for building and maintaining cloud-native
data repositories.

RELATEDWORK
Most related work on this topic has focused on data-
proximate computing tightly coupled to data. Google
Earth Engine was a pioneering effort in the field of
geospatial analytics and remains a highly influential
product in this space.2 SciServer is a popular general-
purpose data-proximate computing environment, and
its deployment at Johns Hopkins provides large

datasets from astronomy, cosmology, turbulence,
genomics, and oceanography, together with a range of
computing tools.4 Also relevant are so-called “analyti-
cal databases”—tools that enable users to run com-
plex server-side queries on multidimensional array
datasets. Prominent examples include SciDB5 and
Rasdaman.6 These tools are powerful and effective;
however, they suffer from a structural problem: the
same provider is responsible for both data and com-
puting. Our approach is somewhat unique in that we
argue for decoupling of data storage from the comput-
ing platform, but without sacrificing performance.

OBJECTIVES FOR CLOUD-NATIVE
DATA REPOSITORIES

Cloud-native data repositories offer many advantages
over the download model. Here, we enumerate the
objectives that motivate the need for such reposito-
ries. These objectives inform the best practices of the
next section.

Performance: The initial motivation for moving analy-
sis to the cloud is often to overcomeperformance bottle-
necks associated with a local computing environment.
These bottlenecks can be in the form of storage (limited
disk space), I/O throughput, network bandwidth, and
CPU, all of which can limit the speed of data analysis.
Cloud computing offers the opportunity to scale resour-
ces to overcome performance bottlenecks, and cloud-
native data repositories should first-and-foremost aim to
enable high-performance data analysis.

Reliability: Traditional methods of data access
often rely on custom servers that must be maintained
by data providers and can crash under heavy loads.
Cloud-native data repositories should shift the reliabil-
ity burden to the cloud provider and take advantage
of industry-driven innovation in this area.

Cost-Effectiveness: A clear cost inefficiency in the
status-quo download model is that the same datasets
are stored many times over on local hard drives. How-
ever, the personal computers used to analyze them
are likely only active for a small fraction of the day;
when they are active, they suffer from the perfor-
mance limitations described above. Cloud-native data
repositories should overcome these inefficiencies by
storing only one copy of the data, where it is accessi-
ble to on-demand, elastically scaled computing. Sys-
tem architecture should also make it possible for
different entities to shoulder costs of data and com-
puting respectively.

Collaboration: One limitation for collaborative data
science workflows on personal computers is the
dependence on the local filesytem paths for data
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access. This dependence creates friction when collab-
orators attempt to exchange code and find that they
do not have the same data or have organized their
files differently. Cloud data generally uses a global
namespace (absolute URLs with https:// or s3:// pre-
fix), which renders analysis code portable. As a result,
cloud-native data repositories should enable scien-
tists to share functional code snippets, creating a
faster and more fluid collaboration workflow.

Reproducibility: Reproducibility of data science
projects requires open access to at least three ele-
ments: the code, the software environment, and the
data. Local-filesystem data dependencies therefore
also limit reproducibility, in the same way they limit
collaboration. Cloud-native data repositories should
complement reproducibility tools like Binder (https://
mybinder.readthedocs.io/), which provides cloud-
based code execution in a user-specified environment,
allowing for compute-proximate data access.

Creativity: The download model limits scientists’
creativity by locking them in to working with the data
they have already downloaded and cleaned. In con-
trast, cloud-native data repositories should enable sci-
entists to quickly pivot to new datasets as their work
evolves organically.

Downstream Impacts:Many data providers, partic-
ularly in geospatial fields, are eager to help businesses
leverage their data for economic gain. Modern tech-
nology companies, particularly startups, overwhelm-
ingly use cloud computing to deploy their products.
Cloud-native data repositories should enable and
encourage a downstream ecosystem of commercial
exploitation.

Access & Inclusion: The download model presumes
that scientists have funding and infrastructure at their
institutions to purchase powerful personal worksta-
tions and disk drives, plus sufficient bandwidth to
download big datasets. This is not the case in many
countries in the developing world, or even within parts
of the United States in historically excluded communi-
ties. Cloud-native data repositories should help
reduce these inequities by shifting the infrastructure
burden to the cloud, where costs can be borne by cen-
tralized data and infrastructure providers.

