
THEME ARTICLE: PERFORMANCE PORTABILITY FOR
ADVANCED ARCHITECTURES

Performant, Portable, and Productive
Parallel ProgrammingWith Standard
Languages
Michael Wolfe , NVIDIA Corp, Hillsboro, OR, 97006, USA

The perfect solution to the P3 (performance, portability, productivity) problem is a
single version of an application that gives high performance across a wide range of
target systems and is easy to develop and maintain. Actual solutions give up some
level of performance, portability, or productivity, or all three. Here we review three
periods in the past 65 years when the P3 problem had good solutions. But it is
harder today, with greater parallelism. We propose and argue in favor of a machine
model to help programmers design algorithms and data structures that will exhibit
performance portability. We then discuss the main point, in what language to
express a parallel program to get all three of high performance, wide portability,
with good productivity. We propose that the community, including both
applications developers and language implementers, should focus on the parallel
features in existing and future standard languages.

The Performance, Portability, Productivity
(P3) problem is generally a tradeoff. How much
performance are we willing to give up to only

maintain a single version of a program across multiple
different target systems? Or, how much extra effort
are we willing to expend in order to achieve higher per-
formance on different computer architectures? Or,
what machines will we focus on, and what target sys-
tems will we abandon, to simplify the effort required
to tune performance?

Throughout the history of supercomputing, higher
performance mostly came from clock rate and parallel-
ism. Early supercomputers introduced pipeline parallel-
ism, instruction-level parallelism, and out-of-order
instruction execution, all using hardware to extract par-
allelism from a sequential instruction stream. A number
of vector processors emerged, using special instruc-
tions that operated on streams of operands from mem-
ory or vector registers, implemented with multiple

functional units in SIMD mode or pipelined functional
units. Shared-memory multiprocessors followed as
well. We see elements of all these types of parallelism
in current multicore CPUs, with aggressive instruction
dispatch functionality, pipelined functional units, SIMD
operations, and now dozens of cores each of which can
support multiple simultaneous threads in hardware.

Supercomputers in the 1990s scaled to higher pro-
cessor counts by using many nodes, where each node
initially had a single processor. Supercomputers today
are designed such that each node has one or moremulti-
core CPUs with all those levels of parallelism. A growing
number include one or more GPU accelerators, introduc-
ing another type of parallelism to the mix. An important
question facing the community today is how we should
express a parallel program for the supercomputers we
have today and those we see coming in the future.

At the lowest level, pipeline and instruction-level
parallelism are mostly managed by the hardware, with
compilers generating optimized code to exploit them.
Programmers rarely have to change their applications
to benefit from pipeline or instruction-level parallel-
ism, except for some innermost kernels where some
programmers might manually unroll the inner loops.

At the highest level, MPI is commonly used to
implement parallelism across nodes, expressed as

This work is licensed under a Creative Commons Attribution
4.0 License. For more information, see https://creativecom-
mons.org/licenses/by/4.0/
Digital Object Identifier 10.1109/MCSE.2021.3097167
Date of publication 19 July 2021; date of current version
23 September 2021.

September/October 2021 Published by the IEEE Computer Society Computing in Science & Engineering 39

https://orcid.org/0000-0002-6481-6792
https://orcid.org/0000-0002-6481-6792
https://orcid.org/0000-0002-6481-6792
https://orcid.org/0000-0002-6481-6792
https://orcid.org/0000-0002-6481-6792

MPI library calls to get an MPI rank identifier in each
process, and to communicate and synchronize
between the processes. The rank identifier is used in
the process to determine what partition of the data to
allocate and process and what subset of the computa-
tion to perform. MPI itself does not help with that
determination, though there are frameworks built on
MPI that do. MPI is portable and performant because
every vendor has an optimized MPI implementation
for its particular processor and interconnect, and any
frameworks built on MPI inherit that portability and
performance. An advantage of MPI parallelism is that
it looks the same across all target systems; there are
few target-specific decisions to be made, and program
portability is not an issue, though sometimes process
placement is critical to the best performance. MPI has
also been used to implement flat parallelism across
nodes and across cores and threads within a node. A
flat MPI-only parallelism model is more productive
than an MPI+X two-level parallelism model, but it gives
up potential performance in three ways. It is hard, if
even possible, to take advantage of the shared mem-
ory between threads on a node when the two threads
are controlled by MPI message passing. Also, MPI-only
parallelism would not take advantage of SIMD-parallel
operations, so there are always at least two levels of
parallelism that need to be designed into the algo-
rithm. Finally, MPI does not manage accelerators, so
those need to be handled some other way.

