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Abstract—The growing amount of available data in many scientific fields is calling for a radical
change in the approach for managing and analyzing these data. The data space concept, a digital
ecosystem supporting scientific communities towards a more sustainable and FAIR use of data,
has emerged in the last years to address some of the key challenges. This paper presents a
domain-specific implementation of the data space concept targeting the needs of climate
scientists: the ENES Data Space. Such science gateway has been devised in the context of the
European Open Science Cloud to provide climate users with datasets, tools, and services
integrated into a single environment for the development of data science applications. The main
motivations behind this data space and its architecture are presented in this work, together with
an example of scientific application that can be run by users.

H INTRODUCTION Over the last decade big data  data-driven innovation perspective, approach, and
has been considered one of the major revolutions  thinking, thus gaining strategic importance in the
in ICT. Besides the most famous three Vs, i.e., digital market, both for public and private sectors.
volume, velocity, and variety, a fourth one, value,

at the core of data economy, has been fostering a The data space concept has been progres-

sively introduced in this context over the last few
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years, turning out to be suitable also to scientific
domains. In particular, the EU Data Strategy'
highlighted the importance of defining a single
European data space, a seamless digital area for
the development of services based on data.

In that respect, the ongoing efforts in the con-
text of the European Open Science Cloud (EOSC)
can strongly help the implementation of such
concept. As an example, the EGI-ACE project® is
building several data spaces for different scientific
communities to support them towards a more
sustainable, effective, and FAIR data use.?

Among others, the ENES Data Space (EDS)
is a notable example, relevant to the European
Network for Earth System Modelling (ENES)
community. It has been opened to end users at
the end of 2021, offering a single integrated envi-
ronment with ready-to-use data and programmatic
capabilities for the development of data science
applications. In particular, this solution integrates
into a single environment: (i) Python libraries and
frameworks for data analytics and visualization,
together with (ii) a large data collection from key
community experiments, like the Coupled Model
Intercomparison Project (CMIP)® and the Coor-
dinated Regional Climate Downscaling Experi-
ment (CORDEX)®, and (iii) scalable computing
resources that can be deployed on demand on top
of the EGI federated cloud infrastructure.

Such data space exploits software compo-
nents from the Jupyter project® to provide a
web-based science gateway available through the
EOSC MarketPlace? in the context of the EOSC
initiative.

A Data Space for Climate Science

The increased models resolution in the devel-
opment of comprehensive Earth System Models is
rapidly leading to very large climate simulations
outputs that pose significant challenges in terms
of scientific data management, specifically for
data sharing, processing, analysis, visualization,
preservation, curation, and archiving.*

In such domain, large scale global experi-
ments for climate model intercomparison have

2EGI-ACE: https://www.egi.eu/project/egi-ace/

PCMIP: https://www.wcrp-climate.org/wgem-cmip

“CORDEX: https://cordex.org

4EDS: https://marketplace.eosc-portal.eu/services/
enes-data-space

led to the development of the Earth System Grid
Federation (ESGF),” a federated data infrastruc-
ture that involves a large set of modelling centers
(data providers) around the globe and includes the
European contribution - regarding the ENES com-
munity - through the IS-ENES project. Datasets
are produced by the different climate modelling
institutes, published on their sites, and shared
with the whole community through ESGF.

The ESGF infrastructure provides access to
climate dataset from various efforts, such as
from CMIP. The Coupled Model Intercompari-
son Project has been established by the Work-
ing Group on Coupled Modelling (WGCM)®
under the World Climate Research Programme
(WCRP). CMIP is now in Phase 6 (CMIP6) and
its PB-scale database® is of strong relevance to
WCRP for the IPCC assessments'.

For more than ten years, ESGF has managed a
globally distributed data infrastructure, federating
search and replication of datasets among partici-
pant institutions. The federation was historically
based on nodes, deployed at given sites, divided
into more specialised modules: (i) the Data node,
for publishing and data access, (ii) the Index node,
for data discovery and metadata indexing, and
(iii) the Identity Provider node, for authentication
and authorization policies. An early approach also
included a fourth component, the Compute node,
which provided some basic analysis features.
However, there has always been the interest in ex-
tending this architecture to provide more valuable
computing services to better support scientists in
the climate community in their analysis.

