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Abstract—
We present a novel distributed memory Tridiagonal solver library, targeting large-scale systems
based on modern multi-core and many-core processor architectures. The library uses methods
based on both approximate and exact algorithms. Performance comparisons with the
state-of-the-art, using both a large Cray EX system and a GPU cluster show the algorithmic
trade-offs required at increasing machine scale to achieve good performance, particularly
considering the advent of exascale systems.

Index Terms: linear solvers, high performance computing.

INTRODUCTION

Tridiagonal systems of equations arise in nu-
merous fields particularly as part of the numer-
ical approximation of multidimensional Partial
Differential Equation (PDEs). They frequently

appear in Computational Fluid Dynamics (CFD),
Computational Electro-Magnetics (CEM), com-
putational finance and image processing. Many
industrial and research problems require the so-
lution of a large number of independent tridiag-
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onal systems, often in multiple dimensions. They
offer significant opportunities for exploiting the
massive parallelism available on modern multi-
core CPU and many-core GPU devices. With the
advent of such hardware, recent work [1] re-
examined the choice between different tridiag-
onal solution algorithms (Thomas [2], PCR [3]
and Hybrid). However, many real-world problems
require such algorithms to work efficiently over
multiple CPU/GPU devices due to the need for
compute and memory resources beyond a single
node.

A good example is high-fidelity simulations
such as the ones performed with the Xcom-
pact3d [4] framework, requiring the solution of
up to 150 batches of tridiagonal systems at each
time step, to compute derivatives and interpola-
tions using implicit high-order finite-difference
schemes. For a production problem with 10243

mesh nodes, which represents for instance a wind
farm of several kilometers squared with a mesh
node every 2 meters, this would require a cluster
with more than 80 GPUs to solve 10242 systems,
each with length of 1024 for a single batched
solve (of which there are 150 per timestep). Look-
ing at exascale systems, such simulations will
be based on 100-1000 billion mesh nodes, and
performed with 10-100 million cores for hundreds
of thousands time steps.

Such problems mean that tridiagonal solver
algorithms over distributed memory for these
multi-core/many-core devices still require careful
investigation in terms of performance and espe-
cially scalability. This is imperative in the current
run-up to exascale systems in high performance
computing where the software capabilities of ex-
ploiting such systems crucially depend on the
scalability of numerical simulation applications
and their underpinning algorithms. In this arti-
cle we investigate the state-of-the-art in multi-
core/many-core algorithms for tridiagonal solvers
for distributed-memory systems and re-examine
the algorithmic trade-offs required at increasing
machine scale to achieve good performance. The
insights lead to the development of a new, highly
scalable implementation extending the single-
node work of László et al [1].

This article is divided into three parts. The
first presents the core algorithms for the solution
of tridiagonal systems. The second investigates

their extension to distributed memory-based sys-
tems and implications to performance at increas-
ing scale. Third, the best implementations are
used to solve a number of large-scale problems,
analysing performance on CPU and GPU clus-
ters. We conclude the article with lessons learnt,
describing the current release of the solver as an
open source software library named Tridsolver1.

TRIDIAGONAL SYSTEMS SOLVER
ALGORITHMS
Tridiagonal systems solvers arise from the need to
solve a system of linear equations as given in (1)
or its matrix form of Ax = d given in (2), where
a0 = cN−1 = 0.

aiui−1 + biui + ciui+1 = d,

i = 0, 1, . . . , N − 1
(1)




b0 c0 0 . . . 0
a1 b1 c1 . . . 0
0 a2 b2 . . . 0
...

...
...

. . .
...

0 0 . . . aN−1 bN−1







u0

u1

u2

...
uN−1



=




d0
d1
d2
...

dN−1




(2)

The solution to such systems is well known.
Thomas [2] presented a sequential algorithm
while Cyclic Reduction (CR) [5] and Parallel
Cyclic Reduction (PCR) [3] are inherently par-
allel. The latter has been used extensively to
implement solvers on GPUs [1], [6]. Additionally,
combinations of Thomas and PCR have been
used in a hybrid algorithm demonstrating better
performance in several cases [1], [7]. In most
applications, the tridiagonal systems are scalar
where there is only one unknown per grid point.
However multiple unknowns leading to block-
tridiagonal structures do occur in areas such as
CFD. In this article we focus on scalar tridiagonal
systems, noting that the same algorithms extend
naturally to block-tridiagonal systems.