Perhaps the most common X in MPI+X today is
OpenMP, which in the latest version can control all
the node-level parallelism: threads, SIMD, and acceler-
ators. But like most current parallel programming
models, it conflates expressing parallelism with
exploiting parallelism. The commonly used OpenMP
omp parallel for construct does not actually say that
the loop iterations are data independent and can
safely be executed in parallel with whatever parallel-
ism mechanisms are available. It says to create a
team of threads and to distribute the iterations across
those threads in a defined manner, and that any data
races or conflicts between those threads have been
satisfied by the programmer. Therefore, a compiler
cannot use an omp parallel for directive to determine
that it is safe to vectorize the loop iterations using
SIMD instructions. Instead, the programmer must add
the simd directive. Now the programmer has to deter-
mine not only which loops are parallel, but also which
loops to distribute across threads and which to exe-
cute in SIMD mode. It is enough of a challenge to
determine that a loop is actually parallel, it is expect-
ing a lot to require programmers to make code-gener-
ation decisions for every parallel loop in the

application, and then to revisit those decisions for
every target system. Other recent node-level parallel-
ism frameworks (Kokkos,1 RAJA2) suffer the same por-
tability and productivity drawbacks.

Nevertheless, we argue that we can arrive at a
good P3 solution, across a wide range of computer
architectures. We start by reviewing a few historical
points in time where we had good P3 solutions, and
what was common among them.

P3 IN EARLY SUPERCOMPUTING
In the earliest days of computing, software was writ-
ten in machine language. The very first compiler was
delivered by IBM for the Fortran language in 1958, over
60 years ago, for the IBM 704.3 The language and its
compiler were designed to approach the performance
of hand-tuned machine code. The efforts at IBM to
generate efficient code spawned the field of compiler
optimization out of thin air, including developments
such as control flow graphs, data flow analysis, induc-
tion variable recognition, register allocation, and
more. It unknowingly set the bar for the P3 problem.
Fortran programs were decisively more productive
than machine code, though that is a low threshold to
beat. Fortran programs were also remarkably perform-
ant, largely because the IBM compiler team designed
the language to allow for compiler analysis and
designed the compiler to take advantage of that. And
Fortran programs became portable, because IBM did
not prevent other vendors from implementing Fortran,
which became the first standardized programming
language in 1966.

The reason that Fortran solved the P3 problem rea-
sonably well in those days was that the machine per-
formance model was similar across different
computer systems. Many of the architectural details
that we worry about today (data cache locality,
instruction cache reuse, SIMD operations) did not
exist. A programmer interested in performance
needed mostly to reduce the number of instructions
and memory operations, and that would improve per-
formance on any target system.

Another innovation in supercomputers came
about 20 years later with the introduction of vector
instructions. The Cray-1 introduced vector registers
and vector instructions, similar in many respects to
the SIMD registers and instructions available in many
current microprocessors. Many people forget that the
Cray-1 was initially successful because it was the fast-
est scalar computer available at the time, with twice
the clock speed of the then-current champion (the
Control Data 7600), but if your program could use the

40 Computing in Science & Engineering September/October 2021

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

vector operations, it could see a performance boost of
up to five times. This was enough to convince many
programmers to reorganize their data structures and
algorithms to be amenable to vector processing.
Unlike some contemporaneous vector machines, the
Cray system depended heavily on an automatic vecto-
rizing compiler to generate vector instructions.4 The
automatic vectorization capabilities in the Cray com-
piler were not particularly impressive compared to
those being developed in academia at the time, but it
was very effective largely because of its vectorization
report. The report would tell the programmer which
loops did and did not vectorize, and if not, why not,
often with quite detailed and precise messages. This
allowed the programmer to modify the code in the
loop to avoid the hindrance to vectorization, or, in
some cases, to override the compiler analysis and tell
it to generate vector code anyway.