Several efforts have been undertaken over the
years; for example in the context of the IS-ENES
projects a set of compute services have been
established by key European climate research
centers. Initial ideas for these computing capabili-
ties are represented by the analytics-hub concept’
and the ENES Climate Analytics Service (ECAS)
set up in the context of the EOSC initiative by
CMCC and DRKZ.® ECAS represented an early
solution for providing data analysis capabilities
close to the ESGF data pools already deployed in
the data center, while the analytics-hub focused
on providing analytics service on variable-centric

*WGCM: https://www.wcrp-climate.org/wgem-overview
fIPCC Reports: https://www.ipcc.ch/reports/
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data collections. The ENES Data Space represents
an evolution of these early solution targeting a
wider user base.

A data space for climate and ESGF would
be clearly linked in this landscape, due to the
comprehensive data offering from ESGF about
datasets of broad interest, from large commu-
nity experiments. This represents a step forward
from the compute service originally envisioned
in ESGF towards a more integrated data manage-
ment and analysis solution.

From an architectural perspective, a climate
data space and ESGF would work at two dif-
ferent levels: on one hand, ESGF would mainly
operate a federated data archive through a set of
data nodes distributed worldwide across different
modelling centers; on the other hand, a climate
data space would provide a single entry-point to
compute capabilities co-located with a local data
store hosting a specific data selection from ESGF.

As already mentioned, the data offering is at
the core of a climate data space. However, it is
important to remark that data alone would not
be enough without a comprehensive ecosystem,
which also includes a potentially wide set of
tools and services enabling scientists to: develop
applications, analyze data, visualize results, un-
derstand provenance, reproduce analyses, share
code and document workflows, and publish new
products. Data, services, and tools represent the
three fundamental components of a climate data
space ecosystem.

A Science Gateway for the ENES
Community

The EDS environment proposed in this work,
strives to provide climate scientists with a ready-
to-use research environment accessible through
a web-based science gateway. From a technical
standpoint, EDS is a specific implementation of
a climate data space developed in the context of
the EU-funded project EGI-ACE. It provides a
complete data science environment enabling users
to perform scientific analysis on large climate
datasets. It integrates computing and storage re-
sources, climate datasets as well as various data
access, analytics and visualization modules, tools,
and parallel computing frameworks.

The development of such data space has been
driven by a set of key needs and requirements
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identified through the experience gained by work-
ing with climate scientist.

The typical methodology which has been used
by scientists in the past consisted in download-
ing the climate datasets from central reposi-
tories (e.g., ESGF) on their desktop machines
and then processing data locally with home-
made scripts. The increasing volumes of data
made this approach no longer viable due to long
download time and limited computing/storage re-
sources on local machines. Providing scientists
with large ready-to-use datasets and software
solutions closely integrated with the computing
infrastructure can almost completely eliminate
the setup time and dramatically increase their
productivity.

This integration with Cloud/HPC infrastruc-
tures enables the use of High Performance Data
Analytics (HPDA) solutions that can easily scale
the analysis on thousands of computing units
supporting parallel processing, which has be-
come fundamental for effectively addressing the
increasing scale in climate data.

From a functional point of view, interactive,
exploratory and batch (i.e., workflow-based) anal-
ysis are all very common methodologies used
by scientists for investigating and analyzing data.
Providing support for these different method-
ologies trough a single gateway, while hiding
from the infrastructural details, will allow to
fully address user needs in terms of data access,
processing and visualization.

Another relevant aspect is research outputs
sharing, i.e., data products and application def-
inition. This is a key aspect towards pursuing the
goals of Open Science and increasing the collab-
oration between different scientists and groups.

As an overarching goal, the data space can
democratize data analysis by providing oppor-
tunities to new user groups and communities
who do not currently have access to computing
infrastructures capable of supporting such large-
scale analysis.

Data Space Architecture

The EDS architecture has been defined start-
ing from the identified needs. Figure 1 shows
a high-level view of the data space architecture,
highlighting the main infrastructural components
considered.



Science Gateways: Accelerating Research and Education

ENES Data Space

Check-In

Jupyterhub
S’

1
(XNON Q)

%.

