
ar
X

iv
:2

21
1.

06
34

3v
1

 [
cs

.S
E

]
 1

1
N

ov
 2

02
2

A Secure Future for
Open-Source Computational
Science and Engineering

Reed Milewicz

Jeffrey Carver

Samuel Grayson

Travis Atkison

J
OURNALISTS, public policy analysts, and

economists have called attention to the

growing importance that high-performance

and scientific computing have to national security

and industrial leadership. As computing continues

to power scientific advances in virtually every

discipline, so too does it improve our economic

productivity and quality of life. In 2020, a US

government-funded study by Hyperion Research

estimated that every dollar invested into HPC

resulted in an average of $507 in new revenue

and $47 in profit or cost-savings [1].

The increasing social, political, and economic

importance of research software has also brought

the question of software security to the fore. Just

as unintentional software errors can threaten the

integrity of scientific studies, malicious actors

could leverage vulnerabilities to alter results, ex-

filtrate data, and sabotage computing resources. A

2015 US Department of Energy workshop report

on cybersecurity in scientific computing vividly

captured these concerns, arguing that attacks on

scientific computing could inject flaws into criti-

cal infrastructure, inhibit public policy decision-

making, and weaken US economic competitive-

ness [2]. With concerns that the world is returning

to an era of great power competition, these threats

could ultimately harm the ability of researchers

to collaborate openly, curtailing the free flow of

ideas that is key to innovation. Likewise, a climate

of uncertainty around scientific computing could

amplify public distrust in scientific institutions.

For these reasons, research has been proceed-

ing to develop solutions to detect, mitigate, and

prevent security threats at the point of deployment

on HPC systems, such as through hardware-based

trusted execution environments, access controls,

event logging, and secure data provenance [3].

While these are encouraging advances, we must

also look to addressing security earlier in the

research software development lifecycle. As soft-

ware security expert Rod Cope has noted, “While

there is—rightly—a big focus on securing soft-

ware that is already deployed, the reality is that

many future vulnerabilities stem from the creation

of that software. . . Not securing software right

from the development stage is like putting a

deadbolt on a cardboard door” [4].

This emphasis on integrating security as early

as possible in the development process is rep-

resentative of the “shift left” philosophy of the

DevSecOps movement which has recently gained

traction in industry1. In this new line of thinking,

security advocates argue that it is critical to

understand where and how software is created so

security can be moved closer to that development

1https://www.devsecops.org

Computing in Science & Engineering Published by the IEEE Computer Society © 2022 IEEE 1

http://arxiv.org/abs/2211.06343v1
https://www.devsecops.org

— that is, earlier in the software lifecycle and

with developers engaging with security in their

work.

Increasingly, the development of research

software occurs on the open web. In the past

decade, research software development has tran-

sitioned from independently developed research

scripts to community-driven, open-source soft-

ware that leverages modern software development

technologies. Today, even a “bare-bones” model-

ing and simulation code may rely on different

open-source packages for I/O, parallel communi-

cation, meshing, discretization, solvers, and visu-

alization. The code teams responsible for these

packages belong to many different institutions

and can vary widely in terms of their size and

maturity. In short, the leading edge of research

software development is increasingly large-scale,

open-source, and distributed across teams with

different values and perspectives on software de-

velopment practice.

While these changes have accelerated the pace

of progress, the shift towards an interconnected

research software ecosystem has also complicated

security considerations with a proliferation of en-

vironments, actors, and attack surfaces. In terms

of people, the production of research software can

involve many teams of researchers and research

software engineers, rotating casts of student in-

terns and postdocs, and academic and industry

partners. In terms of infrastructure, the software

makes its way through numerous environments,

from open-source hosting and continuous inte-

gration platforms to national labs and university

servers and finally to clusters and HPC facilities

for code execution. In terms of data, the large

amounts of data produced by the software must

move to various types of storage for analysis and

reuse. A compromise of the actors, infrastructure,

or data could have disastrous consequences.

