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The transition to exascale computing will make possible simulations of unprecedented accuracy and 

complexity. We focus on materials and molecular modelling (MMM) aspiring to high fidelity, in silico 

experiments on complex systems of technological interest.  This progress will present unprecedented 

challenges to the software used, especially how to exploit the huge degree of parallelism and the associated 

problems of creating effective workflows and data management on such platforms. Within the UK’s 

ExCALIBUR exascale computing initiative, our UK-led MMM Design and Development Working Group 

has worked with the broad MMM community to identify high priority applications, which will drive future 

exascale software developments. We present an overview of selected case studies that pose new 
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methodological challenges on exascale platforms and discuss the requirements, software challenges and 

impact of each application area. 

 

 EXASCALE supercomputing will enable new scientific 

endeavor in the materials and molecular modelling (MMM) 

domain. Members of the MMM community are investigating 

atomic and electronic structures with increasing realism to 

respond to major societal challenges – in areas including 

batteries, electrolytic cells, solar cells, computers, lighting and 

healthcare. We need to move beyond modelling phenomena 

with a single, well-defined length and time scale, and start to 

consider multiple processes, length- and timescales, including 

interactions between electrons, light, atomic vibrations and 

the environment. To enable these advances, there is a 

continual need to develop new methods and software to 

exploit increasing computational resources. 

THE CHALLENGE OF MATERIALS AND 

MOLECULAR MODELLING 

The chemical and physical properties of materials and 

molecules are determined fundamentally by their constituent 

electrons and nuclei. Modelling the detailed behavior of 

electrons requires quantum mechanics, with sub-nanometer 

(10-12-10-10 m) length-scales and attosecond (10-18 s) 

dynamics, but many important processes, such as corrosion, 

fracture and creep, occur on macroscopic length-scales visible 

to the naked eye (10-3-10-1 m), and over timescales of seconds 

or longer (100-105 s). 

As can be seen in Figure 1, different modelling techniques 

are appropriate at different length and time-scales. At one end, 

electronic structure methods may be employed, with the most 

accurate techniques computing the many-electron 

wavefunction. Such calculations scale polynomially with 

simulation volume and exponentially with the number of 

electrons in the system, and so direct numerical solutions are 

impractical for most systems of interest; however, the 

exponential scaling can be avoided by employing 

sophisticated methods such as Coupled-Cluster or Quantum 

Monte Carlo (QMC). These methods represent the “gold 

standard” in terms of accuracy but are computationally 

expensive; current computers have only allowed limited 

simulations at these levels, for instance the adsorption of water 

on graphene [1]. Preparing the way for their routine use by 

academic and industrial researchers in the UK is one of our 

aims. 

 

Figure 1. Indicative length and time scales covered by 

different materials and molecular simulation techniques, 

including those key in electrochemical cell simulations. 

An alternative quantum mechanical approach is density 

functional theory (DFT) which focuses instead on computing 

the electronic density – the number of electrons per unit 

volume at each point in space. DFT calculations are exact in 

principle and the approximations used in practice give good 

results for a wide range of systems. The low computational 

cost of DFT compared to other quantum mechanical models 

has made it one of the most popular and widespread MMM 

methods. 

For processes that do not change require a full description 

of electronic properties or reactivity, break or form  chemical 

bonds, the behavior can be captured by parameterized 

interatomic potentials, removing the need for a quantum 

mechanical treatment altogether. These potentials are 

“atomistic”, i.e. functions of the positions of the atoms, which 

enable much more rapid calculations of atomic energies and 

forces. At even larger length- and time-scales, we might 

ignore interatomic interactions and employ coarse-grained 

(meso-scale) or continuum models (macro-scale); however, 

many important emerging applications require both an 

accurate treatment of fast electronic and atomic processes and 

overall system dynamics on mesoscopic or macroscopic 

scales. The advent of exascale HPC can enable such studies 

for the first time. 
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We identify two potential simulation categories for the use 

of exascale facilities: 

The Hero Run: applying a method at much larger length- 

or time-scales than is currently possible, using a significant 

fraction of available computing resources, for example to 

address large length-scale phenomena with high accuracy 

methods. The high computational requirement necessitates the 

use of scalable algorithms and the ability to make efficient use 

of evolving hardware; however, many of the applications used 

by the community rely on a complex interplay of algorithms 

(e.g. Fast Fourier Transforms, Matrix Diagonalization) that 

limit parallel scaling on current architectures; more efficient 

approaches are needed. 