The Thomas Algorithm (Algo. 1), is a spe-
cialised form of Gaussian elimination. It consists
of a forward pass to eliminate the lower diagonal
elements, ai of the tridiagonal matrix, by adding
a multiple of the row above. A backward pass
then follows by using the modified ci values
from the last index to the first. This algorithm
is inherently serial as each iteration of the loops

1https://github.com/OP-DSL/tridsolver/ doi:
10.5281/zenodo.5564551
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has a dependency on the previous iteration, taking
2N steps.

Algorithm 1 thomas(a, b, c, d)

1: d∗0 ← d0/b0
2: c∗0 ← c0/b0
3: for i = 1, 2, ..., N − 1 do
4: r ← 1/(bi − aic

∗
i−1)

5: d∗i ← r(di − aid
∗
i−1)

6: c∗i ← rci
7: end for
8: for i = N − 2, ..., 1, 0 do
9: di ← d∗i − c∗i di+1

10: end for
11: return d

In contrast, the PCR algorithm (Algo. 2), as-
sumes the matrix is normalized so that bi = 1 and
then for each matrix row i, subtracts multiples
of rows i ± 20, 21, 22, ..., 2P−1, where P is the
smallest integer such that 2P ≥ N . Each iteration
of the PCR algorithm reduces each of the current
systems (a(p−1), c(p−1), d(p−1)) into two systems
of half the size (a(p), c(p), d(p)). After P steps,
all of the modified a(P ) and c(P ) coefficients
become zero, leaving values for the unknowns
ui in d

(P )
i . In PCR, the iterations of the inner

Algorithm 2 pcr(a, c, d)

1: for p = 1, 2, ..., P do
2: s← 2p−1

3: for i = 0, 1, ..., N − 1 do
4: r ← 1/(1−a(p−1)

i c
(p−1)
i−s −c

(p−1)
i a

(p−1)
i+s )

5: a
(p)
i ← −r(a

(p−1)
i a

(p−1)
i−s )

6: c
(p)
i ← −r(c

(p−1)
i c

(p−1)
i+s )

7: d
(p)
i ← r(d

(p−1)
i − a

(p−1)
i d

(p−1)
i−s −

c
(p−1)
i d

(p−1)
i+s )

8: end for
9: end for

10: return d(P )

loop do not depend on each other, allowing mul-
tiple threads to be used to solve each tridiagonal
system. PCR is more computationally expensive
than the Thomas algorithm. Nevertheless it is
well suited for implementations on modern multi-
core/many-core architectures with high computa-
tional capabilities. The CR algorithm is similar

to PCR, but consists of a forward and backward
pass. The forward pass of CR is the same as the
PCR algorithm but with an additional reverse pass
that performs a back solve. This results in fewer
operations overall but exhibits less parallelism
and requires twice as many passes.

Hybrid Algorithms
Combining Thomas with PCR has shown to re-
sult in the best performance on GPUs [1]. The
tridiagonal system is split into subsystems of
size M , each of which is handled by a separate
thread. Each subsystem is solved using a modified
Thomas algorithm where, in a forward pass (see
Algo. 3) each unknown is expressed in terms of
two unknowns, u0 and uM−1:

a∗
iu0+ui+c∗iuM−1 = d∗i , i = 1, 2, ...,M−2.

The forward pass results in a reduced tridiag-
onal system made up of the unknowns at the
beginning and end of each subsystem, as can be
seen in Figure 1. How this reduced system is
solved has a significant impact on the overall
performance of the solver. Options for solving
this include the previously mentioned algorithms.
Finally, the result from the reduced system, is
substituted back into the individual subsystems,
running a backward pass to solve each subsystem
(see Algo. 4).