M
OST reported attacks on research com-

puting institutions so far appear to

be financially motivated, where the

attackers tried to extort ransoms, hijack compute

resources, or exfiltrate data. For example, in May

2020, hackers leveraged a vulnerability in the

VPN at Michigan State University to carry out

a ransomware attack against the Physics and

Astronomy Department. Between 50 and 70%

of research activities were temporarily halted

due to the attack, and some research groups

lost years’ worth of data [5]. There have been

other similar ransomware-style attacks recently

reported in the media that targeted the University

of Amsterdam, Amsterdam University of Ap-

plied Sciences, the UK Research and Innovation

Agency, Maastricht University, and the Nether-

lands Organization for Scientific Research [6]. In

another type of attack, supercomputing centers in

the UK, Germany, Switzerland, and Spain fell

victim to cryptocurrency-mining hijackers [7].

In the third type of attack, security analysts at

ESET identified Kobalos, a previously unknown

malware that targets HPC clusters and university

servers by creating backdoors for hackers to steal

passwords [8]. The sophistication and targeted

nature of these types of malware suggests that

malicious actors may be plotting focused attacks

on research computing infrastructure.

At the time of writing, there have been no

reported attacks using research software, systems,

or data as the principal attack vector. However, as

researchers increasingly develop and use open-

source software there is likely to be a consequent

increase in attacks on research software. A 2021

report by analysts at Sonatype showed a 650%

year-over-year increase in attacks on open-source

software supply chains [9]. The ubiquity of open-

source software packages means that these at-

tacks can be far-reaching. For example, the US

government estimated a vulnerability disclosed

late last year in Log4J, a popular open-source

infrastructure package, potentially affects hun-

dreds of millions of devices [10]. Security experts

anticipate open-source software will be the next

frontier for cyberattacks [11].

Within the research software domain, there

are multiple approaches attackers could use to

introduce malicious code or novel vulnerabilities.

First, attackers could hijack a trusted contributor’s

account (e.g. on GitHub) and modify source code

hosted in an online repository. Second, attackers

could create a seemingly useful package with

hidden malicious code, perhaps typo-squatting on

a well-known package. Third, an attacker could

tamper with continuous integration or deployment

services (e.g., TravisCI or Jenkins) and quietly

alter software prior to deployment. The recent

spate of cryptomining and ransomware attacks

2 Computing in Science & Engineering

shows these types of attacks are already possible.

Meanwhile, if an attacker can infiltrate a crit-

ical piece of a research software stack, they have

many options available to create mischief. While

a financially motivated attacker might commit

the attacks seen above, an attacker motivated by

attacking research sensitive to national security

could be even more dangerous:

• They could introduce code to intentionally

produce inaccurate results that could lead to

sub-optimal decisions or faulty science.

• They could exfiltrate confidential research

data.

• They could sabotage the compute infrastruc-

ture by introducing code to uselessly con-

sume compute cycles or clog disk drives with

garbage.

It is even more concerning considering that

all of these threats can be multiplied across the

open-source software ecosystem. Each third-party

dependency a scientific codebase has could have

vastly different coding practices and attack sur-

faces. If any one of those dependencies is vulner-

able, the whole system that uses it is vulnerable.

T
HE spectre of cyberattacks on open-source

research software is not just a material

threat but also an epistemic one: it en-

dangers our ability to trust our codes and the

resulting science. As such, we need to build

security into scientific computing from the ground

up, starting with research software development.

Shifting security left, however, means confronting

the fact that research software developers are not

cybersecurity experts or vice versa. Not only do

most researchers lack knowledge of security, but

the typical cybersecurity analyst is also wholly

unfamiliar with the languages, libraries, and pro-

gramming models of scientific computing. This

disconnect leaves open questions about how to

move forward with incorporating cybersecurity

principles into the research software development

process.