Some of these objectives can be realized by mov-
ing analysis to traditional high-performance-comput-
ing (HPC) platforms, such as the supercomputers
sponsored by NSF’s XSEDE program. HPC can
undoubtedly achieve excellent performance for data-
intensive workflows, and many HPC centers host vast
volumes of scientific data precisely for this purpose.
However, because access to HPC systems is heavily
limited, the more social objectives on our list

(collaboration, reproducibility, downstream impacts,
access & inclusion) remain harder to realize in an HPC
environment. In this article we focus on public clouds,
while recognizing that HPC will remain an important
tool for many data-intensive applications. HPC cen-
ters are also increasingly adopting cloud-style technol-
ogies, so this distinction will likely blur in the future.

BEST PRACTICES
Motivated by the above objectives, in this section we
put forth some best practices for cloud-native scien-
tific data repositories. These practices are informed
by several years of experimentation and development,
drawn from our experience in data-intensive scientific
fields, including Earth-system science, neuroscience,
and astronomy.

FAIR Data
The starting point for cloud-native data repositories is
the widely lauded FAIR Principles: data should be Find-
able, Accessible, Interoperable, and Reuseable.7 Adop-
tion of these principles is growing within many
scientific fields. Cloud-native repositories should build
on these successful principles by providing persistent
identifiers, rich metadata, machine-readable catalogs
and metadata, and standards-compliant formats and
protocols. At the same time, the motivations for mov-
ing to cloud computing pose some challenges to the
FAIR lexicon. How do you make a petabyte of data
“accessible?” Answering this question requires going
beyond the FAIR framework and considering the full
scientific workflow.

Analysis-Ready Data
We like to imagine that a scientist’s job is to conceive
newhypotheses, design instruments, buildmodels, ana-
lyze and visualize data in interesting ways, contemplate
results deeply, draw conclusions, and communicate
findings. The reality is that many data-driven scientific
disciplines are bogged down with the work of data
downloading, cleaning, and preparation. This is a form
of scientific toil, defined here as work that is “manual,
repetitive, automatable” (from https://landing.google.
com/sre/sre-book/chapters/eliminating-toil/). The out-
come of this effort is analysis-ready data (ARD), which
is ready for immediate exploration, visualization, and
analysis. These ARDs are extremely valuable when
shared openly, acting to accelerate research. The term
ARD was coined in reference to geospatial imagery,8

where making data ready for analysis means acquiring
a stack of images from a specific location, aligning
them precisely at a pixel level, and performing various
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corrections to account for atmospheric distortion. We
find that the concept of ARD generalizes well to many
different fields; computational oceanographers, astron-
omers, and genomicists all have similar problems wran-
gling data. While the details of ARD production vary, the
existence of this toil, and the resulting drain on scien-
tists’ productivity is ubiquitous.

Traditionally, the toil of producing ARD has
occurred in the margins of science, rarely acknowl-
edged or described in publications but nevertheless a
vital step in many workflows. ARD production has not
been an area for collaboration; rather, it is a private
activity, undertaken on a one-off basis for each proj-
ect. As such, this effort is repeated every time the
data are used, rather than once when it is generated.
However, as data volumes grow into the “big data”
regime (many terabytes to petabytes), the task of cre-
ating ARD becomes increasingly onerous. We recom-
mend that cloud-native repositories seek to publish
ARD. Doing so requires working closely with scientists
from the community, who understand how to create
ARD for their discipline. Publishing ARD does not
mean abandoning the raw, primary data; instead the
provenance chain between primary data and ARD
must be carefully documented.