The impact of this was another solution to the P3

problem for vector computers. The vectorizing com-
piler allowed programmers to achieve vector perfor-
mance. It also allowed them to be more productive
than having to write machine language subroutines or
special syntax (such as vector syntax and Q8 calls
used in the Control Data STAR-100 and successors).
Other vendors developed vector processors, including
IBM, NEC, Fujitsu, Hitachi, Convex, even a vector Digi-
tal VAX, and each vendor also implemented a vectoriz-
ing compiler to at least match the capabilities of the
Cray compiler. This allowed vector programs to
achieve portability across a wide variety of vector
computers of the time. Again, the reason that the vec-
torizing compiler solved that P3 problem reasonably
well was that the machine performance model was
similar across many of these vector processors, and
all the vendors developed appropriate compilers. Pro-
gramming for vector operations on the inner loops
and optimizing memory access for stride-1 was more
than half the performance problem on any of these
target systems. Vectorizing compilers allowed pro-
grammers to remain within the standard language
features.

About 20 years later, the computer industry had
progressed to the point where developing and produc-
ing a new computer processor was becoming too
expensive for any low volume business. This meant
that supercomputer-specific processors were unprof-
itable and essentially abandoned. It was much less
costly to buy an array of commercial processor sys-
tems and combine them with a network. Many strate-
gies for programming across the network were
explored, and in the mid 1990s the message passing
interface (MPI) was documented by the MPI Forum.

MPI is implemented and presented as a library, and
intended to be the low-level interface for communica-
tion between computer nodes across a network. There
are a number of higher level frameworks built on MPI,
but none have achieved the level of standardization
and adoption of MPI itself. MPI was particularly suc-
cessful because it hid many of the details of the net-
work from the program, such as the protocol and
topology.

The impact of MPI is another P3 solution for the
supercomputers available from the mid 1990s for the
next 15 or 20 years. Some may argue that using MPI or
any framework based on MPI is not intrinsically a
highly productive programming environment, but it is
certainly more productive than programming in any
lower level framework. Portability is achieved because
every supercomputer or network vendor has an opti-
mized implementation of MPI taking advantage of the
features of their computer or network interface. And
performance is achieved when the programmer opti-
mizes for minimal messages and synchronization, and
for proper data and work distribution across the avail-
able nodes. An MPI program could perform well across
a wide variety of message passing supercomputers.

There were language-level approaches proposed
and implemented for managing network-level parallel-
ism, such as High Performance Fortran, but they
mostly failed. One reason is that making a bad syn-
chronization or communication decision was very
costly, and a compiler or runtime often made poor
decisions. Another was that different system vendors
had widely different efforts for such an approach, so
even if one vendor had a good implementation, code
written for that system was not portable to other sys-
tems. PGAS languages, including Fortran images and
coarrays, address these issues by exposing data place-
ment and communication to the programmer, basi-
cally at the same level as MPI.

SUCCESSFUL P3

Each of the three P3 points mentioned above were
developed in response to a new computer architec-
ture. They were successful because the various target
systems had a similar performance profile, and the
system vendors had the desire and will to provide per-
formant implementations of the appropriate system
software. Fortran and other programming languages
were introduced at the dawn of digital computing, to
hide the complexity of machine language and differen-
ces between machines. Vectorizing compilers were
introduced to exploit vector parallelism in the hard-
ware, and to hide the vector instruction details and

September/October 2021 Computing in Science & Engineering 41

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

the differences between vector instructions on differ-
ent machines. MPI was created to standardize control
of parallelism across a network of homogenous nodes,
to hide the network topology and communication
transport details.

Programmers still had to change and tune their
programs to expose and optimize the right kinds of
parallelism. To get the advantage of vector computers,
programmers had to retune their algorithms to expose
vector parallelism and rewrite parts of their programs.
They could either write SIMD intrinsics, or take advan-
tage of a vectorizing compiler on the inner loops. In
either case, the program needs the right data struc-
ture and the right algorithm to expose the right kind of
operations that benefit from SIMD instructions. The
question was how to express that SIMD parallelism.
SIMD intrinsics require the programmer to think about
SIMD register length and count, which can differ
between vendors and even between generations of
processors from the same vendor. Consider those pro-
grammers who recoded their Intel SSE intrinsics to
AVX intrinsics when the Intel Sandy Bridge processors
were introduced, only to have to recode them again
using AVX-512 intrinsics for the Intel Knights Landing
and Skylake processors. By depending on vectoriza-
tion, the rewriting and tuning effort pays off across a
wide range of target systems. By providing similar vec-
torization capabilities, the vendors and compilers
played an important role in the P3 solution.