Complex Workflows: calculating a scientific quantity of 

interest through many individual runs that may vary 

considerably in resource requirements.  Such simulations are 

essential for multiscale modelling, statistical ensemble 

sampling, global optimization, and uncertainty quantification. 

Using petascale resources, materials toolkits and workflow 

software developed by the UK MMM community (e.g. 

ChemShell and KLMC [2]) are already employed in catalysis 

and structure prediction. Exascale computing will require 

increased automation, and job management must carefully 

balance available resources when running a mixed and 

varying workload, with efficient coupling of different 

applications and systematic error checking. 

These two categories represent extremes of a spectrum of 

simulation types, but are useful archetypes when identifying 

fundamental issues that materials scientists will encounter on 

exascale machines. 

MATERIALS AND MOLECULAR MODELLING 

COMMUNITY 

The Materials and Molecular Modelling Software Design 

and Development Working Group (MMM DDWG) is one of 

10 software DDWGs funded by the UK’s ExCALIBUR 

research programme [https://excalibur.ac.uk], which aims to 

meet the challenge of preparing the UK for the arrival of 

exascale HPC. Each DDWG brings together a range of subject 

matter experts, including computational and mathematical 

scientists, and research software engineers (RSE). 

The UK MMM community is composed of groups 

primarily based in Mathematics, Physics, Chemistry, 

Materials Science and Engineering departments, as well as 

Earth and Life Sciences. Within the DDWG several large 

consortia and networks are represented, including 

Collaborative Computational Projects (CCP) and High End 

Computing (HEC) consortia, examples being CCP5++ 

(ccp5.ac.uk) for condensed matter simulations; CCP9 

(ccp9.ac.uk), focused on the electronic properties of materials 

and molecules; CCP-NC (ccpnc.ac.uk) for NMR 

Crystallography; and CCP-QC (ccp-qc.ac.uk) for quantum 

computing. The HECs in the DDWG are the UK Car-

Parrinello Consortium (UKCP; ukcp.ac.uk) and the Materials 

Chemistry Consortium (MCC; mcc.ac.uk), which foster 

collaboration between internationally recognized UK experts 

in MMM theory, applications and research software 

engineering. Both manage significant national HPC resources 

and have a strong track record in delivering world-leading 

research. 

The UK MMM community has always been at the 

forefront of exploiting novel technologies and architectures, 

from early IBM mainframes to the current UK and 

international HPC facilities. For example, the MCC and 

UKCP accounted for over a third of the use of the previous 

UK national academic supercomputing resource (ARCHER) 

and publish over 250 research articles per year. Our 

communities also have access to the MMM Hub 

(mmmhub.ac.uk), which has hosted the “Thomas” and 

“Young” Tier-2 HPC facilities and runs a successful program 

of training and networking events. Researchers in the MMM 

domain have a strong track record of developing software, 

with numerous packages available and in use in both academia 

and industry worldwide. For instance, CASTEP [2] is 

developed in the UK by members of UKCP and used by over 

800 academic and 500 industrial groups worldwide (including 

chemicals, pharmaceuticals, semiconductor manufacture, oil 

and gas, etc.). CRYSTAL [2], developed by UK researchers 

in collaboration with Turin University and others, is licensed 

to over 700 groups worldwide, including ~50 outside 

academia. For classical molecular dynamics DL_POLY [2] 

was used by over 5000 licensees in 2019. The MMM Hub, 

MCC and UKCP jointly created the MMM DDWG, with the 

aim of ensuring MMM software is ready for exascale. 

