
THEME ARTICLE: SCIENTIFIC COMPUTINGWITH PYTHON
ONHIGH-PERFORMANCE HETEROGENEOUS SYSTEMS

Stencil Solvers for PDEs on GPUs:
An Example From Cosmology
Zachary J. Weiner , University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA

The increasingly diverse ecosystem of high-performance architectures and
programming models presents a mounting challenge for programmers seeking to
accelerate scientific computing applications. Code generation offers a promising
solution, transforming a simple and general representation of computations into
lower level, hardware-specialized and -optimized code. We describe the philosophy
set forth by the Python package Pystella, a high-performance framework built upon
such tools to solve partial differential equations on structured grids. A hierarchy of
abstractions provides increasingly expressive interfaces for specifying physical
systems and algorithms. We present an example application from cosmology,
using finite-difference methods to solve coupled hyperbolic partial differential
equations on (multiple) GPUs. Such an approach may enable a broad range of
domain scientists to make efficient use of increasingly heterogeneous
computational resources while mitigating the drastic effort and expertise
nominally required to do so.

The rapidly evolving and diversifying landscape
of high performance computing poses a tension
between developer productivity and machine

efficiency. This tradeoff can be burdensome for
domain scientists, who are often accustomed to
single-source programs that function over (many) gen-
erations of computing hardware, but who also increas-
ingly require the capabilities of cutting-edge machines
to meet their science goals.

Achieving near-peak efficiency on GPUs, whose
massive parallelism targets high-throughput workloads,
requires (at some level) a programming model that
maps transparently to the underlying hardware. Even if
one is willing to exclude CPUs as a target architecture,
programming at this low level is inherently fragmented
based on the details of the device at hand. Among NVI-
DIAs offerings alone, four generations of “datacenter-
class” GPUs still see active use in HPC facilities. The
adoption of AMD’s and Intel’s accelerators by several

of the U.S. Department of Energy’s next generation of
supercomputers portends an ecosystem further strati-
fied by vendor-specific programming paradigms.

The challenge to produce a correct implementation
of a desired mathematical computation is exacerbated
by also seeking optimal performance, even on a single
architecture. An ideal programming system would real-
ize a “separation of concerns” that compartmentalizes
the expression of the intended computation and
the hardware-specific parallelization strategy while
guaranteeing that the latter does not affect the cor-
rectness of the former. This is the approach of Loopy,1

a Python package upon which the present work is
based. Namely, Loopy parses a minimal representation
of a set of computations, or “kernel,” and provides a
number of methods to programmatically transform
that kernel into a parallelized, optimized form.

While such a framework of code transformation
and generation dramatically eases the development
process for GPU programs, a user must still have
some degree of expertise to know which transforma-
tions yield performant code—of course, an interpreted
runtime such as Python provides a pleasant environ-
ment in which to experiment with and benchmark dif-
ferent strategies. Specifying a problem domain,
however, often permits a number of assumptions
about the relevant computational patterns that

This work is licensed under a Creative Commons Attribution
4.0 License. For more information, see https://creativecom-
mons.org/licenses/by/4.0/
Digital Object Identifier 10.1109/MCSE.2021.3083547
Date of publication 28 May 2021; date of current version
23 July 2021.

July/August 2021 Published by the IEEE Computer Society Computing in Science & Engineering 55

https://orcid.org/0000-0003-1755-2277
https://orcid.org/0000-0003-1755-2277
https://orcid.org/0000-0003-1755-2277
https://orcid.org/0000-0003-1755-2277
https://orcid.org/0000-0003-1755-2277

restrict the scope of appropriate transformations,
enabling one to provide “templates” for generating
classes of kernels.

The present work describes Pystella, a type of
domain-specific language (DSL) or framework for the
time evolution of three-dimensional partial differential
equations (PDEs). Pystella currently supports explicit
time integration and finite-difference methods with
periodic boundary conditions, targeting sets of nonli-
nearly coupled hyperbolic PDEs from early-Universe
cosmology as a principal application. Its goal could be
summarized as to make achieving peak (and portable)
performance in finite-difference simulations as
straightforward and friendly as general Python pro-
gramming (e.g., with numpy arrays). We discuss how Pys-
tella’s design and implementation aim to realize this
goal. We emphasize, by way of example, how it can
serve as a backend for high-level simulation drivers in
Python. More generally, we argue that such a hierar-
chy of abstractions may be key to democratizing pro-
gramming for high-performance computing for a
broad set of computational scientists.

TARGET USE CASE
To establish the scope of computations as relevant for
optimization, we first describe the class of problems
Pystella was first created to solve. For concreteness,
the general structure of the (continuum) PDEs we use
as a working example is

@2ui

@t2
þ gðtÞ @ui

@t
�r2ui þXðuiÞ ¼ 0: (1)

Here, ui ¼ uiðt; x; y; zÞ is a set of nu functions of time t

and space ðx; y; zÞ, and r2 is the Laplacian operator,
@2=@x2 þ @2=@y2 þ @2=@z2. In general, ui may comprise a
set of scalar fields and vector fields, and X is a nonlin-
ear function of these fields (and their partial deriva-
tives), which varies based on the physical model of
interest. The coefficient gðtÞ is in fact a function of the
spatially averaged energy within ui—that is, a function
derived from quantities summed across space. The tar-
get applications vary widely in both the form of X and
the sets of fields ui involved, including one or multiple
of scalar fields, vector fields, and rank-2 tensor fields. A
primary design goal is to be flexible to this wide range
of problem structures. We emphasize that Pystella
does not impose that problems take the form of (1), but
rather allows users to specify arbitrary systems involv-
ing local operators and globally derived quantities.