Similarly, to take advantage of clusters, pro-
grammers had to rearchitect their programs at a high
level to compute over a subset of data on each node,
and to communicate among an array of cooperating
nodes. Because the performance models for different
clusters were similar, a rewrite to optimize or tune per-
formance for machine A was most likely also a good
decision for machines B and C.

A P3 solution is successful if it achieves good per-
formance, easy to use, and programmers do not have
to write target-specific code. Here I propose a
machine performance model that I argue character-
izes the important performance elements of a wide
range of current and future supercomputers. The
model will be useful when designing P3 algorithms and
programs by focusing on the important features that
affect performance regardless of the specifics.

P3 Machine Model
The proposed machine performance model is based
on four levels of parallelism: network, thread, SIMD,
and accelerator, and the associated data manage-
ment. For network-level parallelism, the model is a

network of independently executing nodes each with
local memory. Local memory access is very fast rela-
tive to remote access. The network protocol and
topology are unimportant. Network-level parallelism is
inherently scalable to as many nodes as one can
afford. Optimizing to minimize the impact of network
latency and bandwidth limitations is important.

For thread-level parallelism, the model is a set of
threads executing on homogeneous cores that all have
access to a large shared memory. The threads may out-
number the cores, in which case a multithreaded pro-
cessor or multithreading operating system will time-
share the cores among the threads. The memory may
be virtually and physically shared, but there may be
locality considerations that encourage partitioning the
cores into groups, where each group has faster access
to a subset or subdomain of the memory. The threads
may then be partitioned into a two-level hierarchy of
thread groups and threads, with each thread group
assigned to a single core group. Communication and
synchronization between threads in a single core group
will be faster than between threads in different core
groups. If data can be partitioned between the memory
subdomains and work partitioned across the thread
groups assigned to the appropriate core group, perfor-
mance can be further enhanced.

For SIMD parallelism, the model is synchronous
SIMD or vector operations in a single thread, opti-
mized when the data access pattern corresponds to
consecutive memory locations. Other data access
patterns (strided, indexed) can be supported, but with
a performance penalty.

Accelerators appear in this machine model as
another set of cores or core groups that are different
from the main CPU cores. Work must be explicitly tar-
geted at the accelerator, either manually by the pro-
grammer or automatically by the compiler or other
tool. Each accelerator may have its own memory,
shared among the accelerator cores, but distinct from
the memory of the CPU. Programming the accelerator
is very like programming the CPU on the node, with
thread and SIMD parallelism.

Currently, the most common compute accelerator
is a GPU. A GPU has a number of GPU cores organized
into processing engines. Each GPU thread of execu-
tion (CUDA thread or OpenCL work item) runs on a
single GPU core. However, a GPU core does not exe-
cute in the same way as a CPU core. To minimize the
number of gates used for instruction fetch and dis-
patch and to take advantage of the similarity of code
executed by graphics threads, GPU thread execution
is optimized for the case where groups of adjacent
GPU threads fetch and execute the same instruction

42 Computing in Science & Engineering September/October 2021

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

at the same time. The NVIDIA term for this group is a
warp, the AMD term is a wavefront. If all the threads
in a warp or wavefront follow the same execution
path, the GPU runs at full efficiency. If threads take
different paths (a different conditional branch), effi-
ciency suffers correspondingly. NVIDIA calls this
single-instruction, multiple-thread (SIMT) execution.
From the algorithm designer’s viewpoint, optimizing
performance for this execution style is essentially the
same as optimizing for SIMD execution: consecutive
loop iterations executing the same code path simulta-
neously and operating on adjacent data locations. The
different warps or wavefronts on a single processing
engine or on different engines execute more like dif-
ferent CPU threads, where a branch in one warp has
no effect on the performance of another warp. So the
same multilevel parallelism hierarchy applies to GPUs:
SIMD parallelism, implemented by the threads within
a warp or wavefront, thread-level parallelism, imple-
mented at the warp or wavefront granularity, and
thread-group parallelism, implemented by the warps
in all the CUDA thread blocks or OpenCL workgroups.