In recent years the rifts between scientific and

mainstream software engineering have begun to

close with the rise of the research software en-

gineer (RSE) professional identity and the emer-

gence of community organizations advocating for

SE best practices (e.g. Better Scientific Software

and the US-RSE Association). As a result, a

cross-disciplinary movement has emerged with

the goal of translating insights from mainstream

software engineering and to pioneer new tools and

practices well-suited to the scientific domain.

We see a similar opportunity for address-

ing the disconnect between cybersecurity re-

quirements and research software development

needs. By incorporating cybersecurity principles

throughout the research software lifecycle, espe-

cially early in the process, teams can begin to

address the concerns raised above. The Confiden-

tiality Integrity and Availability (CIA) triad is a

standard model for designing secure information

systems. The CIA triad defines the necessary

characteristics for a system to be secure. Con-

fidentiality is the securing of private informa-

tion from unauthorized entities. Integrity is the

preservation of the original message without any

alterations. Availability is the accessibility to an

entity. Table 1 lists examples of the types of

attacks that fall into each of these categories. If

the information system can meet appropriate lev-

els of these requirements, it meets an acceptable

threshold of security.

Table 1. Example attacks for each CIA category

Confidentiality Integrity Availability
Man-in-the-Middle Masquerade Jamming

Eavesdropping Code Injection DOS
Side-Channel Code Modification Delay of Information

We identify two types of steps to take mov-

ing forward: (1) porting and adopting existing

cybersecurity practices into the research software

domain and (2) conducting research on how those

cybersecurity practices and others work in the

research software domain.

First, well-known, proven cybersecurity prac-

tices can be integrated into the research software

development process. In general, these practices

fall under the concept of “building security in”

rather than trying to bolt it on at the end. These

practices include:

• Considering cybersecurity in the requirements

specification step

• Architecting and designing software with cy-

bersecurity considerations in mind

• Using “safe” coding practices to reduce the

potential of introducing exploitable vulnerabil-

ities

Mon 2022 3

• Incorporating security checks into build and

test automation to identify problems prior to

release

• Using vulnerability scanners to identify prob-

lematic code

Second, additional research into the adoption

of cybersecurity practices in research software is

needed. The research agenda includes answering

questions like:

• How do existing cybersecurity tools and prac-

tices need to be modified to work in a research

software ecosystem that is dominated by re-

search software developers and RSEs?

• How do we encourage the adoption of cyber-

security tools and practices among scientific

computing professionals? What can we do to

lower the barriers to entry and increase security

literacy?

• What implications does the use of cyberse-

curity tools and practices have on the per-

formance, reproducibility, and openness of re-

search software?

• What are the right criteria by which we can

judge the overall success of security tool and

practice use? That is, when will we know that

we have succeeded?

In the long run, we believe cybersecurity

could eventually become “nativized” into re-

search software development praxis in the same

way that software engineering concepts and tools

have been adopted. Many security principles can,

with some reframing, fit into what researchers

already value, such as the FAIR principles for

research software [12].

• Findable software means the software has a

globally unique identifier (such as a DOI or

Software Heritage ID). This facilitates the cre-

ation of “manifest” files that precisely specify

dependencies. Manifest files improve security

because they can be automatically audited for

recency and known vulnerabilities.

• Available software means it is retrievable by

that identifier from known repositories. This

practice improves the security of the soft-

ware supply chain, since the dependencies

come from reliable, trusted sources over an

encrypted channel.

• Interoperable software means that software

operates behind explicit interfaces that can be

incorporated in a wide range of applications,

rather than each author writing a library for

their own use-case. This improves security by

reducing the attack surface and concentrating

efforts on improving a small set of core li-

braries.

• Reusable software means the software has the

metadata necessary to reuse software results

(provenance) and the ability to get the same re-

sults in a reuse (reproducibility). Reproducibil-

ity helps researchers detect tampering, since

they can easily compare a hash of the results,

while provenance can help researchers debug

security incidents when they occur.

Our hope is that researchers may become

conversant in security and able to work with

professionals in cybersecurity and software en-

gineering to achieve it in practice.