The spatial dependence of the equations is discre-
tized onto a structured grid of N3 points with (in this
case) periodic boundary conditions. The system may

then be solved with the standardmethod of lines, using
finite-difference stencils to approximate spatial deriva-
tives and ordinary differential equation (ODE) solvers,
such as Runge–Kutta methods, for time evolution.
Thus, in terms of the type of kernels to be parallelized,
the solver algorithm requires elementwise operations
(i.e., functions that operate on values at only a single
gridpoint), stencil computations (involving multiple
neighboring gridpoints), and reductions (combining
values across the entire grid into a single result).
Reductions are required for outputting diagnostic and
summary statistics as well as computing gðtÞ at each
step of the solver. Other infrequent simulation outputs
rely on fast Fourier transforms (FFTs), which are out-
sourced to other packages, and histograms.

FINITE-DIFFERENCE SIMULATIONS
ON GPUS

We now briefly recap the model of parallelism relevant
for GPU programming (and establish terminology).
The prominent GPU computing paradigms, OpenCL
and CUDA, both represent parallelism at a coarse and
a fine-grained level. The coarse level, referred to as
work groups (OpenCL) or blocks (CUDA), maps to indi-
vidual compute cores, each of which share on-chip
memory resources and have a number of threads or
vector lanes for execution. These threads (or work
items in OpenCL parlance) are the fine-grained level
of parallelism; adjacent work items typically map to
consecutive iterations of an inner loop. In contrast to
standard CPU programming, core-local memory
caches are managed by the user. Observe that in the
terms of this abstraction, CPUs and GPUs only differ
in the hardware counts (e.g., number of cores, vector
lane width, and cache sizes).

Because it provides programming and machine
models that are essentially isomorphic to CUDA’s
without being restricted to a single vendor (nor even
just to GPUs), we target OpenCL as an underlying
compute language. OpenCL is an open standard, and
implementations can and do exist for the most preva-
lent HPC platforms. NVIDIAs support is robust, and
though it long lagged at version 1.2, as of its R465
series driver NVIDIA is OpenCL 3.0 conformant.
Beyond vendor implementations, which AMD’s ROCm
and Intel both provide, the Portable Computing Lan-
guage (PoCL)2 supports a variety of common CPUs
and even provides a CUDA backend for NVIDIA devi-
ces, independent of NVIDIA’s OpenCL support. Fur-
thermore, Pystella’s code-generation framework
would drastically simplify the process of porting
between platforms, as discussed in the following.

56 Computing in Science & Engineering July/August 2021

SCIENTIFIC COMPUTINGWITH PYTHONON HIGH-PERFORMANCE HETEROGENEOUS SYSTEMS

General Performance Considerations
We now heuristically describe the primary constraints
on performance and the scaling of problem size for
our use case. As a general principle, minimizing mem-
ory transfers between the CPU and GPU (which are
nearly two orders of magnitude slower than a modern
GPU’s internal bandwidth) requires retaining all arrays
on the GPU itself. Because the intensity of computa-
tions is relatively low (when compared to the high
ratio of the throughputs of floating point operations
and memory transfer), the performance of most ker-
nels is bound by the bandwidth between the GPU’s
DRAM and its processors. As a result, to good approxi-
mation, the execution time of a single timestep is sim-
ply proportional to the number of reads from and
writes to N3 arrays. An important goal is to minimize
this number, for instance by combining computations
into as few kernels as possible (i.e., “kernel fusion”).

Because the equations are second order in time,
two arrays are required for each degree of freedom, as
for each i both ui and @ui=@t are integrated in time
(excepting some specialized algorithms). We favor the
low-storage variants of Runge–Kutta methods (LSRK),
which achieve high (e.g., fourth) convergence order
with only one auxiliary array for temporary storage.
Next, the number of spatial derivatives required per
degree of freedom i (often both the Laplacian and the
gradient) requires separately computing and storing
each of these in global GPU memory. Thus, the prob-
lems of interest entail, as an upper bound, 8 arrays per
degree of freedom (nu), and so the size of available
GPUDRAM is the primary constraint on accessible grid
sizes (rather than runtime). For example, with N3 ¼
2563 points, each of the (on the order of 10–20) degrees
of freedom requires 1GB of RAM, nearly saturating the
16�32GB available onmodern GPUs.