Considering the potential of exascale computing, what 

scientific research can be done on the new machines, and how 

to prioritize areas with the greatest societal impact? From 

several open community meetings and surveys, the DDWG 

has identified recurrent themes and proposed UK MMM high 

priority use cases for Exascale HPC, which we discuss below. 

It is the need to address these areas that will drive the software 

development activities necessary for MMM research on 

exascale computing facilities to become a reality. 

METHODOLOGICAL THEMES 

In collaboration with the MMM UK community we have 

identified seven methodological themes, spanning all relevant 

length and time-scales and many different scientific areas and 

industrial sectors [3]. In this section, we begin by giving a 
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summary of these themes, followed by further details of 

selected use cases. 

1. Large scale simulations and sampling, without direct 

electronic structure calculations 

Empirically fitted atomistic force fields can be employed 

to model systems at a scale unreachable by quantum 

mechanical methods. Avoiding calculation of the electronic 

structure enables efficient optimizations over large numbers 

of structures to find low-lying energy minima [4], or to run 

large scale molecular dynamics (MD) simulations with 

hundreds of millions of particles. Exascale resources will 

allow even larger scale simulations to be performed and 

enable increasing use of novel machine-learned (ML) force 

fields that require significant resources both in their training 

and application. Large scale classical simulations are used in 

structure prediction, phase diagram searches, phase 

transitions, radiation damage, materials failure at micrometer 

scales, crack propagation and protein-protein interactions, etc.  

2. Long timescale and rare event modelling 

The challenges of reaching long timescales are even 

greater than the challenges of increasing the length-scale, with 

22 orders of magnitude between a typical simulation timestep 

(~1 fs) and slow mechanical and chemical processes such as 

cracking or corrosion (years). Moreover, there are problems 

with parallelizing causality is inherently more difficult than 

parallelizing over system sizethat do not arise when only 

considering the size. In some cases, a simple parallelization 

strategy is possible, as in replica MD; , where the use of 

parallel walkers in bias potential methods and flux 

samplingcan be used. Some methods, like kinetic Monte Carlo 

and temperature-accelerated MD, simulate rare events using 

transition-state theory, allowing an adaptive time sampling 

which focuses on the events themselves. This requires the 

calculation of the dynamic rates of many possible events. 

Methods of evaluating free energy surfaces (e.g. 

metadynamics, umbrella sampling) also are commonly used. 

Exascale challenges in this area will involve managing large 

numbers of calculations and processing the results, in 

applications such as solution chemistry, advanced composites 

and membrane neuroreceptors.  

3. Systems beyond equilibrium: ab initio MD, ground 

and excited states 

This theme covers dynamical simulations of complex 

systems at the nanoscale, requiring ab initio accuracy. Such 

studies face a wide range of challenges. For example, ab initio 

simulations require atomic length-scales to represent 

electronic states, yet many important dynamical processes, 

such as ion diffusion, take place over length-scales many 

orders of magnitude larger. Moreover, materials processes 

such as fracture dynamics take place on timescales of 

milliseconds (or longer), yet ultrafast electron dynamics take 

place on attosecond timescales, and even accurate atomic 

dynamics often require time-steps of 1 fs or less. Materials’ 

behavior is commonly stochastic in nature, and many 

trajectories must be analyzed to generate a representative 

sample. These challenges often arise in combination, making 

the problems particularly suited to exascale resources. 

Applications include ab initio electrochemistry, green 

technologies, chemical fuel production, water-surface 

interactions including water pollution, design of 

biocompatible materials, excited-state dynamics of metal 

complexes, photocatalysis, and emitters in OLEDs.  

4. Post-DFT methodologies 

While DFT-based methods often represent a sweet spot 

between computational accuracy and expense for many 

MMM studies, there are scientific challenges for which the 

current DFT functionals are not sufficiently accurate. Post-

DFT methods can be necessary for molecular adsorption at 

surfaces, which is often governed by weak interactions that 

DFT struggles to predict, and strongly correlated materials 

where higher-level ab initio theories are required to study 

problems such as unconventional super-conductivity. 

