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Formal Modeling and Simulation for SARS-
CoV-2 Containment Scenarios in Catalonia

P. Fonseca | Casas ®, J. Garcia | Subirana, and V. Garcia | Carrasco, Universitat Politecnica de Catalunya, 08034,
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We define interrelated models to simulate the spread of SARS-CoV-2 in Catalonia,
which can be used to effectively build simulation applications and analyze the
effects of nonpharmaceutical interventions. Due to the constant evolution of this
pandemic, and the need to take a multidisciplinary approach, we use a formal
specification to represent the model and to validate the model assumptions. We
discuss the definition of the model using formal languages, and the Specification
and Description Language to improve communication between stakeholders. We
show formalization details, discuss implications in the validation process, and
present how results obtained from the model of the pandemic in Catalonia can be

used for decision-making.

uilding computer simulations to study complex

B systems hinges on collaboration in multidisci-
plinary teams including experts with diverse
backgrounds. The models need to consider the assump-
tions presented by the various specialists, which should
be represented in the model to ensure that it reflects the
system behavior accurately. During the pandemic of the
disease caused by the SARS-CoV-2 virus, numerous simu-
lation models were built and used to forecast the spread
of the disease in different geographic regions. These mod-
els were built using a variety of methods, including differ-
ential equations, multiagent systems, Cellular Automata,
and other alternatives. A common approach consists of
using compartmental models, which have been available
as early as 1930." They divide the population under study
into three main compartments: those including the popu-
lation Susceptible to infection, those Infected and spread-
ing the disease, and those Removed from the population
under study (either because they are deceased or
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recovered). Numerous improvements to these SIR mod-
els have been considered, including the addition of new
compartments leading to more realistic models. For
instance, one can divide the Removed into two: Deceased
and Recovered. One can also add an Exposed compart-
ment, representing those that have been exposed to the
disease (but do not spread the disease yet).

The changing situation of the COVID-19 pandemic
made it important to be able to adapt the model as
soon as new information about the disease became
available. This changing situation also made it impor-
tant to have models that could consider the influence
of various nonpharmaceutical interventions (NPIs).
And we needed to ensure that the simulation results
were correlated with real-world data. Using a common
language that all the experts involved in the process
can understand, and ensuring the correctness of the
assumptions made by the different experts is essential
for the success of the effort. The team of experts can
introduce errors when the model is built because of a
misunderstanding of the system behavior, or because
of errors introduced when implementing the computer
programs that will execute the model. We improved
such collaboration using formal models that provide
an unambiguous common language for modeling, and
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a concrete mechanism to generate correct simula-
tions. Conducting proper validation is difficult because
of the numerous changes to the information about the
disease. We use a Model Comparison Validation and
Verification technique, which uses different models to
improve error detection, both on definition and imple-
mentation: we define three models that represent the
same system with different techniques to see if the
results are similar, allowing the detection of errors. We
combine three models that focus on different aspects
of the model and can be used for cross validation
between these models, increasing credibility of the
forecast and simplifying error detection.

The first model, seen in Figure 1(a) is a SEIRD* prototype
defined using System Dynamics (SD) and focused on the
analysis of the feasibility of the key assumptions used by
the different experts. It is used to ensure that all main
aspects are taken into consideration, for example, the
composition of the population, the nature of the com-
partments to be used on the model, and the initial para-
metrizations for the SARS-CoV-2 spread. The evolution
of an infected individual is Susceptible — Exposed —
Infectious — Recovered or Dead. Each compartment
represents a subset of the population in that specific
state and the model of the pandemic evolves by transfer-
ring individuals from one compartment to another. More
advanced versions of the SD model include other scenar-
ios, like confinements (built by adding a path from Sus-
ceptible to Confined and allowing an analysis of the
temporal evolution of the pandemic for each wave). This
mode does not use real data, but it is used to analyze the
preliminary model assumptions.