To enable scaling to larger problem sizes N3, Pys-
tella is also parallelized via the message passing inter-
face (MPI) using mpi4py.3 The computational grid is
divided in up to two of the three dimensions (a “pencil”
decomposition), with each subdomain residing on a
different MPI rank (and so GPU). (A fully three-dimen-
sional domain decomposition is not yet implemented
merely because distributed FFT algorithms require at
least one dimension of the grid to be fully contiguous.)
The MPI communication patterns are relatively simple,
requiring the sharing of boundary “halo” points
between neighboring pencils as required for stencil
computations. The number of such halo layers (on
each face of the grid) depends on the access footprint
of the employed finite-difference stencils. While we do
not discuss MPI in detail, note that special care is

taken to ensure that switching between single- and
multirank operation is seamless, without sacrificing
performance in either case.

Pystella’s multi-GPU capability thus partially allevi-
ates the constraint on problem size from the rather
large number of required auxiliary arrays. The over-
head of halo sharing is not significant at the Oð10sÞ of
GPUs we have had the opportunity to benchmark on
(and is poised to become even less so, as the next
generations of network interfaces will double and qua-
druple bandwidth over PCIe Gen 3). While one would
ideally compute derivatives on the fly via on-chip,
scratchpad-type memory, the large number of degrees
of freedom (nu) involved in our principal applications
prohibits doing so efficiently given the size of these
resources on current GPUs. Globally caching spatial
derivatives, which are computed by a dedicated ker-
nel, has the added benefit of simplifying the paralleli-
zation of the “physics-focused” kernels and of being
flexible to an arbitrary number of degrees of freedom.
Note that Pystella does not impose this choice abso-
lutely—generalizing the time stepper code generation
to permit either choice would be straightforward—but
much of the workflow we describe depends upon it.

CODE GENERATION AND
TRANSFORMATION

At its lowest level, Pystella serves to generate and
tune computational kernels using Loopy. We first
briefly describe Loopy’s data model and workflow; its
design and features have been detailed elsewhere.1;4

Put simply, a computational kernel is represented by a
loop domain and a set of statements. The loop
domain, as its name suggests, specifies the variables
used in for loops and their iteration bounds. State-
ments are represented as scalar-valued assignments
between multidimensional arrays, with the right-hand
side of the assignment given as an expression tree,
composed of symbolic nodes representing variables,
sums, products, and so on. For example, a sum node
represents the sum of its branches, some of which
may also be composite objects (e.g., a sum of prod-
ucts, or a sum of a quotient and a number).

For our application, the loop domain is nearly
always a set of three indices spanning the grid
(namely, the portion of the full N3 grid resident on a
given GPU). This fundamental representation of the
domain changes under the various kernel transforma-
tions that Loopy provides. A prominent example is
“splitting” a loop index into two, i.e., replacing the
equivalent of

July/August 2021 Computing in Science & Engineering 57

SCIENTIFIC COMPUTINGWITH PYTHONON HIGH-PERFORMANCE HETEROGENEOUS SYSTEMS

for i in range(N):

f[i] =...

with
for i_outer in range(N // n + 1):

for i_inner in range(n):

if i_inner + n * i_outer < N:

f[i_inner + n * i_outer] = ...

To realize parallelization, one designates i_inner as the
work item index and i_outer the work group, achieved
with Loopy by “tagging” the loop variables.

Transformations also exist to, e.g., modify data
access, such as buffering accesses to global arrays in
core-local, scratchpad-type memory banks shared
within a work group. Such “prefetching” operations
are key for efficient stencil computations. Loopy
implements a broad range of code transformations
more generally.1;4

Loopy can interoperate with PyOpenCL5 for run-
time execution, and Pystella leverages this integration.
Behind the scenes, Loopy generates OpenCL code
when a kernel is first invoked, at which point it is com-
piled “just in time.” Bear in mind that Loopy is not
bound to OpenCL, nor PyOpenCL, nor even Python as
a runtime environment. Loopy can generate code in a
variety of languages (including CUDA, C, and others)
that can be integrated into other codebases, and
other integrated runtimes can be implemented. As
such, were it ever necessary to do so, it would take
substantially less effort to migrate away from (or
abstract) Pystella’s dependence on PyOpenCL than to
migrate an equivalent, static codebase from OpenCL
to another similar language. Deriving from the flexibil-
ity of Loopy’s abstraction makes Pystella, to the
extent that OpenCL-like programming models remain
relevant, future-proof.

Building Blocks: The Field Object
The fundamental symbolic type in Pystella represents
the (scalar, vector, etc.) fields ui. First, the halo layers
that accommodate MPI distribution make indexing
the interior of the domain (the computations for which
each MPI rank is responsible) cumbersome. Further-
more, indexing every access to an array (or field) is
repetitive and error-prone. Pystella’s symbolic repre-
sentation of fields keeps track of both indexing and
the offset relative to halo layers. For example,

>>> import pystella as ps

>>> f = ps.Field(''f'', offset=''h'')

>>> print(ps.index_fields(f))

f[i + h, j + h, k + h]

The call to index_fields expands the indexing to the
(symbolic) array f, including offset information. At the

moment, h is a symbolic variable itself; its value can be
fixed (i.e., substituted with an integer) before the ker-
nel is compiled to OpenCL.

