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Abstract—Scientific processes rely on software as an important tool for data
acquisition, analysis, and discovery. Over the years sustainable software
development practices have made progress in being considered as an integral
component of research. However, management of computation-based scientific
studies is often left to individual researchers who design their computational
experiments based on personal preferences and the nature of the study. We
believe that the quality, efficiency, and reproducibility of computation-based
scientific research can be improved by explicitly creating an execution environment
that allows researchers to provide a clear record of traceability. This is particularly
relevant to complex computational studies in high-performance computing (HPC)
environments. In this article, we review the documentation required to maintain a
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comprehensive record of HPC computational experiments for reproducibility. We
also provide an overview of tools and practices that we have developed to
perform such studies around Flash-X, a multi-physics scientific software.

Experimental and observational scientists follow a rig-
orous process of recording their work. For many, re-
ceiving training to do this diligently is considered a high
priority for several excellent reasons. Unless the exact
conditions of the experiment are recorded it cannot
be repeated. A complete specification of assumptions
made during the experiment, and the recording of the
methodology followed for interpreting and analyzing
the outcome is required for reproducibility — a hallmark
of the scientific process. Additional factors may include
the expense of running experiments, and the impact
placement of probes might have on the recorded data.
In observational sciences, similar or greater constraints
may result from the rarity of events — the observer must
be ready to record the event when it occurs. To make
the most of the event the observer would typically wish
to record as many details as possible.

This scientific discipline is largely lacking in compu-
tational science. It has traditionally been assumed in
computational science circles that careful recording of
experiments may not be necessary because running
the software again with identical input will produce
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identical results. This is a false assumption because
software is rarely stationary. Every instance of using
it to obtain new scientific results tweaks it in some
ways, thereby changing some of its behavior. In high-
performance computing (HPC) environments, the fo-
cus of this article, changes in the system software
stack and hardware may also cause changes in results
generated by the software. As the scale and complexity
of the software and the problems it is trying to solve
grow, so does the expense of running computational
experiments. Some high-profile scientific failures in
various disciplines and scrutiny of scientific output
during COVID-19 have put a spotlight on the rigor of
running and recording computational experiments. Al-
though workflow management tools have been devel-
oped to make it easier to run simulations, and archive
and analyze the data, there is no community-wide
adoption of rigor in requiring provenance of the code
and data, and the log of the experiments conducted.

Laboratory notebooks, or scientific notebooks (re-
ferred to as lab notebooks from here on) have long
been used as a crucial tool in experimental and ob-
servational sciences by researchers, engineers, and
students to record and document their work, experi-
ments, observations, and findings in a structured and
organized manner. Their purpose is to maintain a
detailed and accurate record of all activities related to a
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research project or experiment. Maintaining a well-kept
lab notebook is not only considered a scientific best
practice but also a requirement in many research and
academic settings. It helps ensure transparency, ac-
countability, and the reliability of scientific work, which
is essential for advancing knowledge and innovation.

Individual researchers often use a directory-based
organization for their computational experiments which
are designed based on their personal preferences,
the nature of the studies, and the need to balance
time and computing resources. This directory-based
design is helpful in nesting experiments that cover dif-
ferent parametric spaces. Leveraging this design and
explicitly creating an execution environment around
software and its dependencies can improve the quality,
efficiency, and reproducibility of their studies. Such
an environment, which is analogous to a laboratory
space, can help focus researchers to prioritize scien-
tific rigor and develop tools and practices to manage
the generation, protection, storage, and analysis of
data. The construction of this virtual laboratory environ-
ment should include the integration of a lab notebook
that can provide a record of software configurations
and research decisions.

The question then is, what do lab notebooks look
like for an HPC computational experiment, and how
should they be managed? In this paper, we list features
that lab notebooks may require for such computational
investigations, and describe one exemplar of a solution
developed for conducting experiments with Flash-X [1],
a multi-physics multi-component software that can be
used for simulations in several science domains.

Since computational work often involves coding, simu-
lations, and data analysis using software tools, the lab
notebook is best maintained in electronic format, and
could include a combination of repositories, spread-
sheets, text, and markdown formats. For reasons dis-
cussed previously', the use of some form of lab note-
book in computational science has several challenges.
However, fundamental sets of activities that must be
recorded are fairly simple to enumerate.
e Title and Purpose: Title or project name and a brief
description of its purpose or objectives.
e Code Repository Links: Links or references to the
code repositories and/or input files used in the
experiment.