Data
Sharing

J

Jupyterlab
N d

@ python” CONDA

A1p Bunpiom

l jus)sisiod

& Ophidia

@)

3

. =8

Jup.yter\ b @
ab

~ 5

>

@ python” CONDA L

. (@]

& Ophidia . £

®

Q

o

User env N g

Jupyterlab
Nt

@ python

CONDA

a1p Bupjiom
juslsisiod

ﬁ;\ Ophidia

-3
- \fsscﬁ?@ S—

@/

ENES Data
Space archive

®

Synda Data

ESGF federated Transfer tool

data archive

Figure 1. High-level architecture of the data space. The main services and tools integrated in the software

infrastructure are highlighted

Data Science Gateway Interface and AAI
The science gateway of the EDS is implemented
through multiple services accessible via a Ngnix-
based proxy, as it can be observed in the left-
most part of Figure 1. These services include the
EDS web portal? and an instance of JupyterHub,>
a service for running a multi-user Jupyter server
environment.

AAI aspects to the platform are handled
through the EGI Check-in" service, directly inte-
grated into JupyterHub for managing user authen-
tication and authorization. EGI Check-in provides
users with a uniform, easy and secure way for
accessing services, also supporting authentication
through institutional and social media accounts.
It enables federated authentication and authoriza-
tion of users for dealing with identity manage-

SEDS Portal: https://enesdataspace.vm.fedcloud.eu/
NEGI Check-in: https://www.egi.eu/service/check-in/

ment and access control aspects (e.g., definition
of virtual organizations).

Once the user is authenticated, JupyterHub
server spawns a new instance of single-user en-
vironment with the enhanced JupyterLab server:
the latest web-based user interface for Project
Jupyter.

Data Science Environment The JupyterLab
server is linked to a pre-configured ecosystem of
Python-based tools and frameworks for parallel
data analysis and result visualization. This envi-
ronment provides the features for the execution
of scientific code in the Jupyter Notebooks.

The environment, based on the popular
Conda package manager, contains a wide set
of pre-configured scientific modules from the
Python ecosystem targeting the climate commu-
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nity needs, such as Xarray,9 Intake', as well as
computing frameworks for parallel analysis like
Dask'® and Ophidia.'" This is displayed in the
central part of Figure 1.

The whole JupyterLab server and the Python
ecosystem is implemented through a Docker con-
tainer for easy deployment on the underlying
cloud platform. In this way, multiple environ-
ments with different tools can be easily created
and added to the infrastructure.

In order to support different application re-
quirements, the science gateway, allows users
to select the computing resources (i.e., in terms
of CPUs and RAM) required for their needs.
Different computational profiles have been de-
fined according to the most frequent scenarios
requested by scientists. The user environment is
deployed on-demand on the cloud infrastructure
according to the profile selected at login time.
Figure 2 shows the possible profiles currently
made available. The set of profiles is periodically
updated to take into account new user require-
ments and applications workload.

* Jupyter Home  Token @ Logout

Server Options

© Small Data Science environment (2 cores, 2GB RAM)

The Small notebook server (2 cores, 2GB RAM) includes Python, a number of pre-installed community libraries
and a ready-to-use Ophidia HPDA framework instance for running data manipulation, analysis and visualization.

Medium Data Science environment (4 cores, 4GB RAM)

The Medium notebook server (4 cores, 4GB RAM) includes Python, a number of pre-installed community
libraries and a ready-to-use Ophidia HPDA framework instance for running data manipulation, analysis and
visualization.

Large Data Science environment (8 core, 8GB RAM)

The Large (8 cores, BGB RAM) notebook server includes Python, a number of pre-installed community libraries
and a ready-to-use Ophidia HPDA framework instance for running data manipulation, analysis and visualization.

Figure 2. On-demand provisioning of user-based
environment on the cloud. Profiles with different com-
puting requirements are available

Cloud-based Computing Platform The set
of services and user environments provided by the
science gateway are deployed on a a state-of-the-
art cloud infrastructure, which provides the scal-
able computing platform for data and compute-
driven applications. As previously mentioned,

iIntake: https://intake.readthedocs.io/en/latest/index.html
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each service is handled as a Docker container
managed by a Kubernetes cluster.
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Figure 3. Kubernetes cluster for the EDS infrastruc-
ture on top of the EGI FedCloud

The actual resources for the execution of the
container-based services are provided by the EGI
Federated Cloud e-Infrastructure’. Figure 3 shows
a high-level view of the deployment of the data
space infrastructure on top of the physical cloud
resources. More specifically, the EC3 - Elastic
Cloud Computing Cluster - service'? is used to
manage and elastically adapt the deployment size
of a Kubernetes cluster. In this way, the resources
assigned to the data space (i.e., the number of
virtual machines) dynamically grow and shrink
according to the actual users’ workload, mea-
sured, for example, in terms of memory usage,
CPUs and number of Kubernetes pods (i.e., the
smallest unit of application that can be deployed
in Kubernetes) in a virtual machine.