We already have all the ingredients required for a
mini-DSL for expressing stencil computations.
Using the shift_fields method, we can produce the
second-order accurate finite-difference approxima-
tion to @f=@x (working in one dimension for
conciseness):

>>> f = ps.Field("f", offset="h",

indices=("i",))

>>> d = (ps.shift_fields(f, [1])

- ps.shift_fields(f, [-1])) / 2

>>> print(ps.index_fields(d))

(f[i + h + 1] + (-1)*f[i + h + -1]) / 2

Note that shift_fields traverses the entire expression
tree passed as its first argument and shifts the index-
ing of any field it encounters.

>>> f = ps.Field(''f'', indices=("i",))

>>> g = ps.Field("g", indices=("i",))

>>> d = ps.shift_fields(f * g - f, [4])

>>> print(ps.index_fields(d))

f[i + 4]*g[i + 4] + (-1)*f[i + 4]

One can (as implemented in Pystella) express arbitrary
stencils by iterating over, e.g., a dictionary mapping
relative locations to coefficients:

f = ps.Field("f", offset="h",)

coefs = {1: 672/840, 2: -168/840,

3: 32/840, 4: -3/840}

d8 = 0

for s, c in coefs.items():

d8 += c * ps.shift_fields(f, [s, 0, 0])

d8 -= c * ps.shift_fields(f, [-s, 0, 0])

which builds an eighth-order accurate approxima-
tion to @f=@x. The expression of a stencil is reduced
to its most minimal, fundamental representation:
One is specified solely by an enumeration of its coef-
ficients and then generated by straightforward
Python code.

Fields can have array shapes with dimensions
beyond just the three spatial ones. To create a 3-vec-
tor Field,

>>> f = ps.Field("f", shape=(3,))

>>> print(ps.index_fields(f[1]))

f[1, i, j, k]

Recall that we store the time and space derivatives
of f in arrays. The DynamicField object extends Field by
tracking the relationship between a field and these
derivatives:

>>> f = ps.DynamicField("f")

>>> # 0 through 3 denote t, x, y, z

>>> print(f.d(0), ps.index_fields(f.d(3)))

dfdt dfdx[2, i, j, k]

58 Computing in Science & Engineering July/August 2021

SCIENTIFIC COMPUTINGWITH PYTHONON HIGH-PERFORMANCE HETEROGENEOUS SYSTEMS

Even better, the provided symbolic differentiation rou-
tine understands this relationship:

>>> print(ps.diff(3 * f**2, "t"))

3*2*f*dfdt

The coupling function XðuiÞ often itself includes deriv-
atives of functions of ui, which can be conveniently
computed with diff.

Parallel Primitives
Having shown how one expresses fundamental com-
putations with Fields, we now demonstrate how to
generate GPU kernels that perform them. Pystella
implements a few fundamental “parallel primitives” to
enable the rapid development of GPU kernels (and
serve as the base drivers for all of Pystella’s functional-
ity). Note that Fields merely provide an extension to
valid symbolic input; their use is not required in Pys-
tella kernels. Indeed, the kernel creation routines
internally convert all Field instances into expressions
that Loopy can natively process.

For the most part, we do not emphasize perfor-
mance metrics; while kernels are in general configured
to maximize performance on recent NVIDIA GPUs, a
user may tune or even override optimization strategies
if the need arises. Rather, our purpose is to demon-
strate a path to high-performance code that is acces-
sible for Python programmers and requires minimal
consideration of the underlying hardware and perfor-
mance details.

Elementwise Operations
The fundamental kernel type is the elementwise map.
A user creates an instance of the ElementWiseMap class,
specifying the statements to be executed. One then
invokes the kernel by calling this object. To create a
kernel that doubles every element of an array in place,
one executes

f = ps.Field("f")

stmnts = [(f, 2*f)]

doubler = ps.ElementWiseMap(stmnts)

To run on a 2563 array of random 64-b floats, one sim-
ply calls ewmap:

import pyopencl as cl

import pyopencl.clrandom as clr

ctx = cl.create_some_context()

queue = cl.CommandQueue(ctx)

ary = clr.rand(queue, (256,)*3, "float64")

doubler(queue, f=ary)

The first lines, aside from required imports, create
an OpenCL context, a queue for the submission of ker-
nels, and a random array on the device. Thus, fewer

than a dozen lines of Python create, compile, and run
an optimized elementwise kernel.

Additional statements may be added by extending
the stmnts list, and statements writing to temporary
(local or thread-private) variables may be specified
separately. Such kernels are parallelized with the
loop-splitting strategy described earlier: The loops
over spatial dimensions are split into outer and inner
loops, mapping to work groups and work items,
respectively. As one might expect of such a simple
parallel kernel, this strategy easily saturates memory
bandwidth on recent NVIDIA GPUs (e.g., the Tesla
P100 and V100), as well as on an Intel Xeon E5-2683
v4 using PoCL.

While ElementWiseMap merely produces the prototypi-
cal GPU kernel using a prototypical parallelization
strategy, its highly frequent use makes such a tem-
plate extremely convenient, saving a substantial
amount of verbose, error-prone boilerplate code.