Exascale computing resources will make post-DFT theories, 

such as quantum Monte Carlo, more accessible. 

5. Scaling up DFT 

In principle, increased computational power allows larger 

physical systems to be studied. However, the ability to do this 

will be limited by the scalability of current codes; common 

algorithms such as the Fast Fourier Transform or Matrix 

Diagonalization have fundamental limitations in their parallel 

scalability, and scaling of memory usage of current codes is 

often a bottleneck. Another direction is linear-scaling DFT, 

such as in ONETEP and CP2K [2], where the computational 

effort increases linearly with the number of atoms, N, instead 

of N3 as in conventional DFT. To be able to perform 

meaningful ab initio MD simulations we need to reduce the 

time to solution from several hours (on tens of thousands of 

cores) to a few seconds, so we will need to re-engineer the 

codes to enable strong scaling to several million cores. Many 

areas of research would benefit from scaling up DFT, 

including extended defects, accurate simulation of 
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biomolecular association events in proteins, enzyme catalysis; 

next generation energy materials, chemistry at interfaces in 

batteries, drug design, catalysis and electrochemistry. 

6. First principles multiscale modelling (QM/MM and 

other hybrid methods) 

Modelling approaches that combine high-accuracy 

localized calculations embedded in a more affordable 

representation of the long-range environment are a well-

established means to describe complex systems with 

efficiency [5]. The high-accuracy region herein is treated 

through a range of QM methods, nowadays commonly DFT, 

with the embedding environment based on classical molecular 

mechanics (MM) force fields, or interatomic potentials. 

Increased computational resources offer the opportunity of 

more expensive embedding methods (e.g. high-level quantum 

chemistry embedded in DFT for greater accuracy) and to a 

wider range of systems via QM embedding with machine 

learning potentials. Models of interest can be solid, liquid or 

gas-phase, or their interfaces, and used to model properties, 

processes or reactivity. Areas of interest include catalytic 

reactions, energy storage, and drug discovery; structures of 

mesoporous materials; defects in semiconductors of 

commercial relevance; and materials failure through fracture 

or deformation. 

7. Coarse-graining methods 

Coarse-graining (CG) methods can be used to study 

problems in self-assembly and phase phenomena in 

soft/condensed matter systems, including polymers and 

nanomaterials. These complex states of matter occur in many 

real-life fields, including combustion, food processing, 

fundamental biological and physiological processes such as 

protein dynamics, and blood flow. Due to the length-scales in 

coarse grained models, a few orders of magnitude bigger than 

for traditional atomistic models (see Figure 1), new challenges 

arise due to the drastic approximations made in generating the 

models. Some level of uncertainty quantification (UQ) is 

required to understand and keep under control the errors 

introduced by the crude models. As a result, while CG models 

share a lot of the exascale challenges with the other themes, 

especially those in themes 1 and 2, the need for formal UQ 

stands it apart.  

 

SELECTED APPLICATION CASE STUDIES 

Modelling of operando electrochemical interfaces 

Electrochemical transformation at the electrified interface 

(EI) between electrodes and electrolyte solution underpins 

many technologically and industrially critical processes and 

devices, from corrosion to neurotransmission, to fuel cells, 

supercapacitors, batteries, electrochemical sensors and 

memristors. In silico design and control with atomic and 

electronic resolution in operando conditions will enable 

massive energy and cost savings but has remained out of reach 

for almost all experimental techniques. Comprehensive 

computational modelling of operando electrochemical 

phenomena is still missing, even for simple interfaces.  

Methodological developments will be required to enable 

realistic simulations of open systems undergoing electro-

chemical transformations on exascale HPC, to model 

fundamental electrocatalytic processes at EIs, including the 

response to changes in the potential applied to the cell, and 

understanding time resolved electron dynamics, including the 

effect of currents and applied potential on atomic dynamics, 

energy levels, forces, vibrations and redox transformation at 

the nanoscale. 