Other accelerators have been used and certainly
new accelerators will be developed in the future. How-
ever, there are only a limited number of ways to
improve performance with a new chip: more work per
clock (parallelism), faster clocks, and avoiding stalls,
where the most scalable of these is parallelism. Paral-
lelism can be done at themicroarchitectural level (mul-
tiple operations per clock, pipelining), or multiple cores
(or equivalent), or SIMD/vector parallelism. Previous
accelerators have used different combinations of
these. For instance, the Clearspeed5 processor had a
two-core processor with wide SIMD operations, and
the IBM PowerXCell 8i6 had eight synergistic process-
ing elements (SPEs), each with SIMD instructions. New
accelerators with any hope of benefiting from perfor-
mance portability will have some variation of multiple
processing elements or cores with SIMD operations,
andwill map into the samemachinemodel.

P3 ProgrammingModel
Now I propose a P3 programming model for expressing
parallelism on today’s machines. This programming
model depends on compilers and tools that are not yet
widely available, but there is evidence that they can be
implemented. The only barrier is the will to do so.

Network-level parallelism is addressed mostly with
MPI today, and this will remain dominant for some
time. MPI programming is quite mature, and gives the
basics to allow programmers to deal with work distribu-
tion, data communication, and synchronization across

the nodes of the network. Other approaches being
used include partitioned global address space lan-
guages, like coarrays in Fortran, remote direct memory
access (RDMA) approaches, like SHMEM,7 and tasking
runtimes, like Legion.8 These approaches have had
some success, and may become more popular and
even dominant over time. Any of these approaches can
be aP3 solution for network parallelism.

Shared-memory thread-level parallelism has gener-
ated an incredible number of programmingmodel solu-
tions. Such parallelism has even been introduced into
standard languages, such as C++ parallel algorithms
and Fortran do concurrent, which we refer to as stdpar.
This raises the very important question: If the program-
ming language itself can express parallelism, why do
we not use that? If the programming language parallel-
ism is missing something, how do we augment it,
improve it, or work around the limitation? The question
is not whether to use OpenMP or Kokkos or OpenACC;
it is why not use C++ parallel algorithms? Why not use
do concurrent? We argue that we should move to
stdpar programming, and we as a community should
push our vendors and tools builders to provide good
implementations of stdpar. The NVIDIA HPC compilers
now support stdpar, including an option to offload the
parallel operations to an attachedGPU. Our experience
with this has been very positive, and user feedback has
confirmed that this is the right direction to go.

Early adopters of our stdpar implementation have
been pleased to get the parallelism and performance
with no language extensions and no directives. A
recent example is STLBM, a double precision Lattice
Boltzmann Method using C++ parallel STL templates.9

The stdpar code is 11 times faster on an NVIDIA
Ampere A100 GPU than all 48 cores of an Intel Xeon
Gold 6240R, with no code changes, and is within 15% of
the corresponding optimized CUDA implementation.

STDPARMissing Features
We have noticed several features that the stdpar lan-
guages lack. Here we discuss some missing aspects,
and how we are addressing these in our stdpar
implementation.

One common pattern that is not available in either
language is a parallel loop with one or more integrated
reductions. Today, the programmer must save the
reduction values to a separate vector or array and
reduce those values in a separate operation. We are
investigating how to best address this, and are pro-
posing a reduce clause for the Fortran do concurrent
construct, similar to the reduction clause in OpenMP
and OpenACC.

September/October 2021 Computing in Science & Engineering 43

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

Another thing missing in stdpar is control of how to
exploit that parallelism. Which loop should be run in
parallel across threads, or run using SIMD instructions,
or collapsed? As mentioned, OpenMP and Kokkos and
RAJA give the programmer that level of control, in fact
require the programmer to specify that detail. In con-
trast, we have used the functionality in our OpenACC
implementation, which can automatically determine
how best to exploit many parallel constructs. OpenACC
separates parallelism identification from parallelism
exploitation. The OpenACC acc parallel loop construct
actually does say that the loop is data independent,
and in the absence of other clauses, the compiler choo-
ses whether to execute the loop iterations across
thread groups or threads or in SIMD mode, or all three.
Identifying parallel loops is entirely target-independent,
whereas choosing how to execute those loops may
depend on the body of the loop, the context in which
the loop appears, and the target architecture. We use
that decision process developed forOpenACC in stdpar
loops. Other implementations that have experience
with OpenACCwill have an advantage here.