Stencil-Type Computations
A fundamental extension of elementwise kernels
adapts the parallelization strategy to accommodate
stencil-type operations, relevant to, for example, con-
volution algorithms as well as finite differencing.
Because stencils are nonlocal, involving values at mul-
tiple neighboring gridpoints, a primary optimization
target is to improve data reuse. A first solution is to
tile the computational domain, as done for element-
wise kernels, and cache input values on each tile in
on-chip scratchpad-type memory accessible to all
work items in a given work group. In this manner,
neighboring grid elements (whose input footprints
overlap) read from this cache rather than redundantly
retrieving values from global memory. While Loopy
already implements transformations for such data
“prefetching,” we now describe a more sophisticated
strategy that extends Loopy’s existing prefetching
transformation (and whose merging into Loopy is in
progress).

The efficiency of the tiling approach becomes lim-
ited in higher dimensions (e.g., three) for stencils with
a large radius or footprint. The required amount of
scratchpad memory grows with dimension and stencil
radius, leading to smaller “inner” tiles in which the
stencil is actually computed. A solution is to tile the
domain in all but one dimension (rather than all dimen-
sions), using the remaining dimension as a “streaming”
axis,6 as depicted in Figure 1. In three dimensions, this
strategy performs computations on a single two-
dimensional tile (in, say, the y�z plane) at a time, stor-
ing only however many layers of data (along the x

July/August 2021 Computing in Science & Engineering 59

SCIENTIFIC COMPUTINGWITH PYTHONON HIGH-PERFORMANCE HETEROGENEOUS SYSTEMS

direction) are required for the stencil on the current
tile. Cached input data are cycled between sequential
iterations over the streaming axis, thus reducing
redundant global memory reads between loop itera-
tions along this axis.

As an example of the streaming strategy’s reduc-
tion of redundant global data accesses, consider com-
puting a stencil in three dimensions with a radius of
two gridpoints. With each work group assigned an 83

tile, the pure-tiling strategy results in ð8þ 2 � 2Þ3 global
reads per work group, leading to a ratio of 123=83 � 3:4

total global reads to inner computational elements.
The streaming strategy reduces this by a factor of
12=8 to 2.25. The benefits are twofold, as streaming
further permits larger inner work groups than tiling,
increasing throughput at a fixed scratchpad memory
requirement.

We report benchmark results comparing the tiling
and streaming strategies in Table 1, which demon-
strate that streaming prefetches offer a speedup that
grows rapidly with stencil radius h. Furthermore, dis-
counting the redundant reads due to overlapping
stencil footprints across work groups, the streaming
prefetch strategy achieves 080% of peak bandwidth
for h ¼ 1 and 2 and still �70% for h ¼ 3.

As an example, consider the eight-point, eighth-
order accurate finite-difference operator defined
above, d8. Creating a kernel employing streaming pre-
fetching is as simple as

stmnts = [(Field("deriv",), d8)]

compute_d8 = ps.StreamingStencil(stmnts, prefetch_args=

["f"], halo_shape=4)

The pure tiling approach is accessible via the Stencil

class.

Reductions and Histograms
For completeness, we mention the other two parallel
primitives that Pystella supports. Reductions are spec-
ified by a dictionary of keys and (lists of) expressions

f = ps.Field("f")

reducers = {

"mean": [f],

"mean_sq": [f**2],

"max": [(f, "max")]}

reducer = ps.Reduction(decomp, reducers)

Here, decomp is an instance of the DomainDecomposition

class that implements all required MPI communica-
tion, here used to aggregate results across all MPI
ranks. Calling reducer returns a dictionary with the
same keys as reducers whose values are the results in
the form of numpy arrays. An arbitrary number of reduc-
tions may be specified, achieving fusion for reduction
kernels. Histogrammer provides a similar interface to
compute histograms.

PYSTELLA IN ACTION
We demonstrate how the aforementioned parallel
primitives are used to produce finite-difference simu-
lations. We discuss Pystella’s finite-differencing and
time-stepping kernels and how its symbolic framework
enables kernel fusion. Finally, we present an example
of how one might organize the symbolic specification
of physical models into a high-level, mini-DSL.

Finite Differencing
The FiniteDifferencer provides a convenient interface
to compute the finite-difference Laplacian and/or
(components of the) gradient of an array. As one fre-
quently requires multiple spatial derivatives of the

FIGURE 1. Pictorial, two-dimensional representation of the

access footprint for two sequential iterations (x ¼ 4 and 5) of

the streaming prefetch strategy. The dark green cells make

up the inner tile in which the stencil computation is per-

formed, while light green encompasses the entire footprint

required to compute the stencil. The “radius” of the footprint

here is two. The columns with 3 � x � 6 are common to the

footprints for both iterations; these values need not be

redundantly read from global memory as the kernel sequen-

tially “streams” along the x direction.

60 Computing in Science & Engineering July/August 2021

SCIENTIFIC COMPUTINGWITH PYTHONON HIGH-PERFORMANCE HETEROGENEOUS SYSTEMS

same array, fusing combinations of individual compu-
tations into a single kernel is crucial. Calling FiniteDif-

ferencer dispatches to the correct kernel based on
which derivative arrays (of the Laplacian and gradient
components) are passed. While one may supply cus-
tom stencils (e.g., upwind schemes), the default com-
putes the highest order centered difference
permitted by the specified number of halo layers. For
further convenience, FiniteDifferencer ensures that
halos are synchronized before calling kernels. An ini-
tialization flag specifies whether to implement the
streaming optimization.