Examples of electrochemical applications of huge 

technological relevance include: 

Chemical fuel production: Important examples of 

electrochemical cells are electrolyzers (see Figure 1) that 

produce pure hydrogen out of water. In turn, environmentally 

clean and efficient hydrogen fuel cells convert the chemical 

energy of hydrogen and oxidants to electricity at the point of 

need. Achieving nanoscale insight into electrified solid/liquid 

interfaces and exploring factors that control reactivity or limit 

catalytic performance are essential to develop more active and 

longer lasting devices. The complexity of interfacial charge 

localization, dynamical redistribution and energy level 

alignment at EI, under operating conditions, require ab initio 

accuracy beyond conventional DFT in combination with large 

space- and time-scale ab initio MD, performed under bias and 

explicit open-boundary conditions. 

Energy storage: The electrode-electrolyte interface layers 

play a key role in battery performance. Battery electrode 

materials must form stable interphases interfaces with the 

electrolyte and allow easy diffusion of ions across them. 

Computational studies are essential for understanding the 

formation mechanisms and structures of the interphases and 

their thermal, mechanical, and ionic transport properties. 

Current ab initio MD simulations are usually performed for 

picoseconds, and focused on a single interphase compound, 

yielding an incomplete and unrepresentative picture [6]. 

Future modelling must encompass larger, more realistic 

systems, a wider range of chemical phases and boundaries, 

and longer simulated time (e.g. nanoseconds), in order to fully 

capture reaction processes and pathways, and ultimately 

design improved electrode and electrolyte materials with 

enhanced battery performance and cycling stability. 
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Electrochemical sensing and memory applications: 

memory, sensing and logic devices applications, e.g. 

electrochemical metallization memories and gating devices, 

operate in the electrochemical environment under the 

combined effects of applied potential, current flow and 

chemical transformation. The relevant electrochemical 

processes underlying the functionality of these devices occur 

at the nanoscale, across molecular junctions or at the tiny EIs 

between ionic and electronic conductors. Achieving atomistic 

insight into these processes is key to their atom-based 

optimization. 

Unravelling the thermodynamics and kinetics of non-

equilibrium electrochemical transformation at the nanoscale 

requires accurate, multiscale simulations on large systems for 

long times, using a range of enhanced, multiple replica, 

sampling techniques. These simulations will need to use huge 

computational resources, so represent the ideal playground for 

exascale hardware. In this context, exascale solutions will be 

required for (i) coupling atomistic methods at one end with 

those for non-adiabatic electron dynamics, and at the other end 

with continuum approaches to account for the longest-range 

interactions; and (ii) the complexity of data, memory and tasks 

management, including problematic use of FFT at this scale, 

and the need for transferability of developed codes to multiple 

architectures. Suitable software for the developments includes 

CP2K and ONETEP and their seamless coupling to MD and 

computational fluid dynamics methods. 

Thermal conductivity of liquid metals 

There is a growing demand for environmentally-friendly 

energy production, and nuclear fusion is a promising 

candidate technology. Unlike nuclear fission, fusion does not 

require rare elements or produce long-lived radioactive waste, 

but the design and development of nuclear fusion reactors is 

an ongoing challenge. One leading design is the Tokamak, 

which uses magnetic fields to compress and contain a plasma 

and generate the conditions necessary for fusion.  

A key challenge in the Tokamak design is finding 

material(s) for the container walls which can withstand the 

neutron bombardment. One popular suggestion is tungsten 

with a layer of liquid lithium behind it to act as a heat 

exchanger. To design this, it is crucial to thoroughly 

understand the thermal properties of liquid lithium under 

typical Tokamak operating conditions. This need for detailed 

knowledge of liquid metals under extreme conditions goes far 

beyond what is practical in experimental studies, but it is 

amenable to computer simulation. 

Quantum simulations are a natural route to getting reliable 

data, and at these high temperatures, an MD approach is the 

best way to handle the anharmonic effects. There are 

established algorithms for the simulation of thermal 

conductivity by MD [7], but the challenge is that the length 

and time scales required make quantum simulation very 

expensive. Exascale computing will be required to handle 

large quantum simulations with long time-scale MD. 