Kubernetes® is used to automate the deploy-
ment of the Docker-based micro-services and
single-user environments of the EDS system. In
this respect, Kubernetes allows managing the
deployment of consistent and isolated environ-
ments with different resource configurations on
top of the cloud infrastructure. In particular, the
JupyterHub Kubernetes Spawner (also known as
KubeSpawner)' is in charge of spawning across
the Kubernetes cluster nodes and managing the
environment containers once a user logs into the
system.

JEGI FedCloud: https://www.egi.eu/service/cloud-compute/

kKubernetes: https://kubernetes.io/docs/concepts/overview/
what-is-kubernetes/

Ikubespawner: https://jupyterhub-kubespawner.readthedocs.io
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Data Access and Sharing The infrastructure
is linked to 150TB of storage resources for the
EDS file system. Each user is provided with
a persistent dedicated storage space on the file
system, which is exposed to the various Kuber-
netes virtual machines composing the cluster and
mapped into the user container at deployment
time. This storage space can be used by scien-
tists to store their notebooks and results between
their experiment sessions, prior to publication and
sharing with other users.

Moreover, each user has access to a large
collection of ready-to-use datasets from the ESGF
federated archive, curated and stored on the sys-
tem. The data collector is based on Synda™, which
allows datasets downloading and (one-way) syn-
chronization of the local data pool with the data
hosted on the ESGF data infrastructure.

Results, output products and the experiment
definitions (in the form of Jupyter Notebooks)
can be easily shared among users through the
data sharing services included in the environment,
i.e,. Onedata®. Notebooks can also be published
and shared on GitHub and accessed within the
data space thanks to the integration of the related
JupyterLab extension.

Supported Scientific Applications

The data space enables various kinds of us-
ages for data-centric research scenarios in the
climate science domain supporting, for example,
interactive analysis, parallel processing and work-
flows composed of several analytics tasks.

This section presents a typical interactive
analysis that can be implemented by a climate
scientist for the computation of a climate change
indicator: the tropical nights index (i.e., the num-
ber of days where the daily minimum temperature
is above a given threshold)®. Figure 4 shows some
of the stages of the analysis implemented in the
form of Jupyter Notebook (in Python) through the
JupyterLab computing environment provided by
the science gateway. It is noteworthy that these
stages could be generalized for different types of
analytics applications.

MSynda: https://is.enes.org/sdm-sync-data/

"OneData https://onedata.org/

°List of ETCCDI Indices: http://etccdi.pacificclimate.org/list_
27_indices.shtml

Stage 1: Data Search & Discovery The first
step of the analysis starts with the selection of
the input datasets. The EDS is equipped with a
set of ready-to-use specific CMIP and CORDEX
variable-centric collections from the ESGF fed-
erated data archive. Additional data can be inte-
grated into the collection based on users’ needs,
who can ask for new datasets by filling out a
request form available on the data space portal.
Synda will take care of retrieving the requested
data and keeping the data space synchronized
with the ESGF archive.

Since the set of available data is quite large,
before analyzing it, users need to understand
which datasets are available, the metadata de-
scribing each dataset, and how they can select
and access a specific dataset. In this regard,
users can exploit the intake-esm data cataloging
utility integrated in the environment. This can be
invoked directly within a notebook to parse and
execute queries against the Earth System Model
catalog associated with the EDS archive, thus
selecting in a simple way specific datasets from
those available in the collection. Figure 4.a shows
how the intake module can be used to explore the
set of available data and retrieve those relevant
for the analysis. In this particular case the daily
minimum temperature (tasmin) is used for the
computation of the indicator.

The data space allows to improve scientists
productivity by providing a set of curated data
immediately usable without preliminary down-
load, together with the tools for querying and
identifying the data required for their analysis.