Another advantage to computing derivatives in a
dedicated kernel and storing them globally is that one
may swap out routines to compute derivatives via
spectral collocation (i.e., computing the Fourier-space
derivative via forward and backward FFTs). The Spec-

tralCollocator class implements an identical interface
to FiniteDifferencer to achieve this. For further general-
ity, Pystella wraps both single-device, OpenCL-based
FFTs (via clfft) and distributed, CPU-side FFTs (via
mpi4py-fft7) in a common interface, so that the meth-
ods operate transparently in either single-GPU or MPI-
distributed contexts.

Time Stepping
Recall that the method of lines treats the spatial and
temporal discretizations separately, yielding a set of
(coupled) equations that may be solved with conven-
tional ODE solvers. Typically, ODE-solver libraries
require a function f(t, y) that returns the right-hand
side of the system, expressed in the form

dy

dt
¼ fðt; yÞ: (2)

While this interface is transparent and general to a
wide range of ODE solvers, it usually prevents kernel

fusion. Symbolically representing the right-hand side
computation, however, immediately allows the right-
hand side computation and the ODE step to occur in
the same, generated kernel. To create a kernel that
uses a five-stage, fourth-order, LSRK method8 to
evolve the wave equation, @2f=@t2 ¼ r2f , one writes

f = ps.DynamicField("f", offset="h")

rhs_dict = {f: f.dot, f.dot: f.lap}

stepper = ps.LowStorageRK54(rhs_dict, dt=dt, halo_shape=

halo_shape)

for predetermined values of halo_shape and the time-
step dt.

Each stage of a LSRK method first updates the
auxiliary array using f(t, y) and then increments y

using the auxiliary array. These two computations can
too be fused, reducing redundant reads from global
memory, provided one assumes that the computation
of f(t, y) at each gridpoint is independent of the value
of y at all other gridpoints. Concretely, this condition is
realized by globally caching all nonlocal quantities
computed in a separate, prior kernel. At each grid-
point, then, stepper computes and stores f(t, y) (for
each degree of freedom) in registers before perform-
ing the LSRK step.

After initializing a PyOpenCL queue and arrays f,
dfdt, and lap_f, a single timestep takes the form

for stage in range(stepper.num_stages):

derivs(queue, fx=f, lap=lap_f)

stepper(stage, queue=queue, f=f,

dfdt=dfdt, lap_f=lap_f)

where derivs stores the Laplacian of f into lap_f (i.e., a
FiniteDifferencer or SpectralCollocator).

Sectors
To demonstrate how one might use Pystella in a real-
world scenario, we present the general framework for
model specification used in our primary applications

TABLE 1. Comparing stencil optimization strategies for 3-D stencil kernels with various stencil radii h, reporting throughput in

giga-gridpoints per second.

Laplacian only gradient+Laplacian

h Tile ½109=s� Stream ½109=s� Speedup Tile ½109=s� Stream ½109=s� Speedup

1 20.7 26.0 1.25 11.3 10.6 0.946
2 7.30 18.4 2.53 6.87 9.91 1.44
3 3.64 10.3 2.81 1.83 8.77 4.78
4 0.531 5.31 10.0 0.294 4.81 16.4

For each individual kernel, results are reported for the work group size that maximizes throughput and are measured as the average of 200 runs
(after two warm-up runs). Discounting redundant global reads, the Laplacian kernel reads and writes one (approximately) 5123 array of 64-b floats,
whereas the gradient+Laplacian kernel reads one and writes four. Throughputs may thus be converted to bandwidth (GB/s) by multiplying by 16
and 40 for the Laplacian and gradient+Laplacian kernels, respectively. Benchmarks were ran on a NVIDIA Tesla P100 with a (measured) peak band-
width of �500GB=s. Fusing the gradient and Laplacian computations leads to much-improved GPU utilization, especially for h ¼ 3 and 4.

July/August 2021 Computing in Science & Engineering 61

SCIENTIFIC COMPUTINGWITH PYTHONON HIGH-PERFORMANCE HETEROGENEOUS SYSTEMS

in cosmology (see, e.g., Adshead et al.9). Recall that
the target use case involves a set of hyperbolic PDEs
with a nonlinear coupling function XðuiÞ and a damp-
ing coefficient gðtÞ derived from quantities (energies)
averaged over the grid. For a concrete example, con-
sider

XðfÞ ¼ @V ðfÞ
@f

þ rrfð Þ � rrWðfÞ (3)

where the functions V andW fully specify the physical
model (in the continuum). A Sector would take in as
input these functions, e.g.,

def V(f):

return f**2 / 2 + f**4 / 4

from pymbolic.functions import exp

from pymbolic import var

def W(f):

return exp(var("beta") * f)

Here, we have used the symbolic exp function from
Pymbolic, the library that forms the basis of Loopy’s
symbolic framework, and have created a symbol for a
model parameter beta.