1 c∗0
a∗1 1 c∗1
a∗2 1 c∗2
a∗
3 1 c∗3

a∗
4 1 c∗4

a∗5 1 c∗5
a∗6 1 c∗6
a∗
7 1 c∗7

a∗
8 1 c∗8

a∗9 1 c∗9
a∗10 1 c∗10
a∗
11 1







u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10
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d∗
0

d∗1
d∗2
d∗
3

d∗
4

d∗5
d∗6
d∗
7

d∗
8

d∗9
d∗10
d∗
11




Figure 1: Tridiagonal matrix split into 3 subsystems af-
ter the hybrid Thomas-PCR forward pass [1]. The reduced
system is shown in bold and M = 4.

The Thomas-PCR implementation on
NVIDIA GPUs developed by László et al [1]
has a key advantage where up to a certain size
of system, the entire subsystem can be stored in
the registers of a warp (32 CUDA threads). It
can outperform the other previously described
algorithms, until the subsystem is too large
to fit in a warp’s registers. Once this limit is
reached, a Thomas algorithm optimized for GPU
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Algorithm 3 hybrid_forward(a, b, c, d)

1: for i = 0, 1 do
2: d∗i ← di/bi
3: a∗

i ← ai/bi
4: c∗i ← ci/bi
5: end for
6: for i = 2, 3, ...,M − 1 do
7: r ← 1/(bi − aic

∗
i−1)

8: d∗i ← r(di − aid∗i−1)
9: a∗

i ← −raia
∗
i−1

10: c∗i ← rci
11: end for
12: for i = M − 3,M − 4, ..., 1 do
13: d∗i ← d∗i − c∗i d

∗
i+1

14: a∗
i ← a∗

i − c∗i a
∗
i+1

15: c∗i ← −c∗i c∗i+1

16: end for
17: r ← 1/(1− c∗0a

∗
1)

18: d∗0 ← r(d∗0 − c∗0d
∗
1)

19: a∗
0 ← ra∗

0

20: c∗0 ← −rc∗0c∗1
21: return a∗, c∗, d∗

Algorithm 4 hybrid_backward(a∗, c∗, d∗)

1: d0 ← d∗0
2: for i = 1, 2, ...,M − 1 do
3: di ← d∗i − a∗

i d
∗
0 − c∗i d

∗
M−1

4: end for
5: dM−1 ← d∗M−1

6: return d

memory accesses was shown to outperform the
Thomas-PCR hybrid.

Regardless of the algorithm used, solving
tridiagonal systems on parallel systems is con-
sidered to be memory bandwidth bound, espe-
cially on GPUs [1]. Designing the memory access
patterns of the algorithms to give coalesced and
aligned memory accesses is a key issue.

Iterative Solutions
We have considered only algorithms providing
exact solutions to tridiagonal systems. Iterative
methods with approximate solutions are also
available, such as the widely used Jacobi method.
Such approaches are applicable to solve general
systems resulting in matrices that are diagonally
dominant, not only tridiagonal systems. The solu-

tion to Ax = d is sought starting from an initial
guess for the unknowns, iterating until a given
convergence criterion is met. Algo. 5 details the
Jacobi method applied to a tridiagonal system,
where a, b and c are arrays holding the three
diagonals and d holds the right hand side of the
equation.

Algorithm 5 jacobi(a, b, c, d)

1: p← 1
2: while Not Converged do
3: x

(p)
0 ←

(
d0 − c0x

(p−1)
1

)
/b0

4: for i = 1, ..., N − 2 do
5: x

(p)
i ←

(
di − aix

(p−1)
i−1 − cix

(p−1)
i+1

)
/bi

6: end for
7: x

(p)
N−1 ←

(
dN−1 − aN−1x

(p−1)
N−2

)
/bN−1

8: checkIfConverged()
9: p← p+ 1

10: end while
11: return x(p)

Each iteration requires 5 operations per grid
point for tridiagonal matrices, with an additional
cost of checking the convergence of the solution
within a desired tolerance (approximate solution).
So while an iteration of the Jacobi method is
cheaper than a direct approach, multiple iterations
are needed, with many iterations required for
poorly conditioned systems.