REFERENCES

1. E. Joseph, “SC20 update on the ROI

and ROR from investing in HPC,”

https://web.archive.org/web/20220901063620/https://www.hpcuserforum.com/ROI/,

November 2020.

2. S. Peisert, T. E. Potok, and T. Jones, “ASCR

cybersecurity for scientific computing integrity-

research pathways and ideas workshop,” Lawrence

Berkeley National Lab.(LBNL), Berkeley, CA (United

States), Tech. Rep., 2015. [Online]. Available:

https://doi.org/10.2172/1223021

3. K.-C. Li, N. Sukhija, E. Bautista, and J.-L. Gaudiot,

Cybersecurity and High-Performance Computing

Environments: Integrated Innovations, Practices, and

Applications. CRC Press, 2022. [Online]. Available:

https://doi.org/10.1201/9781003155799

4. R. Cope, “Strong security starts with soft-

ware development,” Network Security, vol. 2020,

no. 7, pp. 6–9, 2020. [Online]. Available:

https://doi.org/10.1016/S1353-4858(20)30078-7

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-
eywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NA0003525. Any subjective views or opinions that might be
expressed in the paper do not necessarily represent the views of
the U.S. Department of Energy or the United States Government.
SAND2022-10431-O.

4 Computing in Science & Engineering

https://web.archive.org/web/20220901063620/https://www.hpcuserforum.com/ROI/
https://doi.org/10.2172/1223021
https://doi.org/10.1201/9781003155799
https://doi.org/10.1016/S1353-4858(20)30078-7

5. A. Adams, T. Siu, J. Songer, and V. Welch, “Research

at risk: Ransomware attack on physics and astronomy

case study,” NSF Cybersecurity Center of Excellence,

Trusted CI, trustedci.org, Tech. Rep., June 2021.

[Online]. Available: https://hdl.handle.net/2022/26638

6. M. Enserink, “Dutch research funding agency,

paralyzed by ransomware attack, refuses to pay up,”

https://www.science.org/content/article/dutch-research-funding-agency-paralyzed-ransomware-attack-refuses-pay,

February 2021, accessed: 2022-03-17.

7. C. Cimpanu, “Supercomputers hacked

across europe to mine cryptocurrency,”

https://web.archive.org/web/20220708214636/https://www.zdnet.com/article/supercomputers-hacked-across-europe-to-mine-cryptocurrency/,

2020.

8. M.-E. M.Léveillé and I. Sanmillan, “A wild kobalos

appears: Tricksy linux malware goes after HPCs,”

ESET, Tech. Rep., January 2021. [Online]. Available:

https://www.welivesecurity.com/post paper/a-wild-kobalos-appears-tricksy-linux-malware-goes-after-hpcs/

9. H. N. Security, “Open source cyberattacks increasing

by 650%, popular projects more vulnerable,”

https://web.archive.org/web/20221017194124/https://www.helpnetsecurity.com/2021/09/17/open-source-cyberattacks/,

September 2021.

10. L. Barr, “Cybersecurity official warns software vulner-

ability could affect ’hundreds of millions of devices’,”

https://web.archive.org/web/20221026045053/https://abcnews.go.com/Politics/cybersecurity-official-warns-software-vulnerability-affect-hundreds-millions/story?id=81751264,

December 2021.

11. J. Carder, “Open source code: The

next major wave of cyberattacks,”

https://web.archive.org/web/20221021152434/https://www.darkreading.com/vulnerabilities-threats/open-source-code-the-next-major-wave-of-cyberattacks,

February 2022.