Thttps://www.youtube.com/watch?v=fWpl4S_dvhc
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e Software and Hardware: Specifications of hard-
ware used and system software stack, libraries,
and tools used in the experiment, along with their
versions.

¢ Modifications: Systematic recording of modifica-
tions to the software and hardware during the
experiment

e Experiment Design: Description of the algorithms,
data sets, parameters, and any assumptions made
for the experiment along with the reasoning behind
the selection of specific runs to be made. A log of
steps taken to prepare for the experiment can be
very helpful for future experiments.

e Data Sources: Documentation about any external
data used, along with explanations of how and
where it's stored. Any data preprocessing steps,
such as cleaning, normalization, or transformation.

e Data Storage: Archival storage of produced and
collected data with attached metadata to be us-
able by other researchers.

e Experimental Runs: Log of each experimental run,
including the input parameters, the date and time
of execution, and the resulting output or data. If
version control is in use commit references for any
significant updates should be kept.

e Results and Analysis: Presentation of the results
of a computational experiment, including tables,
graphs, and statistical analyses along with a de-
scription of how the results were interpreted and
what conclusions were drawn.

e References: Citations and references to relevant
literature, software documentation, or external re-
sources that influenced the computational experi-
ment.

Several tools and software applications can help
maintain well-organized and effective lab notebooks for
computational experiments. These tools are designed
to streamline documentation, code management, data
analysis, and collaboration. For example, Jupyter Note-
books? are interactive, web-based environments for
creating and sharing documents that combine live
code (Python, R, etc.), equations, visualizations, and
narrative text. They are already widely used in data
science and computational research. Similarly R Mark-
down® is an authoring format that integrates code,
results, and narrative text into a single document. It’s
commonly used with the R programming language but
can be adapted for other languages as well. Python-

2https://jupyter.org/
Shttps:/rmarkdown.rstudio.com/
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based notebooks such as Google Colab* are similar
to Jupyter Notebooks but are focused on Python.
They allow documentation of Python code alongside
explanations and visualizations. Several other open-
source and commercial solutions exist with a variety
of features. Any of these tools along with a set of
well-defined recording practices can form the basis of
an execution environment that promotes reproducibility
of computational experiments. However, none of them
suffice for complex multiphysics HPC computations
which generate a huge amount of data, and require
substantial post-processing and analysis.

Flash-X is community-developed software that is un-
dergoing several modes of development simultane-
ously. It is a new version of a long-existing community
code FLASH [2] that has been re-architected to be
compatible with heterogeneous hardware platforms.
Several new physics capabilities and an entirely new
method of integration have also been added to the
code. As a consequence, a fairly common occur-
rence is where ongoing capability and performance
improvement requirements collide with the needs of
a domain science study. The situation is exacerbated
when all participants involved in a study are not fa-
miliar with the inner workings and constraints of the
code. In general two different types of experiments
are regularly conducted with the code. One set of
experiments measures the performance of different
components of the code, while the other set pertains
to domain science investigations. The requirements
and constraints of these experiments differ from one
another, though some of the required meta-information
for complete specification is identical for all experi-
ments. Some of this required meta-information such
as repository version, software stack version, and all
the configuration parameters are recorded in a log file
that every execution instance of Flash-X generates.
The performance experiments typically involve
scaling studies with the implication that the same appli-
cation is run with different configurations of degree of
parallelism, hardware components in use, and possibly
different implementations of some of the code com-
ponents. The exploration parameters in such studies
tend to be related to the infrastructural components of
the code, and the analysis is performed on either the
performance summary section of the log file or, if a
performance tool is used, then the data generated by
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the tool. The output of the simulation itself is not rel-
evant to the study. The domain science investigations
explore the parameter space of the physics involved.
These experiments typically have little variation in the
degree of parallelism or hardware in use. The output
of the simulation is an important artifact here and can
be quite large.

An example of a workflow that might be encoun-
tered by a developer who is also a user of the code
for doing scientific investigations is shown in Figure
1a. Such developers may perform regular testing of
the physics and infrastructure components, keep track
of the performance changes, and conduct scientific
experiments at the same time. The collection of lab
notebooks [3] described in Figure 1b provides a good
example of what may be done in such circumstances.
These notebooks are all seeded from a general note-
book [4] being maintained by the developer in ques-
tion. In this instance, the developer is simultaneously
conducting the following experiments,

e Flow-Boiling-3D: Lab notebook for production
runs of three-dimensional multiphase flow boiling
simulations.