The necessary MD simulations can be performed using 

CASTEP as it can do MD of metals already and has the 

thermal conductivity simulation algorithms. The trajectories 

will need to be analyzed to extract the ionic contributions to 

the conductivity, and snapshots of the electronic density of 

states can be used to calculate the electronic contributions. 

To perform an accurate simulation of the thermal 

conductivity of a liquid metal requires many atoms to 

accurately describe the structural disorder, for a long 

simulation time to get the correct distributions and statistics, 

and with an accurate treatment of the interactions at high 

temperatures. Based upon preliminary studies of solid lithium 

with CASTEP, it appears to need at least 1000 and potentially 

10,000 atoms in the simulation. The MD required will need to 

be at least 10 ps (i.e. 10,000 MD steps with a typical time step 

of 1 fs), and this will need to be repeated for each temperature 

of interest. 

Such calculations using a conventional GGA-type 

approach to DFT will require a large resource (at least 50,000 

cores) for a significant amount of runtime (at least 1 week per 

simulation) and be a challenge to scale. It remains to be seen 

whether a more accurate approach to the interactions is 

appropriate at these temperatures, such as time dependent-

DFT or non-local functionals within DFT. If so, this would 

significantly increase the cost of each MD step. 

One big gain would be to add parallel-in-time capabilities, 

such as the parareal algorithm [8], which requires coupling of 

an accurate but slow method (e.g. DFT) with a fast and less 

accurate method (e.g. machine-learned atomistic potentials). 

This would have the advantage of reducing run-time by 10x 

by increasing the core-count by 10x and would be a natural 

way to exploit an exascale resource to handle these large 

simulations efficiently. CASTEP has recently been coupled to 

the QUIP library for on-the-fly machine learning within 

molecular dynamics, which should greatly increase the speed 

of these calculations, and if coupled with parareal, could 

significantly improve the scaling as well. 

The insights gained from this project into the thermal 

properties of liquid metals will be a key input to future fusion 

reactor designs, including the first prototype “net power 
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generation” nuclear fusion reactor which will be the successor 

to the ITER reactor currently being built in France. 

Drug design from large-scale DFT calculations 

Computational drug optimization is a key tool in the drug 

development process and focuses on accurate predictions of 

biomolecular association such as protein-ligand, protein-

protein and other interactions with chemical accuracy. 

Rigorous methods rooted in statistical mechanics, such as 

thermodynamic integration, have been developed to compute 

the free energies of binding which determine the activity of a 

potential drug. These methods require extensive MD 

simulations to compute the “alchemical” transformation 

between ligands. While very successful, these methods fall in 

the accuracy of the underlying force fields which are often not 

able to describe the interactions of ligands with unsupported 

chemical functional groups. On the other hand, DFT is a 

promising alternative as it can describe these interactions with 

much higher accuracy, but only if the calculations can be 

made computationally feasible. Preliminary work on simple 

systems (hydration free energies of ligands in water) has 

shown that we can use alchemical transformations to augment 

the thermodynamic cycles of free energy calculations from the 

force field description to the DFT description, with the long-

term aim of calculating free energies of binding entirely 

within DFT. 

The ONETEP linear-scaling DFT program is ideal for 

these simulations as it has been developed to achieve routinely 

plane wave accuracy, it can treat entire proteins and other 

biomolecules with thousands of atoms, has a wide range of 

exchange-correlation functionals and MD capabilities and 

advanced solvation models, hence it combines all the physical 

models required. Examples of other suitable codes for such 

applications are CP2K and FHI-aims [2].  

The main issue for scaling to the exascale regime is the 

time to solution (strong parallel scaling). Currently ONETEP 

can scale to thousands of cores for calculations with thousands 

of atoms which may take 10 minutes for a single point energy. 

The core operations of the code need to be rewritten 

(calculations of localized non-orthogonal Wannier function 

integrals, local potential and density, gradients of energy with 

respect to density matrix and Wannier function coefficients) 

so that it can scale to millions of cores and reduce the time to 

solution to fractions of a second to make these calculations 

viable. This is a step change from current performance as even 

the “fastest” (in terms of parallel strong scaling) DFT codes 

take about 10 seconds per MD step on supercomputers. 