The coupling function and energy components are
encapsulated in various Sector classes. Internally, the
Sector takes V and W as input and generates the rhs_dict

along the lines of
f = ps.DynamicField("f", offset="h")

gamma = var("gamma")

X = ps.diff(V(f), f)

X += sum(ps.diff(f, x) * ps.diff(W(f), x)

for x in ("x", "y", "z",))

rhs_dict = {

f: f.dot,

f.dot: - gamma * f.dot + f.lap + X

}

Additionally, the Sector creates a dictionary of values to
reduce at each step, i.e., the energy components
required to compute gðtÞ. These might take the form

reducers = {

"kinetic": f.dot**2 / 2,

"gradient": (W(f)/2,

* sum(ps.diff(f, x)**2

for x in ("x", "y", "z",))),

"potential": V(f)

}

Aside from compartmentalizing the expression of a
physical model from the baggage of performance
details, organizing model specification into Sectors (or
something in the same spirit) enables composability.
For example, one could introduce a Sector for vector

fields. These have different equations of motion and
energy contributions and also couple to sectors of
scalar fields in a manner that would also be wholly
specified by simple-to-define functions like V andW .

Another extension relevant in cosmology is the
emission of gravitational waves by the scalar and vec-
tor field dynamics. Gravitational waves, a conse-
quence of (linearized approximations to) Einstein’s
general relativity, are a symmetric, 3� 3 tensor field
sourced by particular components of the “stress-
energy” tensor, which itself encodes the energy, pres-
sure, momentum flux, and shear stress of matter. A
gravitational wave sector, supplied a list of sectors

each implementing a stress_tensor method, could oper-
ate as

h = ps.DynamicField("hij", offset="h",

shape=(3, 3))

rhs_dict = {}

for i in range(3):

for j in range(3):

rhs_dict[h[i, j]] = h.dot[i, j]

T = sum(sector.stress_tensor(i, j)

for sector in sectors)

dh = h.lap[i, j] + T

rhs_dict[h.dot[i, j]] = dh

(In practice, because h is a symmetric tensor one
would only store the six nonredundant components.)
The right-hand side dictionaries for all of these sectors
are combined to generate a single time stepping
kernel.

CONCLUSIONS
We have presented a hierarchy of abstractions that
mitigate the standard tradeoff between expressive,
user-friendly software and performance on cutting-
edge technologies. As a foundation, OpenCL’s
abstract machine model promises to effectively map
on to all prominent architectures (both GPUs and
CPUs) for the foreseeable future, and Loopy provides
a programming system that drastically eases the
process of producing performant programs on
them. While building higher level frameworks may
inevitably require narrowing the computational
scope, we have provided an example that facilitates
generating high-performance code for an important
class of problems.

In comparison to more traditional, static code-
bases (such as the CUDA-based software that Pystella
replaced), one might be hesitant to take on the rela-
tively large number of dependencies to support, e.g.,
Loopy. Community-driven package and environment
management tools have been largely successful in

62 Computing in Science & Engineering July/August 2021

SCIENTIFIC COMPUTINGWITH PYTHONON HIGH-PERFORMANCE HETEROGENEOUS SYSTEMS

enabling automated and reproducible installations:
One can simply execute pip install pystella. Numerous
more complex dependencies (for example, MPI and
PoCL) can also be easily installed from the commu-
nity-led software packager and distributor, conda-
forge, even on cloud-based continuous integration
platforms.

Aside from accelerating development and evad-
ing the need for machine-specific implementations,
code generation more generally curtails the dupli-
cation of hand-written and boilerplate code, leading
to substantially smaller codebases for one to main-
tain. While it is difficult to quantify increases in
developer productivity, Pystella eliminates some of
the most unpleasant and error-prone parts of high-
performance programming. More broadly, its tiers
of abstractions enables high-level GPU develop-
ment by programmers without expertise in GPUs
while also providing convenient lower level entry
points for optimization and experimentation.

A number of future directions could further lever-
age Python as a high-level scripting language for run-
time code generation. Automated performance
tuning, varying not only work group sizes but also opti-
mization strategies themselves, will be valuable as
GPUs from multiple vendors become more common-
place. Programmatically tracking dependencies
between kernels (including MPI communication)
would allow for increased, automated concurrency
while ensuring correctness. Simple first steps in this
direction could analyze input to time stepping kernels
to determine which spatial derivatives must be com-
puted for each degree of freedom, and one could also
implement MPI communication asynchronously with
computational kernels. Finally, a crucial feature to
make Pystella versatile to a broader class of problems
is an expressive and efficient interface to implement
nonperiodic boundary conditions.

Pystella provides an expressive, well-defined
symbolic system that achieves a separation of con-
cerns between performance optimization and the
specification of physics and algorithms. Using stan-
dard Python programming practices, one can
design transparent and straightforward interfaces
for specific physics cases that can offload a sub-
stantial amount of symbolic work to the computer,
all without compromising the performance of the
resulting program. Workflows based on code gener-
ation and abstractions, like Pystella and Loopy,
enable users to leverage both the advantages of
Python’s high-level programming environment and
the potential of the target hardware. They can
empower a broad community of computational

scientists to maximize investments in high-perfor-
mance computing to advance science.