DISTRIBUTED MEMORY
ALGORITHMS
Several algorithms have been proposed for which
the tridiagonal matrices can be split over multiple
processes, with TridiagLU [8] providing a state-
of-the-art implementation. Many of these algo-
rithms divide the system into partitions and form
a smaller decoupled tridiagonal system connect-
ing the partitions (reduced system). In TridiagLU
the partitioning is the MPI decomposition and
each MPI process holds a single row from the
reduced system.

The reduced system is solved iteratively using
the Jacobi method. Instead of checking for con-
vergence, an optional estimate of iterations for
convergence can be provided to TridiagLU (to
avoid the residual calculation with extra global
communications). However, this limits its use to
domains where it is possible to provide a good es-
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timate of the iterations required. For cases where
estimating an iteration count for convergence is
not practical, TridiagLU can calculate a global
norm to check for convergence at the expense of
some performance.

TridiagLU also has the option to gather a
reduced system, corresponding to one tridiagonal
system, onto a single MPI process and solve it
on that MPI process. The result is then scattered
back to the relevant MPI processes after the
reduced solve. Different reduced systems in the
batch of tridiagonal systems, will be gathered
to different MPI processes so that the load is
balanced. Naturally, the use of global collectives
degrades performance when using these options.

The new distributed memory tridiagonal
solver that we present builds on the hybrid
Thomas-PCR algorithm detailed in the previous
section. We implemented multiple variations of
this hybrid algorithm but the overall structure
of the distributed tridiagonal solver can be sum-
marized as follows. Each subsystem of size M
belongs to a separate MPI process, which per-
forms the hybrid Thomas-PCR forward pass. This
produces a reduced system with two rows per
MPI process. The solution to the reduced system
is implemented in a number of ways, result-
ing in different performance characteristics over
distributed memory systems. Once the reduced
system is solved, the backward pass of the hybrid
Thomas-PCR is performed on each MPI process.

The reduced system can be handled using
several strategies. It can be gathered onto a single
MPI process which then solves it and scatters
the results back to the other MPI processes. This
gather-scatter (GS) implementation can also be
slightly modified to obtain an allgather (AG)
implementation where the reduced system is gath-
ered onto all MPI processes and then solved
on each process. AG removes the need for the
scattering of the results. Both GS and AG require
excessive global communications which naturally
leads to poor scaling.

The PCR or Jacobi methods can be used to
avoid global collectives. PCR would follow the
same algorithm as described previously, but with
the addition of point to point MPI communi-
cations during each iteration of the algorithm.
Therefore, it will carry out MPI communications
with processes successively further away for the

later iterations of the PCR solve. A further al-
ternative is to use the iterative Jacobi method
on the reduced system similar to the TridiagLU
implementation to obtain an approximate solution
to the reduced system. Again, there is the option
to provide an estimated number of iterations or
to check for convergence. The Jacobi solve for
the reduced system has the advantage that it only
requires MPI processes to communicate with their
neighbours. However, if required to check for
convergence, then its near neighbour communica-
tion advantage gets nullified as a global collective
communication is needed for each iteration (or
every n number of iterations). Considering the
above approaches, the key advantage of PCR for
the reduced system is that it avoids the need for
collective communications while at the same time
providing an exact solution.

An improvement to the forward pass of the
hybrid Thomas algorithm (Algo. 3) is to combine
it with the the forward of TridiagLU [8]. Algo. 6
normalises each row and forms the a∗ column
from Figure 1 and c∗0 for a subdomain resulting
in a reduced system with one row per subdomain.
This relaxes the need to express each unknown
in terms of u0 and uM−1, instead each ui, i ∈
1, ...M − 1 will be expressed with u0 and ui+1:

a∗
iu0+ui+c∗iui+1 = d∗i , i = 1, 2, . . . ,M−1.

Although this introduces dependencies inside a
partition, the backward substitution pass still re-
quires only a single sweep without extra memory
movements. Both the original and modified algo-
rithms are trivially scalable since there is no com-
munication involved. The reduced computational
cost of the forward pass and the smaller reduced
system size (one row per MPI process instead of
two) leads to better overall performance, hence
Tridsolver uses Algo. 6 on GPUs when the re-
duced system is solved with the Jacobi or PCR
methods.