Stage 2: Parallel Data Analysis Once the
data have been identified by querying the system,
intake-esm can also be used for loading data as-
sets (i.e., NetCDF files), for example, into Xarray
datasets to run the analysis. Alternately, scientists
can exploit the Ophidia framework and its Python
bindings, PyOphidia, to perform data analysis on
multidimensional scientific datasets. These two
solutions integrated in the data space computing
environment also allow parallel data processing.
Moreover, Ophidia supports batch execution of
complex analytics workflows.

In this particular case, the analysis is based
on Xarray jointly used with Dask to run in
parallel the computation of the tropical nights on
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Figure 4. Different stages of a climate index computation from the EDS JupyterLab interface. Clock-wise from
top left: a) querying of the data catalog, b) execution of the analysis, ¢) results visualization, d) sharing of the

results

the whole data set composed of 86 years from
2015 to 2100. The computation is performed by
using all the resources made available by the
Kubernets Pod allocated by the user: in this case
the “medium” profile image with 4 computing
cores and 4GB of memory has been used. Figure
4.b shows the code used for the computation as
well as a graphical representation of the resulting
data structure provided by Xarray.

As it can be argued, one of the main benefits
provided by the science gateway is that it al-
lows to easily adapt the environment requirements
based on the applications needs and scale the
analysis on multiple computing units. Thanks
to the gateway and pre-configured environment,
users do not need computer scientist skills to set
and scale up their applications.

Stage 3: Data Visualization Visualization
of results represents the following step in the
pipeline for understanding the results of the anal-
ysis. The data space software stack includes a
wide set of libraries to perform data visualization.
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In this regard, users can exploit the Xarray’s plot-
ting capabilities to easily create informative plots.
On top of this, they can directly use Matplotlib
and Cartopy libraries to create highly-customized
and publication-quality maps and geospatial visu-
alizations, as well as other solutions like AvPlot,
Bokeh or Plotly for interactive plots.

Figure 4.c shows the tropical nights index map
generated starting from the results of the analysis.
The hvPlot module integrated in Xarray allows
to easily create a slideshow of the indicator’s
different time steps.

Through the integration of multiple libraries,
the Jupyter Notebook-based implementation al-
lows to easily tailor and customize the visual-
ization and better highlight the results of the
analysis, leading to publication-ready figures. It is
important to mention that users can also manually
add other libraries to their account for specific
needs.

Stage 4: Results Reuse & Sharing As in-
troduced earlier, collaboration between research
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groups is key to future scientific discovery in lieu
of the Open Science paradigm. In this respect, the
reuse of analysis workflows and the possibility to
share code and results are critical aspects. Jupyter
Notebooks represent an easy way to create and
share computational documents embedding code,
explanation and results, thus supporting code
reuse as well. This could also be a valuable aspect
for training and education purposes in order to
improve productivity through knowledge sharing
and to address recurring learning difficulties.

Through the integration with different sup-
porting tools, the EDS offers users the possibility
to publish and share their experiments and analy-
sis results and to make them available to different
user groups. Figure 4.d shows, for example, how
the notebook for the tropical night computation
and the resulting NetCDF file can be uploaded
on the user’s GitHub repository directly from the
JupyterLab interface (through the proper exten-
sion) without needing to download data locally
first. This allows for an increased productivity
since the whole scientific workflow is supported
by a single integrated environment.

Conclusions

This article presented the EDS, an EOSC-
based data science environment for the climate
community developed in the context of the EGI-
ACE project.

The main motivations behind this data sci-
ence environment have been introduced, together
with the key requirements addressed, the software
architecture devised to enable interactive and
parallel data analysis/visualization, the supported
scientific applications as well as the interactive
gateway based on Jupyter Notebooks.

The environment was made accessible to end
users in 2021, and it has been periodically up-
dated with new software releases, datasets, and
tools. This will continue as a natural extension
of the data space, especially driven by the users’
feedback and requests. Current ongoing develop-
ments take into account the use of accelerators
(e.g., GPUs) to support Artificial Intelligence-
based applications, as well as solutions for dis-
tributing the processing in a cloud environment
across multiple virtual machines.

The integration of these data science environ-
ments with High Performance Computing (HPC)

infrastructures still represents an open challenge
with respect to supporting large-scale, cloud-
enabled analytics applications. The production-
level integration of such capabilities into HPC
ecosystems represents future work for the EDS,
which will enable transparent provisioning of
containerized data analytics solutions through
novel HPC as a Service (HPCaaS) paradigms.
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