A key general attribute of ARD is a focus on mean-
ingful, complete datasets, rather than individual data

files (a.k.a. “granules”). This lightens the cognitive load
for the data user. With ARD, scientists should be able
to “open” a complete dataset which contains the full
range of data needed for their analysis, rather than
manually looping over many files. There are many
ways to achieve this goal from a technical standpoint.
For example, many files can be preconcatenated into
a single massive file; however, such files can be cum-
bersome to move around. A more scalable approach
involves tighter integration between software and
data, allowing many individual files to be addressed as
a single virtual object. Many modern data analysis
tools implement such functionality; in the following
section, we will describe a specific Python implemen-
tation in detail.

An example display of ARD is shown in Figure 1.

Cloud-Optimized Data
The single greatest technical difference between local
and cloud-based data environments is the reliance on
object storage. Personal computers and HPC systems
use POSIX filesystems to store data, and the expecta-
tion that data will be accessed via filesystem calls is
often baked in to analysis software. In contrast, all
modern public cloud platforms provide an object stor-
age service as the cheapest and most scalable way

FIGURE 1. Example of ARD from the Pangeo Data Catalog. The high-level data model and rich visual presentation of the dataset

are provided by Xarray. Under the hood, the data are stored in the Zarr format in cloud object storage. Use of the Dask frame-

work allows for “lazy loading,” meaning that we can view a very large dataset without loading it into memory. From https://

catalog.pangeo.io/browse/master/ocean/sea_surface_height/.
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to store massive amounts of data (for example,
Amazon S3, Google Cloud Storage [GCS], and Azure
Blob Storage). With object storage, data are read and
written via HTTP calls. While cloud computing environ-
ments can certainly be configured with local hard
disks, we argue that the objectives of performance,
cost-effectiveness, and reproducibility can only truly
be achieved when data access bypasses the filesys-
tem and goes straight for the object store.

One approach to the data access problem is to fool
the analysis environment into thinking that it is dealing
with files, when in fact it is dealing with object storage.
This trick can be played at the operating system level,
by using Filesystem in Userspace (FUSE), or at the
application level, e.g., by creating compatibility layers
that wrap object storage with filesystem-friendly App-
lication Programming Interface (APIs; e.g., fsspec
https://filesystem-spec.readthedocs.io/en/latest/). In
our experience, such approaches may work but usually
fail to achieve optimal performance, due to both the
added complexity and the reliance on legacy, non-
cloud-optimized file formats.

To understand why, it is crucial to recognize that
local filesystems and object storage have very differ-
ent performance characteristics. Local disks and file-
systems offer low latency (in the order of
milliseconds), but their throughput is limited by the
physics of the device: roughly 100 MB/s for HDDs and
500 MB/s for SSDs. Because object storage services
rely on HTTP calls, latency is relatively high (100 ms or
more), but because they allow efficient parallel access,
the throughput on large cloud platforms is essentially
unlimited when coupled with distributed computing.
(Experiments using the PyWren (http://pywren.io/) dis-
tributed serverless computing framework reported
read/write throughputs in excess of 50 GB/s on S3.9)

While in principle the access protocol is indepen-
dent of the file format itself, in practice, scientific data
formats, and accompanying access libraries, often
assume a certain access protocol. Many prevalent sci-
entific data formats were developed only with POSIX
filesystem access in mind, before object storage was
prevalent. Examples include the popular Hierarchical
Data Format 5 (HDF5) format as well as domain-spe-
cific formats like Network Common Data Form
(NetCDF; geoscience), Flexible Image Transport Sys-
tem (FITS; astronomy), and ROOT (high-energy phys-
ics). Many of these formats, and their accompanying
access libraries perform numerous small seek/read
operations when opening files and reading data.
Therefore, even if the application can be tricked into
thinking that it is accessing a filesystem when really it
is talking to object storage, the accrued latency

associated with these operations translates into very
slow performance. Mitigating these challenges may
require substantial refactoring of the access libraries,
and this work is underway in several communities.

However, an attractive alternative to refactoring
legacy data formats is to adopt more modern cloud-
optimized formats that were designed from inception
for use with object storage. Example cloud-optimized
formats include AVRO, ORC, and Parquet for tabular
data and TileDB Embedded and Zarr for multidimen-
sional array data. Cloud-optimized GeoTIFF is a popu-
lar solution for geospatial raster data, which extends a
popular format with cloud-friendly features. These for-
mats all share certain fundamental characteristics.