TRIDIAGONAL SYSTEMS IN 3D
APPLICATIONS
A tridiagonal system by its nature represents a
one dimensional problem, however, applications
of interest are commonly 2 or 3 dimensional.
Tridiagonal systems are formed in these appli-
cations by solving along one of the coordinate
axes - and there will be as many independent
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Algorithm 6 forward_sweep(a, b, c, d)

1: d∗1 ← d1/b1
2: c∗1 ← c1/b1
3: a∗

1 ← a1/b1
4: b∗0 ← b0 − c0a

∗
1

5: d∗0 ← d0 − c0d
∗
1

6: c∗0 ← −c0c∗1
7: for i = 2, 3, ...,M − 2 do
8: r ← 1/(bi − aic

∗
i−1)

9: d∗i ← r(di − aid
∗
i−1)

10: a∗
i ← −raia

∗
i−1

11: c∗i ← rci
12: b∗0 ← b∗0 − c∗0a

∗
i

13: d∗0 ← d∗0 − c∗0d
∗
i

14: c∗0 ← −c∗0c∗i
15: end for
16: r ← 1/(bM−1 − aM−1c

∗
M−2)

17: d∗M−1 ← r(dM−1 − aM−1d
∗
M−2)

18: a∗
M−1 ← −raM−1a

∗
M−2

19: c∗M−1 ← rcM−1

20: d∗0 ← d∗0/b
∗
0

21: c∗0 ← c∗0/b
∗
0

22: a∗
0 ← a0/b

∗
0

23: return a∗, c∗, d∗

systems as there are discretization points along
the other axes. For example, the Alternating
Direction Implicit (ADI) [9] method, preferred
in computational finance, works by repeatedly
solving tridiagonal systems along different axes.
In ADI the ai, bi, ci, di coefficients are calcu-
lated for each grid point, in a way that matches
the underlying data structure of the application;
data for the diagonals are stored contiguously in
either a row-major (Z is contiguous, Y, X are
strided) or more commonly a column-major (X
is contiguous, Y and Z are strided) format. This
poses a challenge for algorithms that then solve
multiple tridiagonal systems simultaneously; co-
efficients for an individual system will be laid
out differently, depending on the direction of the
solve. If we solve along the X direction (and
use a column major format) for example, then
coefficients for the same system are contiguous
in memory, followed by the coefficients for the
next system, etc. If however, we solve along the
Z direction, then coefficients for the same row
of different systems are laid out contiguously,

followed by the next row, etc.
The TridiagLU library can only handle a data

layout corresponding to a Z solve as described
above, and so in a 3D application one would
have to appropriately transpose data for X and Y
solves - an operation notoriously difficult to do
efficiently due to poor memory access patterns.
On the other hand, the tridiagonal solver library
developed in this work, (which we henceforth call
the Tridsolver library), was designed from the
outset to handle higher dimensional applications
carrying out 1D solves in different directions - of
course as with the approaches of László et al [1]
the implementations are still impacted by memory
access patterns.

A number of optimizations help improve per-
formance on modern systems. On CPUs the Y
and Z dimension solves (see next section) can
be vectorized, by splitting the tridiagonal systems
into strips of consecutive memory and adding
compiler pragma omp simd on the appropriate
loops. On the GPU a key issue is the uncoalesced
memory accesses in the X dimension. Local
transposition using vector shuffles [1] provide a
solution, where threads of a warp cooperate to
read a 32×16 or 32×8 (depending on single or
double precision mathematics) block of the YZ
plane at once. This corresponds to either 16 or 8
elements of 32 neighbouring tridiagonal systems.
After loading this block of data, the elements of
the tridiagonal system are not necessarily held by
the thread solving that system. The shfl xor()
intrinsic is then used to swap the elements to the
correct threads. A similar operation is performed
in reverse when storing intermediate values and
the solution of the tridiagonal systems.

