
CiSE: Lorena Barba
Editor: Jeffrey C. Carver, carver@cs.ua.edu

Research Software Science:
Expanding the Impact of
Research Software
Engineering

Michael A. Heroux
Saint John’s University, Sandia National Laboratories

Abstract—Software plays a central role in scientific discovery. Improving how we develop and
use software for research can have both broad and deep impacts on a spectrum of challenges
and opportunities society faces today. The emergence of Research Software Engineer (RSE) as a
role correlates with the growing complexity of scientific challenges and diversity of software
team skills. In this paper, we describe research software science (RSS), an idea related to RSE,
and particularly suited to research software teams. RSS promotes the use of scientific
methodologies to explore and establish broadly applicable knowledge. Using RSS, we can
pursue sustainable, repeatable, and reproducible software improvements that positively impact
research software toward improved scientific discovery.

RESEARCH SOFTWARE ENGINEER (RSE)
has emerged as an identity for many members
of the research software community [5], [6].
For many years, RSE functions were needed on
scientific teams but only recently has there been
the growth in awareness of the importance of
these skills and the people who possess them,
leading to a long-overdue and explicit recognition
that RSE staff require stable career paths and
communities of their own, beyond solely being
part of a particular scientific team.

RSE job functions rely on the premise that
there are better and worse ways to produce soft-

ware for use in scientific research. Often, RSEs
read the existing software engineering literature to
keep informed about, adapt, and adopt evolving
practices and tools. They also carry techniques
and experience from project to project. These
translational strategies are intrinsically valuable
and are a part of the fundamental value proposi-
tion that RSEs bring to the scientific community.

In this paper we present the concept of re-
search software science (RSS): applying the sci-
entific method to understanding and improving
how software is developed and used for research
(Figure 1). We argue that RSS is an important

Computing in Science and Engineering Published by the IEEE Computer Society © 2023 IEEE 1

ar
X

iv
:2

21
1.

09
03

4v
1 

 [
cs

.S
E

] 
 1

6 
N

ov
 2

02
2



CiSE Special Issue on the Future of Research Software Engineers in the US

Figure 1. Research software science (RSS) is proposed as a complementary approach to RSE efforts for improving how
software is developed and used for research. RSS leverages the inherent appreciation for scientific methodologies present
in the research community, providing another source of information for RSE practitioners to leverage.

complement to RSE efforts, providing another
avenue to enhancing the impact of RSE efforts
beyond translational activities. Furthermore, RSS
leverages the innate scientific sensibilities of the
research communities to which RSE members
belong. In other words, while it is appropriate to
apply a scientific approach to understanding and
improving how any kind of software is developed
and used, it is particularly apt to use this approach
for research software. Finally, by emphasizing
a scientific approach to improving software ac-
tivities, research funding organizations can more
readily justify investments in advancing how their
sponsored software projects improve the practice
of developing and using software for research,
as can be seen by the recent US Department
of Energy sponsorship of the Workshop on the
Science of Scientific-Software Development and
Use [1] in December 2021.

Background
Development and use of software are funda-

mental to numerous areas of scientific research.
Many scientists write, modify, and use software
to gain insight and prove scientific results. At
the same time, formal software engineering tech-
niques and knowledge that are widely adopted
in other software development domains are not
as commonly used in research software projects.

In our experience, research software development
approaches are more informal, particularly in the
upstream activities of requirements, analysis, and
design.

One challenge to investing in improved soft-
ware practices and processes for science is the
perception by some that a focus on improving
software skills falls under the category of engi-
neering, not science. There is a perception that
software engineering—refining repeated practices
for more efficiency—is not something that a sci-
entific research funding portfolio should support
as a fundamental element.

From this perspective, the best that research
software teams can do is spend modest amounts
of time learning practices from the mainstream
software engineering literature and use them un-
changed or with modest adaptation in their own
software development. While the RSE movement
is improving the situation for larger scientific
team, in our experience, the current status results
in only moderate success—and sometimes even
failure. Best practices distilled from larger, more
mainstream software domains may be ill-suited
for research software teams.

The growth of the RSE community is a strong
sign that these perceptions are changing, and
software engineering is increasingly recognized
as an essential skill set on a diverse scientific soft-

2 Computing in Science and Engineering



ware team. Even so, there is another opportunity
to improve our ability to develop software and
improve its usability.

In this article, we propose that the scientific
method—which is central to scientific efforts
using research software—can be used to study
and improve the development and use of research
software. Looking at the development and use
of software for research through a scientific lens
enables us to apply a scientific approach to under-
stand and improve software as a tool for research.
In other words, research software development
and use are the subjects of our scientific study.

Science applied to research software
As stated above, the primary objective of

research software science as we are proposing it
is to apply the scientific method to understanding
the development and use of research software.
This pursuit has strong technical, social, and
cognitive components, describe below.