ACKNOWLEDGMENTS
The author would like to thank Andreas Kl€ockner for
highly generous support, encouragement, and advice
throughout the development of Pystella. This work
was supported by the United States Department of
Energy Computational Science Graduate Fellowship,
provided under Grant DE-FG02-97ER25308. This work
made use of hardware provided by NASA Astrophysics
Theory under Grant NNX17AG48G, as well as the
Extreme Science and Engineering Discovery Environ-
ment (XSEDE),10 which is supported by National Sci-
ence Foundation under Grant ACI-1548562.

REFERENCES
1. A. Kl€ockner, “Loo.Py: Transformation-based code

generation for GPUs and CPUs,” in Proc. ACM SIGPLAN

Int. Workshop Lib., Lang., Compilers Array Program.,

2014, pp. 82–87, doi: 0.1145/2627373.2627387.

2. P. J€a€askel€ainen, C. S�anchez de La Lama, E. Schnetter, K.

Raiskila, J. Takala, andH. Berg, “PoCL: A performance-

portableOpenCL implementation,”CoRR, vol. abs/

1611.07083, 2016, doi: 10.1007/s10766-014-0320-y.

3. L. Dalcín, R. Paz, M. Storti and J. D’Elía, “for Python:

Performance improvements and MPI-2 extensions,”

J. Parallel Distrib. Comput., vol. 68, no. 5, pp. 655–662,

2008. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S0743731507001712,

doi: 10.1016/j.jpdc.2007.09.005.

4. A. Kl€ockner, “Loo.Py: From Fortran to performance

via transformation and substitution rules,” in

Proc. 2nd ACM SIGPLAN Int. Workshop Lib.,

Lang., Compilers Array Program., 2015, pp. 1–6, doi:

10.1145/2774959.2774969.

5. A. Kl€ockner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov,

and A. Fasih, “PyCUDA and PyOpenCL: A scripting-

based approach to GPU run-time code generation,”

Parallel Comput, vol. 38, no. 3, pp. 157–174, 2012,

[Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0167819111001281, doi: 10.1016/j.

parco.2011.09.001.

6. P. Micikevicius, “3D finite difference computation on

GPUs usingCUDA,” in Proc. 2ndWorkshopGen. Purpose

Process. Graph. Process. Units, 2009, pp. 79–84, pp. 1–6,

doi: 10.1145/1513895.1513905.

7. L. Dalcin, M. Mortensen, and D. E. Keyes, “Fast parallel

multidimensional FFT using advanced MPI,” J. Parallel

Distrib. Comput., vol. 128, pp. 137–150, 2019, doi: 10.1016/

j.jpdc.2019.02.006.

July/August 2021 Computing in Science & Engineering 63

SCIENTIFIC COMPUTINGWITH PYTHONON HIGH-PERFORMANCE HETEROGENEOUS SYSTEMS

http://dx.doi.org/0.1145/2627373.2627387
http://dx.doi.org/10.1007/s10766-014-0320-y
http://www.sciencedirect.com/science/article/pii/S0743731507001712
http://www.sciencedirect.com/science/article/pii/S0743731507001712
http://dx.doi.org/10.1016/j.jpdc.2007.09.005
http://dx.doi.org/10.1145/2774959.2774969
https://www.sciencedirect.com/science/article/pii/S0167819111001281
https://www.sciencedirect.com/science/article/pii/S0167819111001281
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1145/1513895.1513905
http://dx.doi.org/10.1016/j.jpdc.2019.02.006
http://dx.doi.org/10.1016/j.jpdc.2019.02.006

8. M. H. Carpenter and C. A. Kennedy, Fourth-Order

2N-Storage Runge-Kutta Schemes, 1994.

9. P. Adshead, J. T. Giblin, M. Pieroni, and Z. J. Weiner,

“Constraining axion inflation with gravitational waves

across 29 decades in frequency,” Phys. Rev. Lett.,

vol. 124, no. 17, 2020, doi: 10.1103/PhysRevLett.124.171301.

10. J. Towns et al., “XSEDE: Accelerating scientific

discovery,” Comput. Sci. Eng., vol. 16, no. 5, pp. 62–74,

Sep./Oct. 2014, doi: 10.1109/MCSE.2014.80.

ZACHARY J. WEINER is defending his Ph.D. degree in June

2021 at the University of Illinois at Urbana-Champaign, Cham-

paign, IL, USA. His research interests include cosmology, the

physics of the early Universe, gravitational waves, and high

performance computing. He received the B.A. degree in phys-

ics and mathematics from Kenyon College, Gambier, OH,

USA, in 2016, and the M.S. degree in physics from the Univer-

sity of Illinois at Urbana-Champaign in 2019. Part of his gradu-

ate studies was supported by the Department of Energy

Computational Science Graduate Fellowship. Contact him at

zweiner2@illinois.edu.

64 Computing in Science & Engineering July/August 2021

SCIENTIFIC COMPUTINGWITH PYTHONON HIGH-PERFORMANCE HETEROGENEOUS SYSTEMS

http://dx.doi.org/10.1103/PhysRevLett.124.171301
http://dx.doi.org/10.1109/MCSE.2014.80

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