EVALUATION AND PERFORMANCE
To study the performance and scalability of the
Tridsolver library, we designed benchmarks (pub-
lished with the repository) for two of the UK’s
HPC systems: ARCHER2, a CrayEX system with
AMD Rome CPUs (2 × 64 cores per node) and
256 GB of RAM, and Cirrus, a HPE/SGI system
with 36 GPU nodes, each with 4×NVIDIA V100
16GB GPUs, interconnected with NVLink, and
FDR Infiniband between nodes.

As a baseline, we compared against the
TridiagLU library on the CPU - which only sup-
ports distributed memory parallelism with MPI.
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For 3D problems, TridiagLU assumes the same
coefficients from different systems are packed
together, corresponding to a Z solve. We include
an extra copy of the a, b, c coefficient arrays in
our timing as these are overwritten by the solve
algorithm, but the original values are required
by our applications. For the solution of the re-
duced system, we evaluated both the exact solver
approach with GS and the approximate iterative
approach (Jacobi) which includes allreduce calls
to determine whether the solution has converged.

We evaluated the performance of our library
(marked with TridSlv) utilizing, for the reduced
system solve, both exact solution approaches
(with AG, GS, PCR) as well as the approxi-
mate iterative approach (Jacobi), including con-
vergence checks. For the solution of the reduced
system we evaluated solves in all directions, and
directly compared to TridiagLU in Z. To avoid
differences in convergence at increasing scale, we
fixed the number of Jacobi iterations at 10 as done
by Ghosh et al [8].

Weak Scaling - ARCHER2
For weak scaling, where problem size increases
with machine size, we picked 5123 grid points
per ARCHER2 node, a typical problem size used
by frameworks such as Xcompact3D. Currently,
ARCHER2 only has 1024 nodes in 4 cabinets,
and considering that tridiagonal solves in various
directions are completely independent, we tested
weak scalability only along one “line” of nodes:
for X solve N×1×1 nodes and (N∗512)×512×
512 grid points, for Y solve 1× N×1 nodes and
512×(N ∗512)×512 grid points, and for Z solve
1×1× N nodes and 512×512×(N ∗512) grid
points. With pure MPI, we have 128 processes per
node, which we distribute 4×4×8 along the X,Y,
and Z directions respectively.

Weak scaling performance along different di-
rections varies significantly (see Figure 2a) - the
X solve is the least amenable to parallelisation
and vectorisation with the Thomas algorithm be-
ing up to 1.7× slower than the Y solve due to
the diagonals for each system is contiguous in
memory when solving along the X dimension.
The Y and Z solves lend themselves to trivial
parallelisation. However, as the algorithm steps
from row to row, the corresponding coefficients
are separated by larger strides (more so in case

of Z) leading to degraded TLB performance,
as documented before [1]. The performance on
a single node heavily depend on the possible
memory bandwidth. On a single ARCHER2 node
the hybrid Thomas forward step achieves 270.2
GB/s for X and Y solve and 225 GB/s for Z
solve the backward achieves 307.7 GB/s, 275.8
GB6s 268.5 GB/s for X, Y, and Z solves re-
spectively. Although the theoretical maximum for
the AMD Rome CPU is 204.8 GB/s per socket
the Triad (simple addition kernel) kernel in the
BabelStream [10] benchmark achieves 288 GB/s
as well. Comparing different solvers, as expected
the Tridsolver Allgather (AG) and Gather-Scatter
(GS) approaches (Figure 2b) have poor scaling
efficiency (60%), and while TridiagLU GS scales
somewhat better (48-94%) due to the distributed
nature of reduced system solves, scaling effi-
ciency remains low due to high communication
costs. In contrast, the Jacobi approximate solver
(jac) has excellent scalability (90-98%) due to
its low volume neighbour-to-neighbour commu-
nication patterns. The Tridsolver with PCR for
reduced system solve comes very close to Jacobi
in terms of scaling efficiency - only falling behind
at larger node counts. This is due to PCR hav-
ing overall worse (long-distance) communication
patterns, but communication volume scale loga-
rithmicly with the number of processes along the
solve dimension.