The second model, built using Python, uses the SD
model structure and optimizes and fits the observed
data using a simulated annealing algorithm2.® The
objective is to obtain the parameters needed for the
third model. The optimization model uses the observed
cases as an input and tries to find a curve that fits with
these observations (the mean of seven days). This
model has the objective of studying the evolution of
cases in Catalonia to define a basic transmission rate to
be used in the SDL model. We estimate several parame-
ters for the spreading of the virus, including the effective
reproductive number R;, which is used to measure the
likely transmission of the disease. R; represents the

2Find the Python model in the CodeOcean service at the fol-
lowing URL: https://doi.org/10.24433/C0.9635632.v1

Computing in Science & Engineering

average number of secondary infections produced by a
single infection (if R;>1, the number of cases will
increase, and if R;<1, the number of cases will decrease).
NPIs (e.g., reducing the mobility of the population, or
mandating the use of a mask) affect the value of R;. Our
model estimates the Transmission Rate B (which is
equivalent to Ry, calculated as B = R; y with recovery
rate y). B is calculated using observed data that is input-
ted to our Python model, optimizing and fitting the
observed data. We can find the trend of the observed
cases, and when the trend changes (for instance,
because of new interventions like vaccines), we can
compute a new B value.

At this point, with the main assumptions made and
the key parameters calculated, we build a third model
that includes all the needed assumptions for decision
making and that is able to provide a forecast based on
historical data and expert knowledge.

The last model is built using Specification and Descrip-
tion Language (SDL),> which provides a formal and
unambiguous mechanism to describe real-world sys-
tems.® The SDL model allows us to add detailed assump-
tions and behaviors when NPIs are applied or new
knowledge about the virus spread is available. Our team
developed a variety of versions of the SDL, each of which
includes the assumptions or the interventions applied at
the time of the analysis. To validate this third model, we
compared the daily new cases forecast with a dataset
that contains the daily new cases in Catalonia.”

SDL is a graphical object-oriented language with
unambiguous formal semantics, standardized by the
International Telecommunication Union. SDL uses
four hierarchical building blocks: 1) SYSTEM, 2) BLOCK,
3) PROCESS, and 4) PROCEDURES. The SYSTEM and
BLOCK diagrams represent the model's structure,
using a hierarchical decomposition. PROCESS and
PROCEDURES define the model’'s behavior. BLOCK
and PROCESS are AGENTS that establish the commu-
nication, sending SIGNALS through CHANNELS.
SIGNALS function as a trigger, generating the execu-
tion of a set of actions in a PROCESS. To represent
time, all SIGNALS own a delay parameter and are
sorted by delay and priority in the input queue of every
input channel. SYSTEM is the topmost diagram in any
SDL model, representing the main elements of the
structure of the model.

Figure 1(b) shows the model used to forecast the
second pandemic wave in Catalonia. The diagram

Phttp://governobert.gencat.cat/en/dades_obertes/
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FIGURE 1. Model diagrams: on top, SD SEIRD model; bottom: SDL model SYSTEM diagram.
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FIGURE 2. Forecast for new infections: red line, SDL model. Other scenarios with different hypotheses.

represents the SDL model SYSTEM diagram equivalent
to the SD model defined earlier. On both diagrams, the
squares represent the different compartments of the
SEIRD model (BLOCKS in the SDL model, and by Levels
for the SD model). We compare the outboth models’
outputs for validation: the SD model provides an approx-
imation to the pandemic’'s evolution, while the SDL
model provides more detail, allowing us to understand
the effects of the NPlIs.

If needed, more BLOCKS can be added in the SDL
model to include new behavior (for instance, vaccinated
individuals, deceased, and other categories). These new
BLOCKS of the SDL model are 1) BConfinement, repre-
senting the population in confinement that cannot
become exposed; 2) BinfectiveDetected, the proportion
of infected individuals detected, assuming that detec-
tion improves over time; 3) BContainmentActions con-
trols the NPI actions taken by the authorities to prevent
the spread of SARS-CoV-2.