1) The metadata describing structure and content
can be read quickly, allowing client-side code to
construct virtual representations of large, com-
plex datasets.

2) Data can be read using the HTTP protocol, with-
out the assumption of filesystem paths.

3) Data are organized in internal groupings (e.g.,
shards/chunks/tiles) that allow for efficient sub-
setting and distributed processing.

Combining cloud-optimized formats with object
storage essentially transforms the object storage ser-
vice into a high-performance REST API for data
access, but without the burden of operating any addi-
tional infrastructure. Cloud-optimized formats are
thus essential to achieve performance and cost-effec-
tiveness. Taking full advantage of chunked data for-
mats also requires cooperation from the analysis
software, and indeed many distributed computing
frameworks couple well with cloud-optimized formats.

As much as practical, we recommend that cloud-
native data repositories adopt cloud-optimized for-
mats. This may require transforming legacy formats
upon ingestion. This activity can often be coupled
with the process of making data analysis-ready, result-
ing in analysis-ready, cloud-optimized (ARCO) data.
ARCO data are the gold standard of cloud-native data
repositories. However, such transcoding can be
expensive, time consuming, and fragile; the open
question of how to best serve legacy formats from
cloud-native repositories is taken up later in the sec-
tion on future challenges.

Data-Proximate Computing
With traditional data repositories, users bring the data
to their computer (the download model). In cloud-
native data repositories, users bring their computing
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to the data; this is called data-proximate computing.10

In contrast to the vertically integrated proprietary
cloud platforms for data analysis, open-access cloud-
native data repositories should not be coupled directly
to a specific computing solution; instead they should
seek maximum interoperability with a federation of
computing services and access paradigms. This will
foster an organic and evolving ecosystem between
data providers and consumers. Below we enumerate a
few specific data-proximate computing approaches
to consider.

Interactive computing is an essential element of
modern data science. Interactive computing allows a
data scientist to explore complex datasets, test ideas,
receive visual feedback in the form of figures, and iter-
ate rapidly to refine their analysis. Effective interactive
computing requires a rich, dynamic user interface,
which is easy to achieve in a local environment but
more difficult with remote (e.g., cloud-based) comput-
ing systems. The Jupyter project has emerged as a
leading tool for interactive computing in recent
years,11 allowing users to interact with remote systems
through a web browser. Jupyter in the cloud pairs very
well with cloud-native data repositories as a solution
for interactive, data-proximate computing. Many cloud
platforms and third-party service providers offer man-
aged Jupyter hosting. The Jupyter project also pro-
vides a comprehensive recipe for deploying your own
cloud-based Jupyter Hub environment (https://zero-
to-jupyterhub.readthedocs.io/). RStudio Server pro-
vides a comparable experience for R users.

Cloud-based Jupyter/RStudio environments run
inside virtual machines that can be customized with
different levels of computing resources (RAM, CPUs,
GPUs) depending on the nature of the analysis and
data. However, for truly big data, the cloud offers the
opportunity to provision large numbers of compute
nodes for a very short time for parallel distributed
computing. Coupled with “spot pricing” (discounts for
preemptable nodes), this creates a cost-effective way
to process huge volumes of data. Popular distributed
computing frameworks that can be deployed in the
cloud include Hadoop, Spark, Dask, and Ray. Server-
less computing (e.g., Amazon Web Services [AWS]
Lambda) offers an even more scalable solution for dis-
tributed processing.9 Cloud-native data repositories
should seek to make their data accessible to and per-
formant with these frameworks, which is mostly
achieved by adopting cloud-optimized formats.

A final important application for cloud-native data
repositories is training machine learning models.
Machine learning, and deep learning in particular, ben-
efit from very large, clean, homogeneous datasets on

which to train their models—precisely the sorts of
datasets that cloud-native data repositories will be
providing. Cloud computing environments can provide
the sorts of specialized hardware (e.g., GPUs, TPUs)
that high-performance machine learning requires, and
frameworks such as Kubeflow or Dask-ML can help
coordinate complex machine learning experiments in
the cloud. Cloud-native data repositories should strive
to support machine learning applications such as
these through high-throughput data access.