We observed that since forward and backward
steps involve no communications, they scale triv-
ially. The reduced system solve with Jacobi also
shows good scaling with 92-96% efficiency. How-
ever, solving the reduced system with PCR sees
a steady fall with a 70-74% scaling efficiency.

Strong scaling - ARCHER2
For strong scaling, where a large single global
problem is solved at increasing machine scale,
we used a grid size of 8192 in the direction of
the solve, and 512 in other directions, allowing
us to scale from 1 node to 128 nodes. We as-
signed 4× 4× 8 processes per node in the X,Y,
and Z directions respectively. Figure 2c shows
the results in different directions and Figure 2d
compares different solvers. Here, the logarithmic
scale for the y axis reduces the visibility of the
difference between the X solve and other solves.
Nevertheless it is consistent with the slowdown
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Figure 2: ARCHER2 scaling: (a),(b) - Weak-scaling, 5123 grid points per node. (c),(d) - Strong-scaling,
8192 points in the direction of solve, and 512 in others. AG - AllGather, GS - Gather-Scatter

observed when weak scaling. Even superlinear
scaling (102-108%) can be observed on up to 8
nodes, with both Jacobi and PCR, owing to the
continuously reducing number of TLB and LLC
misses. However, at larger scales communication
costs dominate; using Jacobi for the reduced
solve, efficiency drops to 80% above 32 nodes,
and using PCR to 82-56% above 32 nodes. At
128 nodes for the Z solve, the reduced system
solve phase accounts for 60% of total time with
Jacobi, and 85% with PCR.

Comparing the scalability of different algo-
rithms in Figure 2d, we see that the Tridsolver
AG and GS variants slow down early and actually
run out of memory due to the large size of the
reduced system. The PCR solver shows competi-
tive scaling compared to the approximate Jacobi
methods - it is within a factor of 2, and scales
further than the TridiagLU library.

Weak Scaling - Cirrus
For weak scaling on GPUs, we kept the problem
size per GPU at 5123 in order to compare with
the CPU results, and scaled the problem in the
direction of the solve, only performing MPI de-
composition in that direction. We did not compare
against other libraries as we are not aware of other

MPI-enabled GPU tridiagonal solver libraries.
Tridsolver implementations support any MPI dis-
tribution by copying data to the host (we used
MPT 2.22), then making transfers between CPUs,
as well as GPU Direct-enabled MPI distributions
(we used OpenMPI 4.1.0), where transfers take
place directly between GPUs. Best results were
achieved with GPU Direct.

Looking at results from Cirrus, in Figure 3a
we compare the performance when using Jacobi
and PCR variants for solving the reduced system
in different directions (note that Y and Z solves
are virtually indistinguishable on the plot). As
on the CPU, the performance of X solves is
degraded by poor memory access patterns. On
a single GPU X solve in Tridsolver achieves
458 GB/s bandwidth while the Y and Z solves
achieve 731 GB/s and 739 GB/s respectively (the
Triad kernel in the BabelStream [10] benchmark
achieves 821 GB/s on a single V100 GPU).
We compared Tridsolver on a single V100
GPU to the batch tridiagonal solver functions
in the cuSPARSE. Currently cuSPARSE
has two batch tridiagonal solver funciton:
cusparse<t>gtsv2StridedBatch()
uses the same memory layout as the X solve
in Tridsolver and achieves 525.5 GB/s, while
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Figure 3: Cirrus scaling (MPI+CUDA) :(a),(b) - Weak-scaling, 5123 points per GPU. (c),(d) - Strong-
scaling, 2048 points in the direction of solve, 512 points in others. HC - host copy, GD- GPU direct.

cusparse<t>gtsvInterleacedBatch()
comparable to the Z solve and achieves 725.6
GB/s. On Cirrus, there is a marked decline
in parallel efficiency beyond 4 GPUs. Up to
4 GPUs, communications are done via the
high-speed NVLink interconnect, but beyond
that, there is inter-node communication through
a slower Infiniband connection. Studying
performance breakdowns in more detail, we see
that in case of the Y and Z solves total time takes
between 0.13 − 0.21 (Jacobi) or 0.13 − 0.33
(PCR) seconds. The computational part takes
0.13 seconds (forward and backward steps). For
up to 4 GPUs the cost of communications is less
than 8% and 4% of total runtime for Jacobi and
PCR respectively, however beyond 4 GPUs, this
increases to 22-27% for Jacobi and 27-53% for
PCR.