Technical component:
The purpose of research software is modeling
and simulation of scientific theories; the gath-
ering, analysis, and understanding of scientific
data; and related pursuits. These activities typ-
ically require years of education in a scientific
domain and ongoing community engagement to
contribute to and keep abreast of new discoveries
and approaches. For example, to develop and
use computational fluid dynamics (CFD) research
software, one must complete years of study in
mathematics, physics, and engineering and then
continue study of CFD and related fields even
when developing and using software.

Social component:
Development and use of scientific software are
typically a team effort, increasingly involving
more people and more diverse roles. Team in-
teractions, workflows, and tools play a large part
in the effectiveness of a research software team.
While many people have realized the importance
of the technical component of research software
development and use, fewer people have focused
on the social elements, and even fewer have
applied a scientific approach to studying and
improving research software team interactions.

Cognitive component:
Improving our approaches to developing and us-
ing research software typically requires learning.
In our experience, scientists tend to enjoy solving
problems. Framing change as a problem or puzzle
to be solved can be effective in engaging scien-
tists. Posing improvement goals in a descriptive
way, more than a prescriptive, enables scientists
to be part of the creative process. More generally,
leveraging knowledge from cognitive sciences
improves our ability to understand how develop-
ers and users of research software approach their
work and interact with each other.

Social and cognitive sciences focus
Applying the scientific method to research

software teams necessarily involves the social and
cognitive sciences. Observations, interviews, data
mining, and similar techniques provide the raw
materials for analyzing and gaining understanding
of important correlations—and ultimately, one
hopes, identifying cause and effect—between be-
haviors, situations, and outcomes.

While the software engineering literature ad-
dresses the social and cognitive elements of soft-
ware development and use, research software
teams take on considerable risks by adopting pub-
lished team practices without scrutiny or adap-
tation. In our experience, many published team
practices are not sufficiently informed by the
dynamics and requirements of research software
development and use. To better understand when
and how existing software methodologies are
appropriate and to develop new approaches for
research software, we need the skills and tools of
social and cognitive sciences applied to research
software teams and individuals.

RSS is more than just an extension of
RSE

As mentioned, the software engineering lit-
erature provides ample material dedicated to the
social and cognitive elements of software teams.
Some of this literature is scientific in nature,
but much of it is anecdotal, based on years of
experience from seasoned software professionals.
These writers produce generalized recommenda-
tions from specific experiences, often with benefit
to other developers and users.

It is reasonable to argue that RSS is a mod-

March/April 2023 3



CiSE Special Issue on the Future of Research Software Engineers in the US

Figure 2. One model for integrating research software science staff into an existing research software engineering teams
is to consider a research-develop-deploy pipeline. Opportunities for improving development and use of research software
approaches come from understanding the challenges faced in deploying existing software products. These challenges
become the research problems for study and later become new approaches to develop and deploy.

est extension of RSE. There is some truth to
this, especially to the extent RSE team members
experiment with new mental models, tools, and
processes. However, in our experience, this exper-
imentation is seldom a formal, repeatable, or re-
producible process designed to generate sharable
knowledge. Instead, we believe it is fruitful to
consider RSS as new identifiable element within
an existing RSE organization. Figure 2 shows a
notional research-develop-deploy pipeline where
the challenges of supporting research software
within the deploy phase inform the questions in
the research phase that are then used to inform
the develop phase and lead to new deployable
capabilities.

Fred Brooks is quoted as saying, “A scientist
builds in order to learn; an engineer learns in
order to build.” Engineers want an improved
tool or process. They identify a few possibilities,
test, select the best, and move on. There is
only incidental team memory and little focus on
dissemination. Scientists want to understand un-
derlying principles, correlation, cause-and-effect.
They design studies, capture data, analyze results,
and publish.

Clearly, the software engineering community
performs research, but this research is not always

directly applicable to research software. Further-
more, especially in the research community, we
should call this kind of work what it is: science.

Why now: Multidisciplinary direction of
science

Many important efforts in science require
strong multidisciplinary teams. We see that re-
search software is increasingly incorporating mul-
tiscale and multiphysics features, equation-driven
and data driven approaches, involving modeling,
simulation, and data analysis. Adding a scientific
approach to understanding the development and
use of research software establishes one more
dimension in the pursuit of better scientific ap-
proaches and is especially appropriate given the
growing diversity of scientific teams and the need
to understand and optimize team interactions and
output. Historically, we can see the expansion
of skillsets needed by leading research software
communities, as shown in Figure 3.

Trends in scientific software that
increase the value of RSS

The technology community is seeing a grow-
ing importance for considering human factors
in product development [cite Tett]. In addition,
software design and development platforms are

4 Computing in Science and Engineering



Figure 3. Early use of software for scientific discovery was generally small scale, developed by a team of domain
scientists. As efforts proceeded, the need for new mathematics and more efficient computer science algorithms and data
structures emerged. As software products grew in size, complexity and coupling, the need for data management and
software engineering expertise emerged. Presently, the growing complexity of scientific software projects increases the value
of investing in cognitive and social sciences.

becoming increasingly sophisticated, reducing the
cost of creating products. For example, artificial
intelligence (AI)-based tools that assist in gen-
erating source code, testing infrastructure, and
more, are available to assist in producing soft-
ware.