Data-proximate computing should ideally be
deployed in the same cloud region as the data
itself, as this will maximize performance and elimi-
nate network egress charges. However, budgets
permitting, cloud-native data repositories should
also enable their data to be accessed openly over
the internet, enabling multicloud workflows and
integration with on-premises computing. A key
point is that, while making their data accessible to
data-proximate computing, the data provider itself
need not shoulder the computing costs; these costs
can be born by individual research groups, private
companies, or research funding agencies.

Open-Source and Portability
Beyond the technical best practices described above,
we also encourage cloud-native data repositories to
employ open-source software in a way that renders
their underlying data and software portable across
cloud platforms. Open-source software facilitates
maximum transparency and reproducibility, increasing
trust in a system. Particularly for publicly funded proj-
ects, releasing open-source software also enables the
broadest possible access and impact by permitting
others to reuse and adapt the tool; for this reason,
many funding agencies now encourage or require
open-source development. However, the definition of
open-source can become ambiguous for infrastruc-
ture deployed in the cloud, since commercial cloud
providers rely on many custom, proprietary tools to
operate their cloud platforms.

To resolve this dilemma, we cite the open-source
cloud user’s “bill of rights,” defined concisely by Yuvi
Panda, core developer of the Jupyter project (https://
words.yuvi.in/post/oss-in-the-cloud/). Operators of
open cloud architecture should be able to

1) run their software on any cloud provider they
choose to

2) run their software on a bunch of computers they
physically own, with the help of other open-
source software only.
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Adopting these principles canmitigate amajor con-
cern for institutions seeking to migrate their data infra-
structure to the cloud: the fear of lock-in to a specific
cloud provider. These principles constrain architectural
choices. For example, the principles dictate that an
open cloud-native data repository should probably not
use a tool like Google BigQuery as its primary mecha-
nism for storing data, since BigQuery is only available
in Google Cloud Platform (GCP). In contrast, a data
repository built around a generic object storage service
is transferable to virtually any cloud provider.

IMPLEMENTATION BY PANGEO
The Pangeo Project (https://pangeo.io/) is a commu-
nity organization aimed at advancing open-source
software and infrastructure for the analysis of large,
complex Earth system data. While initially focused on
HPC environments, the Pangeo Project received NSF
support for credits in GCP in 2017 and began deploying
data analysis environments in the cloud. The best
practices defined above emerged from that effort.
Here, we summarize our implementation of those
practices achieved by integrating different open-
source software tools from the scientific Python eco-
system. We emphasize that the best practices are
general and could be implemented in many different
ways; the cloud-based genomics community uses a
very different technology stack but follows broadly
similar architectural principles.12

Architecture
The Pangeo Cloud Data Catalog consists of ARCO
datasets stored in the Zarr format. These datasets are
multidimensional arrays, originating from satellite
observations and numerical simulations, which con-
form to the NetCDF data model and the climate-fore-
cast (CF) metadata conventions. The Zarr datasets
are produced by aggregating many individual NetCDF
files (e.g., all the temporal granules from a satellite
product), setting an appropriate chunk size (approxi-
mately 100 MB), and writing the data to Zarr format
directly to GCS in the US-CENTRAL region.

The majority of these datasets are cataloged with
the Intake Python library (https://intake.readthedocs.
io/) using Intake’s YAML catalog format. These catalogs
are stored in a GitHub repository (https://github.com/
pangeo-data/pangeo-datastore), which uses continu-
ous integration to validate new catalog entries. The
Intake catalog can be used directly by Python users to
interactively browse, search, and open datasets. It is
also used to power a Flask-based web application that
allows for browsing of the catalog via a public website

(https://catalog.pangeo.io/). The data and catalogs are
all public, allowing anyone to deploy data-proximate
computing; however the “requester pays” setting is
enabled. This requires users to pay the egress charges
associated with transferring data out of the cloud
region. (There are no egress fees for in-region access.)