There are four missing features dealing with accel-
erators in particular. One is control of whether to off-
load a parallel construct to an accelerator. Our
implementation chooses to offload all parallel con-
structs to the accelerator. This is not always an opti-
mal decision. Some constructs are parallel, but
because of low parallelism or data locality are best left
on the multicore CPU. Other constructs are serial, but
again because of data locality are best offloaded to
the accelerator. We are looking at ways of annotating
regions, either with directives or with naming conven-
tions, to give some control over offload decisions.

A second missing accelerator feature is control of
data placement. OpenMP and OpenACC manage cop-
ies of host data on the accelerator, and other models
have similar features. Our stdpar implementation
depends on changing all dynamically allocated data to
use CUDA Unified Memory, which lets the NVIDIA
CUDA GPU driver automatically migrate pages
between system and accelerator memory as needed.
This has some limitations, such as capturing all the
allocation sites and not being able to refer to stack
frame memory on the accelerator, but the perfor-
mance is generally quite good. All GPU vendors are
promising true unified memory in the future, so we
expect this to be a minor problem at that point. As
users, we should require unified memory from any
accelerator vendor, while allowing optional control
over memory placement and migration or replication.

A third missing accelerator feature is control of
asynchronous accelerator computation, allowing the

multicore CPU thread to run ahead after launching
accelerator operations. Today, our stdpar implementa-
tion runs the parallel offloaded operations synchro-
nously. What we really want is some sort of tasking
mechanism on the node, with optimized control for
accelerator tasks. Many approaches have been
designed for tasking, such as OpenMP inline tasks and
Cilk task functions, and hopefully one or more of them
will achieve standardization.

A final missing accelerator feature is control of
multiple accelerators on the node. Since stdpar does
not have any concept of accelerators, it certainly has
no concept of multiple accelerators. Currently, most
programs using multiple GPUs on a single node launch
multiple MPI ranks per node, with one GPU per MPI
rank. Our stdpar implementation depends on this, and
requires that each CPU thread use an API call to
select a single GPU as its accelerator. Our experience
with trying to manage multiple GPUs from a single
thread has found it to be a significant challenge both
to get it working correctly and to get it performing
well.

CONCLUSION
Productive performance portability is likely to require
a two-level programming model, one to address net-
work-level parallelism and another for parallelism on
the node. Network-level parallelism is likely to be dom-
inated by MPI for some time, but other approaches
are being aggressively developed and have strong sup-
porters. For node-level parallelism, the question is not
which of OpenMP or Kokkos or OpenACC or OneAPI10

(itself based on SYCL11) to adopt. That is why stdpar is
not used, standard language parallelism. The NVIDIA
HPC compilers already support this in C++ and For-
tran, including for GPU accelerators, providing evi-
dence that it can be an effective and efficient path for
parallel programming. Newer, higher productivity lan-
guages (such as Python or Julia) that support the scal-
able parallelism similar to that in C++ and Fortran,
either natively or with extensions, should be no more
of a challenge to implement and optimize. This
requires some intelligence in the compiler to offload
work from the programmer to the tool. But offloading
work from the programmer is exactly the job of a good
compiler. For the programmer, less programming is
more productive.

There will always be some regions of a program
that require lower level optimizations, the same way
that some routines are written in machine code today.
This means that any stdpar implementation must be
fully interoperable with other parallel code strategies,

44 Computing in Science & Engineering September/October 2021

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

which the NVIDIA HPC compilers have worked hard to
achieve. There are some performance features that
are not available in stdpar today. This means we have
to either work to enhance the standard languages, or
work harder with the system vendors and in the com-
pilers to support them. It is work, but work done at the
system hardware and software level improves the per-
formance, portability, and productivity of all applica-
tion programmers.

REFERENCES
1. H. C. Edwards and C. R. Trott, “Kokkos: Enabling

manycore performance portability through

polymorphic memory access patterns,” J. Parallel

Distrib. Comput., vol. 74, no. 12, pp. 3202–3216, 2014.