Figure 3b compares performance of the
baseline MPI implementation using explicit host
copies (HC) with using GPU Direct (GD) - we
also show the scalability of the Allgather (AG)
version. AG clearly shows the impact of increas-
ing communication volume as the number of
GPUs increase, leading to dramatic slowdowns.

On Jacobi and PCR, the GD version is up to
1.69× faster. Note that on a single GPU the
PCR and Jacobi versions are 1.8× faster than the
AG version. Since on a single node there is no
need for a reduced system solve the performance
improvement is purely due to the adoption of
the new improved Thomas forward and backward
pass.

Overall we see that a single GPU is 4.6×
faster than a single ARCHER2 node running with
a pure MPI parallelization in the Y and Z direc-
tions. This difference arise from the overhead of
the MPI communication on the CPU node and
the bandwidth limitations of the two hardware. At
32 GPUs/nodes, this is reduced to 3× for Jacobi
and 2.1× for PCR due to the comparatively
worse communications scaling on the Cirrus GPU
cluster.

Strong Scaling - Cirrus
The largest problem that can fit in a single GPU
has 2048 points in the direction of solve and
512 in others - which then can be strong scaled
up to 32 GPUs. Results in Figure 3c detail
again the Y and Z solves only showing marginal
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differences in performance. As before we see a
drop in scaling efficiency beyond 4 GPUs, which
are in a single node interconnected with NVLink;
over 93% up to 4 GPUs, then 55-66% for Ja-
cobi and 39-57% for PCR. As observed during
weak scaling, communications become more of
a bottleneck for the PCR solver: at 32 GPUs
86% of total time is communications, compared
to Jacobi’s 72%. The differences between HC and
GD versions are even more prominent in strong
scaling (see Figure 3d). GD is up to 3.25× faster.

CONCLUSION
In this article we investigated the state-of-the-
art in multi-core/many-core algorithms for tridi-
agonal solvers for distributed-memory systems
and re-examined the algorithmic trade-offs for
obtaining better scaling and runtime performance
at increasing machine scale. The exploration led
to the development of an improved distributed-
memory solver with scalable performance for
large number of MPI nodes, based on the hybrid
Thomas-PCR algorithm, giving exact solutions to
the problem, by extending and augmenting a pre-
vious single-node library to execute over clusters
of CPUs and GPUs. Further developments led
to implementing a new improved Thomas-PCR
forward pass and integrating iterative techniques,
based on a Jacobi solver, which provided approx-
imate solutions that can be used as an option for
the solution of the reduced system resulting on
the boundaries of MPI partitions.

Performance evaluation on a CrayEX system
showed superior performance on realistic problem
sizes specifically for ADI applications. The new
solver with the Jacobi solver for the reduced
system obtained 90-98% scaling efficiency. How-
ever, solving the reduced system with the PCR
algorithm provided competitive performance. It
achieved almost perfect scaling, tested up to 16
ARCHER2 nodes along the solve dimension,
with the added advantage of providing an exact
solution.

Execution on a GPU cluster demonstrated that
the Jacobi and PCR solvers (for the reduced
system solve) scaled with 93% efficiency up to
4 GPUs due to the high bandwidth single node
interconnect. However efficiency reduced to 55-
66% for Jacobi and 39-57% for PCR beyond
this point. Further optimizations with a modified

Thomas-PCR forward pass algorithm improved
performance with a speedup of 1.8×.

The new tridiagonal solver library is currently
being integrated into the OPS domain specific
language [11] for the solution of structured-mesh
problems. This will extend OPS’s capabilities
with implicit solutions on top of its existing ex-
plicit solvers used in frameworks such as OpenS-
BLI [12]. The new tridiagonal solver library is
currently available as open source software2.
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