The Pangeo Project also operates a data-proximate
computing service, called Pangeo Cloud, for about 100
scientists. This service, described at https://pangeo.io/
cloud.html, is deployed on both GCP and AWS. All com-
puting services are managed within Kubernetes clus-
ters, which are configured to scale capacity elastically
up and down depending on system usage. The infra-
structure is based on JupyterHub, and users connect
via their web browser. After authentication (via GitHub),
the JupyterHub service spawns a Jupyter server for
each user, providing a private, interactive Python com-
puting environments preloaded with commonly used
packages for data access, analysis, and visualization.
The user can choose different levels of computing
resources (RAM, CPU) depending on their needs.

Users interact with the Data Catalog using the
Intake library. Most of the datasets are optimized to be
opened and analyzed with Xarray, a Python library that
provides a high-level data model and computational
API for working with labeledmultidimensional datasets.
Xarray supports “lazy” operations, in which data are not
actually loaded from the storage device until explicitly
required for computation and visualization. Xarray inte-
grates closely with Dask to enable automatic paralleli-
zation of analysis operations. Interactive visualization
of Big Data is enabled by the HoloViz (formerly PyViz)
tools, which allow dynamic re-rendering on zoom.13

To facilitate distributed computing, Pangeo Cloud
also includes a deployment of Dask Gateway (https://
gateway.dask.org/), a secure, multitenant server for
managing Dask clusters. Users can provision personal
Dask clusters, which can be used to parallelize proc-
essing of data. Pangeo workloads tend to be heavily I/
O bound, and this parallelization enables users to take
advantage of the high throughput of cloud object stor-
age; each worker pulls its data directly from object
storage, with Zarr chunks providing a natural unit of
parallelization. The various components of this config-
uration are illustrated in Figure 2. Typically users will
scale up a Dask cluster, perform a reduction operation
(e.g., mean or standard deviation) on a large dataset,
and then switch to local analysis mode for the final
visualization and interpretation steps.

Measuring Data Throughput
A central motivation for creating cloud-native data
repositories is the desire to overcome the performance
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limitations of the download model. In Pangeo Cloud,
data are not downloaded but rather streamed directly
from object storage to compute nodes within the same
cloud region. To quantify the speedup this architecture
provides, in Figure 3 we show results from a bench-
marking exercise, adopted from https://github.com/
earthcube2020/ec20_abernathey_etal. We measured
the rate, in MB/s, at which data can be transferred
from storage services to the Dask compute cluster, as

a function of the number of distributed read processes.
All benchmarking was performed in the GCP US-CEN-
TRAL1 region. We compared fourmodes of data access.

1) Loading data from an ESGF Open-source Project
for a Network Data Access Protocol (OPeNDAP)
server. OPeNDAP is a mature and widely used
data exchange API in the geosciences.14 How-
ever, this is not a cloud-based service, so it
serves as a baseline against which to compare
newer technologies.

2) NetCDF-4 (HDF5) files placed directly in Cloud
Object Storage. This option is useful to quantify
how a legacy format performs in the cloud.

3) Zarr stored in GCS.
4) Zarr stored in the Open Storage Network (OSN)

S3-compatible object storage service.

First we note that the OPeNDAP server was both
the slowest and the least scalable, saturating through-
put at just over 100 MB/s. This is unsurprising, given
the fact that the OPeNDAP service is likely backed by
a single server and fixed network pipe. The fastest
throughputs were obtained with the cloud-optimized
format Zarr on OSN and GCS, both achieving through-
puts in excess of 1 GB/s. Interestingly, for modest lev-
els of parallelism (< 50 cores), OSN was actually
faster than GCS, despite the data living outside of
GCP. However, OSN eventually saturated, while GCS
continued to scale, albeit at a slower rate, as more
nodes were added. The legacy format (NetCDF-4/
HDF5) on object storage also displayed decent scaling
within the measured range, but overall speeds were

FIGURE 2. Pangeo architecture diagram. The data repository is hosted in cloud object storage (left), in the Zarr format. Compute

nodes inside a Kubernetes cluster (right) fetch data and metadata from the object store. Users connect to the system via

Jupyter and write interactive data analysis code in Xarray, which dispatches computations on an adaptively scaling Dask cluster.