These developments in DFT are led by the MMM 

community, but link with other communities and consortia in 

biosimulations. It will have a transformative impact on the 

research and market of drug development and will introduce 

an extra level of refinement in the “funnel” hierarchy of 

methods of computational drug development, saving billions 

of pounds from chemical syntheses and in vivo assay 

experiments in the lab. The developments that are needed to 

make this happen will also result in a code capable of 

simulating whole catalytic cycles, thus opening another area 

of large industrial impact, and electrochemical simulations of 

energy storage devices, linking with the ab initio MD and 

multiscale QM/MM themes. 

Quantum Monte Carlo for accurate calculation and 

calibration of atomic adsorption energies 

Molecular adsorption at surfaces is often governed by 

weak interactions, which determine fundamental material 

properties such as lubrication, filtering, gas sensing, or storage 

for energy purposes. Conventional computational materials 

science methods, including DFT, are not accurate enough to 

make reliable predictions for these types of systems, in 

general. For example, a material with good hydrogen storage 

properties should be able to bind hydrogen with an energy in 

the range ~ 200-400 meV/molecule, but the spread of binding 

energies obtained with various DFT functionals is often much 

larger than these binding energies, making the method 

unreliable. The quantum Monte Carlo (QMC) method has 

been demonstrated to be able to deliver useful accuracy (less 

than ~ 40 meV, and often much better than that), and so it is a 

prime candidate to be employed for these systems. Despite its 

much larger computational cost (at least three orders of 

magnitude over standard DFT), QMC is well suited to run on 

massively parallel computers, and some QMC codes are 

already able to exploit the power of accelerators such as 

GPUs. Future developments in the CASINO software package 

[2] will target exascale computing requirements. Exascale 

resources will allow the method to be deployed at scale, not 

just for single total energy calculations, but also to sample the 

phase space to gather thermodynamic properties. This will 

allow, for example, to obtain quantities such as the vapor 

pressure of a hydrogen gas in solid state allowing the study of 

confinement as a function of pressure and temperature, a 

crucial quantity to separate promising materials from 

nonviable ones. Parameter space sampling is an easily 

scalable (“embarrassing”) form of parallelization, and the 

difference between a petascale and an exascale machine is the 

difference between being restricted to zero temperature and 

gaining access to high temperature properties. 

A method that is demonstrated to be predictive can become 

a tool complementary to experiments, with the advantage of 

being able to explore chemical space much more effectively. 
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It will be possible to design new materials in silico, a promise 

that has yet to be fulfilled. 

Predictive computational catalysis 

Exascale computing will enable the accurate modelling of 

catalytic processes that serve vital societal and economic 

needs. Two key areas that must be addressed are CO2 

activation, where developments in catalytic technology are 

essential for achieving the net zero target, and nitrogen 

fixation, which underpins global nutritional security and 

currently relies on energy intensive technology. 

Computational modelling is required to develop next 

generation materials to catalyze these reactions and optimize 

their operating conditions, through development and 

application of operando models with high-level accuracy. 

Computational methods already have a major impact on 

catalytic science, and multiscale methods are used to model 

problems such as CO2 activation. Exascale computing will 

offer the opportunity for predictive and chemically accurate 

modelling of complex systems and their reactivity, providing 

both mechanistic insights in and kinetics of reaction 

processes. With such developments, computation will enable 

optimization of current reaction processes and design of new 

catalysts, inverting the current protocols of laboratory-led 

chemistry. 

To make full use of future exascale resources, 

methodological improvements in multiscale modelling are 

required to enable the complex workflows that will become 

prevalent. Particular challenges include the need to run 

calculations with multiple QM regions; integration of adaptive 

(varying) QM regions in a synergistic manner, without 

compromising the discretization of the system; efficiently 

parallelized electronic structure code, both DFT and post-DFT 

methods; and “break-out” capability, i.e. for sampling-based 

approaches the ability to sample dynamically components of 

the system whilst core (QM) calculations are continuing. 