With the increased emphasis on improving
the usability of software and the reduced cost of
producing it, skills in eliciting and analyzing re-
quirements, and user-centered design become rel-
atively more important than development skills.
More time will be spent on the upstream and
higher-level activities of what the product should
be than on making the product. Because of these
trends, we have an opportunity to place more
emphasis on purpose and design, providing soft-
ware systems adapted to fit scientists, broadening
usability, accessibility, and impact.

As part of the trends we observe, software
engineering focuses such as user experience (UX)
can make more sense in the research software
development process to address the growing size
and complexity of scientific teams and environ-
ments. Research software science can play a large
role in guiding these UX activities, providing a
scientific foundation for long-term and sustain-
able impact. One notable UX opportunity for
scientific software is that on many teams the
users are also the primary developers, an atypical
situation for most UX methodologies.

CONCLUSION

Development and use of research software are
rich and dynamic pursuits, worthy of scientific
study in their own right. Viewing the improve-
ment challenges as scientific problems opens the
door to applying scientific skills to assist in
making our software development and use even
more effective.

Research software communities of all kinds
expect rigorous use of the scientific method as we
produce and gain scientific insight from the de-
velopment and use of software in our domains of
study; fluid dynamics research, for example, has
benefited tremendously from computation. We
should expect the same rigor as we try to under-
stand how to better develop and use the software
tools that enable our research. Research software
science—applying science to the study of how
we develop and use research software—should
qualitatively improve our software capabilities.
Forming and promoting the role of a research
software scientist should lead to the same quali-
tative improvement in outcomes we have seen in
any other domain where the scientific method has
taken hold. Because software is such an important
element of research, we expect that focusing
on research software science should dramatically
improve science overall.

March/April 2023 5



CiSE Special Issue on the Future of Research Software Engineers in the US

ACKNOWLEDGMENT
The original idea of Research Software Sci-

ence presented in this article was first delivered as
a white paper at the 2019 Collegeville Workshop
on Sustainable Scientific Software (CW3S19) [3],
then revised and extended for a blog post [2],
cross posted on the BSSw and URSSI websites.
We thank St. John’s University for the on-site and
virtual resources used to conduct the Collegeville
Workshops on Scientific Software [4] that were
the genesis of the concept of Research Software
Science.

REFERENCES
1. David E. Bernholdt, John Cary, Michael Heroux, and

Lois Curfman McInnes. The science of scientific-

software development and use. brochure from the

basic research needs workshop, https://doi.org/10.2172/

1846008, 1 2022.

2. Mike Heroux. Research software science: A

scientific approach to understanding and improving

how we develop and use software for research.

blog article in Better Scientific Software, online,

https://bssw.io/blog posts/research-software-science-

a-scientific-approach-to-understanding-and-improving-

how-we-develop-and-use-software-for-research,

September 25 2019.

3. Michael A. Heroux. 2019 Collegeville Workshop on

Sustainable Scientific Software, 2019. https://collegeville.

github.io/CW3S19/.

4. Michael A. Heroux. Collegeville Workshops Home Page,

2022. https://collegeville.github.io/Workshops/.

5. Society of Research Software Engineering. RSE Society

Homepage, 2022. https://society-rse.org.

6. The United States Research Software Engineer Associ-

ation. US-RSE Homepage, 2022. https://us-rse.org.

Michael A. Heroux is a Scientist in Residence
at St. John’s University, MN, a Senior Scientist at
Sandia National Laboratories, and Director of Soft-
ware Technology for the US Department of Energy
(DOE) Exascale Computing Project (ECP). He is the
founder of the Trilinos scientific libraries, Kokkos per-
formance portability libraries, Mantevo miniapps and
HPCG Benchmark projects, and is presently leading
the Extreme-scale Scientific Software Stack (E4S)
project in DOE, a curated collection of HPC software
targeting leadership platforms. Mike is a Fellow of
the Society for Industrial and Applied Mathematics
(SIAM), a Distinguished Member of the Association

for Computing Machinery (ACM), and a Senior Mem-
ber of IEEE. Contact him at mheroux@csbsju.edu.

6 Computing in Science and Engineering

https://bssw.io
https://urssi.us
https://doi.org/10.2172/1846008
https://doi.org/10.2172/1846008
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://collegeville.github.io/CW3S19/
https://collegeville.github.io/CW3S19/
https://collegeville.github.io/Workshops/
https://society-rse.org
https://us-rse.org

	Background
	Science applied to research software
	Social and cognitive sciences focus
	RSS is more than just an extension of RSE
	Why now: Multidisciplinary direction of science
	Trends in scientific software that increase the value of RSS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES
	Biographies
	Michael A. Heroux