FIGURE 3. Read throughput of different data access meth-

ods. Source data available at https://zenodo.org/record/

3,829,032. Code available at http://gallery.pangeo.io/repos/

earthcube2020/ec20_abernathey_etal/cloud_storage.html.
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an order of magnitude slower than Zarr. This highlights
the value of cloud-optimized formats when working
with object storage.

Overall, these results show howPangeo’s implemen-
tation of a cloud-native data repository and data-proxi-
mate computing has the potential to process data at
much faster rates than workflows confined to personal
computers. The fastest SSDs on personal computers
can deliver throughputs of around 500 MB/s. With a
modest number of distributed compute nodes, Pangeo
Cloud users can process data at many GB/s. Moreover,
with this approach, no data need be downloaded and
only one copy of the data need be stored.

CONCLUSIONS AND FUTURE
CHALLENGES

The success of cloud public dataset programs, and the
potential of nascent efforts such as Pangeo’s cloud data
library, shows that cloud-native data repositories can be
a viable path forward to help data-intensive scientific
fields overcome current infrastructure challenges.
Cloud-native scientific platforms require both ARCO
data as well as scalable data-proximate computing.
However, one service provider need not be responsible
for both. We argue for decoupling the storage of ARCO
data from the data-proximate computing components.
These services should be interoperable yet independent.

Despite the potential of cloud-native data reposito-
ries to accelerate scientific discovery, we see several
challenges that will limit their adoption in the near
future. A central challenge is funding. Academic
research institutions and funding systems are not
accustomed to paying for cloud computing. Structural
factors, such as indirect cost policies and the three-year
grant funding cycle, favor capital expenditure for equip-
ment over the operational expenditure of cloud comput-
ing. Moreover, the potential cost savings associated
with cloud-native repositories—namely, the elimination
of duplicate local copies of big datasets and associated
local computing resources—can only be realized by
aggregating over many research groups. The process of
moving to the cloud-native model can therefore be
thought of as a phase transition to a lower cost, higher
productivity state for an entire field. Overcoming the
activation energy to catalyze this phase transition, how-
ever, may require substantial long-term investments
and encouragement from funding agencies. We believe
that the separation of concerns between cloud-native
data repositories and data-proximate computing serv-
iceswill help simplify this transition.

Another challenge is user education and training.
A truly cloud-native data science workflow will not

look exactly like a local one. While novices can learn
cloud-native practices from the beginning of their
training, more experienced users will have to unlearn
certain familiar patterns, such as reliance on local file-
system paths for data storage. Distributed computing
tools like Dask can be extremely powerful, but effi-
cient use of these tools requires learning new con-
cepts. Even experienced HPC users, accustomed to
working with parallel processing, may feel confused by
the cloud-native concepts of elastic scaling and serv-
erless computing. Likewise, university and lab IT staff
are relatively unfamiliar with the administration and
management of cloud computing (in comparison to
running local servers), and this too requires new train-
ing. Coordinated efforts are required to address these
educational needs in order to realize the potential of
cloud computing for science.

Finally, cloud-native data repositories will have to
contend with special challenges around data access
and privacy. It is perhaps unsurprising that fields like
climate science and astronomy have been early adopt-
ers of cloud-based data sharing; the data in these
fields are mostly open access and without privacy
restrictions. Therefore, data can simply be made pub-
lic and open to all. Without flexible open tools for
access control management of cloud-based data,
fields with strong privacy concerns will likely be driven
toward proprietary, vertically integrated solutions that
are not modular or portable. While cloud providers
have powerful permissions functionality, some techni-
cal development (and commensurate agency funding)
will be required to extend the approaches described
here for managing access to less open datasets.

Despite these challenges, we remain very enthu-
siastic about the potential of cloud computing to
transform scientific research in data-intensive fields.
We hope that, by helping to define best practices for
cloud-native data repositories, we have made a small
contribution toward building the infrastructure we
need to tackle the some of the great scientific chal-
lenges of the future.
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