2. D. A. Beckingsale et al., “RAJA: Portable performance

for large-scale scientific applications,” Proc. IEEE/ACM

Int. Workshop Perform., Portability Product. HPC,

Denver, CO, USA, Nov. 2019, pp. 71–81.

3. IBM, “Fortran automatic coding system for the IBM

704,” Oct. 1956. [Online]. Available: https://archive.

computerhistory.org/resources/text/Fortran/

102649787.05.01.acc.pdf

4. L. Higbie, “Vectorization and conversion of fortran

programs for the Cray-1 (CFT) compiler,” Cray Res. Inc.,

Tech. Note 2240207, 1978.

5. I. N. Kozin, “Evaluation of clearspeed accelerators for

HPC, science and technology facilities council,”

Daresbury Lab., Warrington, U.K., Tech. Rep. DL-TR-

2009-001, Aug. 2009. [Online]. Available: http://epubs.

stfc.ac.uk

6. K. J. Barker et al., “Entering the petaflop era: The

architecture and performance of roadrunner,” in Proc.

ACM/IEEE Conf. Supercomput., Nov. 2008, pp. 1–11, doi:

10.5555/1413370.1413372.

7. B. Chapman et al., “Introducing OpenSHMEM, SHMEM

for the PGAS community,” in Proc. Partitioned Glob.

Address Space Conf., Houston, TX, USA, Oct. 2010,

doi: 10.1145/2020373.2020375.

8. M. Bauer, S. Treichler, E. Slaughter, and A. Aiken,

“Legion: Expressing locality and independence with

logical regions,” in Proc. Int. Conf. High Perform.

Comput., Netw., Storage Anal., Nov. 2012, pp. 1–11,

Art. no. 1, doi: 10.5555/2388996.2389086.

9. J. Latt, “Fluid dynamics on GPUs with C parallel

algorithms: State-of-the-art performance through a

hardware-agnostic approach,” presented at the GPU

Technol. Conf., Apr. 2021. [Online]. Available: https://

www.gitlab.com/UnigeHPFS/stlbm

10. Intel Corp., “Intel oneapi DPC /C compiler developer

guide and reference,” Apr. 2021. [Online]. Available:

https://software.intel.com/content/dam/develop/

external/us/en/documents/oneapi_dpcpp_cpp_

compiler.pdf

11. J. R. Hammond, M. Kinsner, and J. Brodman, “A

comparative analysis of Kokkos and SYCL as

heterogeneous, parallel programming models for C

applications,” in Proc. Int. Workshop OpenCL, 2019,

pp. 1–2, doi: 10.1145/3318170.3318193.

MICHAEL WOLFE is with NVIDIA Corporation, Hillsboro,

OR, USA. He received the Ph.D. degree from the University of

Illinois at Urbana in 1982, and has worked on parallel compiler

analysis and optimization for the past 45 years. He received

the SC Test of Time Award in 2017 for his Supercomputing

1989 paper, “More iteration space tiling,” and is the author

of High Performance Compilers for Parallel Computing

(Addison-Wesley, 1996). He is a member of the ACM. Contact

him at mwolfe@nvidia.com.

September/October 2021 Computing in Science & Engineering 45

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

https://archive.computerhistory.org/resources/text/Fortran/102649787.05.01.acc.pdf
https://archive.computerhistory.org/resources/text/Fortran/102649787.05.01.acc.pdf
https://archive.computerhistory.org/resources/text/Fortran/102649787.05.01.acc.pdf
http://epubs.stfc.ac.uk
http://epubs.stfc.ac.uk
http://dx.doi.org/10.5555/1413370.1413372
http://dx.doi.org/10.1145/2020373.2020375
http://dx.doi.org/10.5555/2388996.2389086
https://www.gitlab.com/UnigeHPFS/stlbm
https://www.gitlab.com/UnigeHPFS/stlbm
https://software.intel.com/content/dam/develop/external/us/en/documents/oneapi_dpcpp_cpp_compiler.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/oneapi_dpcpp_cpp_compiler.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/oneapi_dpcpp_cpp_compiler.pdf
http://dx.doi.org/10.1145/3318170.3318193

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