The ChemShell multiscale QM/MM environment [2], 

which has a strong focus on performance on HPC systems, 

offers a suitable platform for the required developments. 

These need to deliver on three key aspects: (i) discretization 

and load-balancing for multiple separable QM regions, 

allowing for investigation of dynamic reaction environments 

with separable components; (ii) adoption of high-level 

quantum mechanical techniques in the QM core; (iii) coupling 

QM/MM to higher length-scales, e.g. by incorporation of 

continuum methods into the models.  

These requirements are based on the necessity to harness 

exascale computing to tackle complex, dynamic environments 

as encountered under catalytic operating conditions. Such 

models may contain catalyst, solvent, reagent and products, 

interacting dynamically, and therefore one needs high-level 

simulation management capable of handling an adapting QM 

region, especially given the inclusion of explicit solvent; and 

with capability to handle multiple QM regions. Such 

approaches need careful attention to the separability of the 

QM regions, and the overall embedding summations, but with 

exascale resources these new functionalities will present 

opportunities for broader and more accurate reaction 

sampling. They will be combined with other strategies to 

improve sampling, e.g., by averaging QM/MM calculations 

on much larger numbers of “snapshots” from MD simulations, 

to achieve reliable statistics. 

Complementary to the objective of more dynamic 

multiscale models, at the core of such calculations is a desire 

for high-level accuracy. Immediate efforts will be towards 

coupling with quantum mechanical software specifically 

designed to maximize the potential of exascale computing 

(including those developed by other exascale initiatives such 

as the US Exascale Computing Project), as well as working 

with development teams towards software that is suitable for 

next generation hybrid architectures (e.g. GPU-enabled). The 

workflow management features of ChemShell will be further 

developed to ensure that the most efficient use of 

heterogeneous computing environments is made when calling 

external QM and MM software. 

CONCLUSION 

This paper outlines the myriad challenges and possibilities 

faced by the MMM community by the transition to exascale 

computing.  

Investment in exascale computing is vital given the 

potential impact on wider society in contributing to fusion 

energy, combating pandemics, new pharmaceuticals, feeding 

the global population, and realizing net zero carbon emissions. 

To succeed we will need to transform rapidly our MMM 

software to accommodate the changing parallel programming 

software ecosystem and hardware landscape. As our methods 

rapidly evolve - following the four pillars set out by the UK’s 

ExCALIBUR project - we will have to prioritize: 

(i) Research Software Engineer training in the area of high 

performance computing which is vital to ensure that there is a 

sufficient skill base to tackle the software challenges outlined 

above, and is one key area the UK is actively pursuing [9].   

(ii) Separation of concerns – our methods work with well 

documented APIs allowing multiscale problems to be tackled, 

as far as possible, in separate subprojects, but allowing 
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inventive practitioners to splice them together to create new 

algorithms and solutions to MMM challenges. 

(iii) Co-design – looking beyond our community as there 

are common bottlenecks, e.g. many communities currently 

perform Fast Fourier Transforms and/or diagonalize a matrix, 

which are not scalable to exascale HPC. Future parallel 

strategies are likely to include asynchronous task-based 

methods for compositional parallelization, as well as new 

ways to exploit heterogeneous HPC architectures. 

(iv) Data science – there are a wealth of opportunities for 

using the data generated by the new facilities. It is essential 

that the data are reproducible and stored with appropriate 

metadata to allow data science domain experts to harness 

opportunities to use data for rapid materials design and 

optimization. 

The driver for these activities is the science that will be 

achieved and the impact on society of the discoveries made. 

The impact already achieved by research that was enabled by 

the latest HPC has led to the desire for ever-increasing 

computing resources. There is a significant cost of running 

such facilities, so we have an additional responsibility of 

ensuring our software is “exascale ready” to maximize the 

science output per Watt consumed. Whilst we have 

emphasized the UK element of the research in this survey of 

our community, international collaboration will be essential to 

achieving these goals. 
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