The SDL model also includes a cellular automaton
(CA)® in which each cell represents the spread of
SARS-CoV-2 over each of Catalonia’s Health Regions.
This allows validating the model's assumptions by com-
paring the results with the data for each health region.

To implement the SDL models, we use SDLPS,® a com-
puter software that can execute SDL and DEVS models.

To obtain accurate results, the models should fine-
tune the simulation parameters, including the 8 parameter
discussed earlier, to better predict the spread of the virus.
To forecast the value of B during the second wave at the
start of the school year in Fall 2020, we used common

°https://sdlps.com/
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patterns found in other countries that started the school
year earlier, such as South Korea (August 25, 2020) and
Israel (September 1, 2020). Using the real-world data from
those countries, we applied the Python optimization model
to identify those data points where the B value changed.
These were correlated with each of the NPIs put in place.

The simulation with the model of the second wave on
Catalonia began on January 29, 2020. With the rise in
cases, on the March 15, 2020, a lockdown was applied
(except for essential workers). Air space was closed on
the March 23. When the situation improved on the April
13, the workers of the industrial sector returned to work.
On the April 20, the government provided basic masks to
its citizens. In the following months, the restrictions were
gradually lifted, until July 2020 At this point, we calculated
a new B to represent a change in the spread of the virus
using the analysis done on the data from Israel and used
the cumulative incidence in Catalonia and Israel. We also
considered that the numbers observed during the sum-
mer would increase due to a higher level of activity and
contact, and that they would not be smaller than the
numbers obtained during the lockdown. Other parame-
ters were the detection rate and the asymptomatic popu-
lation.® Figure 2 shows the forecast for new cases
predicted using different scenarios.

The forecasting model uses past data to adjust the
parameters to calculate the evolution curve of new cases.
In the figure, the most likely situation is shown in red,
along with other scenarios that represent less likely situa-
tions. This analysis of different options allows managers
to understand the future evolution of the pandemic and
make informed decisions. The red line in the figure shows
the forecast most accepted by the domain experts con-
sidering all model assumptions and hypotheses. The sim-
ulation generates alternatives to help decision-makers
when considering different NPIs (as well as errors in the
experimental hypotheses). If during the evolution of the
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pandemic new available data modifies previous empirical
results, the pandemic will evolve differently. The different
trend lines shown on the figure can be useful to predict
how to act in those cases. This can be used by domain
experts in decision-making.

We built a dashboard® including Key Performance
Indicators (KPIs) and the model forecast, which is con-
tinuously validated against real data (using a Continu-
ous Solution validation approach). When the model
gives invalid results (i.e.,, we detect a divergence bet-
ween the model's forecast and real data time series), we
reevaluate the hypotheses and recalibrate the model.
This provides valuable information to understand the
latest changes in the pandemic’s evolution. This hap-
pens often since new NPIs are applied throughout the
pandemic.

The definition of models and rapid prototyping is espe-
cially important to study the spread of diseases like
COVID-19, caused by SARS-CoV-2. Simulation models
allow building what-if scenarios to compare future possi-
ble trends of the pandemic evolution based on the past
epidemics data. We showed how to build advanced mod-
els to improve the process, by building more than one
formal model of the system under study (in our examples
above, three related models) that allow continuous verifi-
cation and validation of the model when new data from
the system under study become available. The first
model (using SD) allows us to understand the validity of
the initial assumptions and the nature of the spread of
the disease; a second model (in Python) allows studying
the temporal behavior of the phenomenon and to esti-
mate the parameters of the model. The third model (built
in SDL) is used to understand the influence of NPIs on
the population and perform the forecast. The combina-
tion of the three models provides a solid mechanism to
validate the quality of the models and help make deci-
sions and study the influence of NPIs. The use of formal
modeling methods to represent the system improves
communication with experts and analysis of the hypoth-
eses while providing a mechanism for monitoring and
continuous validation, improving decision making.
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dhttp://pand.sdlps.com
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