12. N. P. Chue Hong, D. S. Katz, M. Barker, A.-

L. Lamprecht, C. Martinez, F. E. Psomopoulos,

J. Harrow, L. J. Castro, M. Gruenpeter, P. A. Martinez,

T. Honeyman, A. Struck, A. Lee, A. Loewe, B. van

Werkhoven, C. Jones, D. Garijo, E. Plomp, F. Genova,

H. Shanahan, J. Leng, M. Hellström, M. Sandström,

M. Sinha, M. Kuzak, P. Herterich, Q. Zhang, S. Islam,

S.-A. Sansone, T. Pollard, U. D. Atmojo, A. Williams,

A. Czerniak, A. Niehues, A. C. Fouilloux, B. Desinghu,

C. Goble, C. Richard, C. Gray, C. Erdmann, D. Nüst,

D. Tartarini, E. Ranguelova, H. Anzt, I. Todorov,

J. McNally, J. Moldon, J. Burnett, J. Garrido-Sánchez,

K. Belhajjame, L. Sesink, L. Hwang, M. R. Tovani-

Palone, M. D. Wilkinson, M. Servillat, M. Liffers, M. Fox,

N. Miljković, N. Lynch, P. Martinez Lavanchy, S. Gesing,

S. Stevens, S. Martinez Cuesta, S. Peroni, S. Soiland-

Reyes, T. Bakker, T. Rabemanantsoa, V. Sochat,

Y. Yehudi, and R. F. WG, “FAIR Principles for Research

Software (FAIR4RS Principles),” May 2022. [Online].

Available: https://doi.org/10.15497/RDA00068

Jeffrey Carver Ph.D. is a full professor in the

Department of Computer Science at The University

of Alabama. His general research interest lie in the

area of empirical software engineering and human

factors in software engineering. His research focuses

on topics including: software engineering for research

software, software quality assurance, peer code re-

view, software security, human errors, and software

engineering education.

Reed Milewicz Ph.D. is a computer scientist and

software engineering researcher in the Department

of Software Engineering and Research at Sandia

National Laboratories. His research focuses on de-

veloping better practices, processes, and tools to im-

prove software development in the scientific domain.

He leads software science research efforts within his

department and is a member of the Interoperable De-

sign of Extreme-Scale Application Software (IDEAS-

ECP) project, an arm of the Exascale Computing

Project, where he is part of the Productivity and

Sustainability Improvement Planning (PSIP) team.

Samuel Grayson is a Ph.D. candidate at the Univer-

sity of Illinois at Urbana-Champaign advised by Darko

Marinov and Daniel S. Katz. Sam’s research focus

is on improving the process of developing software

for computational sciences using software tools and

process improvements. He is also a summer intern

at Software Engineering and Research at Sandia

National Laboratories.

Travis Atkison Ph.D. is an associate professor in the

Department of Computer Science at The University

of Alabama. His current research efforts focus on the

topics of cyber security, transportation infrastructure,

and control systems security. These efforts include

malicious software detection, threat avoidance, digital

forensics, and security in control system environ-

ments (in both power systems and transportation).

Mon 2022 5

https://hdl.handle.net/2022/26638
https://www.science.org/content/article/dutch-research-funding-agency-paralyzed-ransomware-attack-refuses-pay
https://web.archive.org/web/20220708214636/https://www.zdnet.com/article/supercomputers-hacked-across-europe-to-mine-cryptocurrency/
https://www.welivesecurity.com/post_paper/a-wild-kobalos-appears-tricksy-linux-malware-goes-after-hpcs/
https://web.archive.org/web/20221017194124/https://www.helpnetsecurity.com/2021/09/17/open-source-cyberattacks/
https://web.archive.org/web/20221026045053/https://abcnews.go.com/Politics/cybersecurity-official-warns-software-vulnerability-affect-hundreds-millions/story?id=81751264
https://web.archive.org/web/20221021152434/https://www.darkreading.com/vulnerabilities-threats/open-source-code-the-next-major-wave-of-cyberattacks
https://doi.org/10.15497/RDA00068

This figure "carver.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/2211.06343v1

http://arxiv.org/ps/2211.06343v1

This figure "milewicz.png" is available in "png"
 format from:

http://arxiv.org/ps/2211.06343v1

http://arxiv.org/ps/2211.06343v1

	REFERENCES
	Biographies
	Jeffrey Carver
	Reed Milewicz
	Samuel Grayson
	Travis Atkison