¢ ImBound-Mapping-Optimization: Lab notebook
to investigate and optimize mapping of Lagrangian
particles on block-structured AMR grids for the
purpose of developing an immersed boundary
method for fluid-structure interaction problems.

o AMReX-Bittree-Performance: Lab notebook to
improve scaling of Flash-X applications that use
AMReX in octree mode.

¢ Outflow-Forcing-BubbleML: Reproducibility cap-
sule for research articles on using Flash-X simula-
tions to develop scientific machine learning mod-
els for thermal science applications.

Figure 2 depicts the directory tree that might be
set up to record this set of experiments. Here, the
first subdirectory, software records all the software
configuration information that is not directly available
from the log file. In this example there is an external
dependency AMReX [5], a library that provides adap-
tive mesh refinement capabilities. The build specifi-
cations of external libraries are not known to Flash-
X configurator, and must be explicitly recorded to be
able to exactly reproduce the execution environment.
The second subdirectory simulation describes the ap-
plication instance that is used in the experiment. If an
experiment uses more than one application instance
it is expected that a separate subdirectory would be
created for each. Because Flash-X has a high degree
of composability, and therefore a huge collection of
tests, it is also important to list the tests that were used
to ensure ongoing correctness of the code throughout
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FIGURE 1. (a) A common scenario in computational sciences
where a developer has to conduct individual experiments and
collaborate with other researchers who may not be experts in
using their software. (b) Example use case of lab notebooks
for Flash-X development. The developer maintains a personal
repository that serves as a seed for setting up experiments for
physics and performance related studies that can be shared
with collaborators.

the duration of the experiment. Organizing the tests
within this structure also enables quick running of the
test-suite as described later.

The process of seeding and managing these note-
books is implemented using a lightweight command
line tool, Jobrunner [6], that enforces a directory-based
inheritance for application configurations encoded in
shell scripts to manage computational experiments.
The directory tree is designed to split different shell
commands that set up the software stack and sim-
ulation in an optimal way. For instance, a combina-
tion of environment.sh and setupAMReX.sh is used
to configure AMReX most suitably for the experiment.
Here, environment.sh documents and sets variables
that store compiler information and installation location
of different libraries, and setupAMReX.sh stores infor-
mation specific to building AMReX with the necessary
options. The Jobfiles that exist at every level of the tree
encode information that Jobrunner can use to stitch
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Experiment
| software/
amrex/
setupAMReX. sh
Jobfile
flashx/
setupFlashX.sh
Jobfile
| simulation/
L,FlowBoiling/
flashBuild.sh
flashRun.sh
Jobfile
jobnode.archive/
L,<mm—dd—yyyy>/
| tests/
Tests.suite
runTests.sh
Jobfile
| environment.sh
| Jobfile

FIGURE 2. Directory tree for a Flash-X experiment.

together these bash files to perform different tasks.
Figure 3 shows contents of the Jobfiles at different
nodes along the directory tree described in Figure 2.
During the execution of Jobrunner commands, files
assigned to the respective commands are picked up
to execute tasks in the target node of the directory
tree. For instance, the commands described in Figure
4 build AMReX, clone and configure an application
instance of Flash-X for multiphase pool boiling prob-
lem, compile the assembled code, and then execute
the created binary to obtain results. At the same time,
local testing of the code is performed using Flash-
X's custom testing framework® which uses tests en-
coded in Tests.suite along with the environment.sh
and runTests.sh scripts to build and execute tests.
Note that environment.sh, located at the root of the
project directory is used for each Jobrunner command,
providing consistency between tests and experiments.
Jobrunner hides error-prone individual steps of the
experiments while allowing organized and explicit doc-
umentation of configuration options that can be easily
modified by editing the shell scripts. The directory tree
in Figure 2 can be easily modified and redesigned
based on the requirements of the experiments to
include markdown notes and analysis files. For full

Shttps://github.com/Flash-X/Flash-X-Test
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# Location:
# Experiment
job:
setup:
- environment.sh
submit:
- environment.sh

# Location:
# Experiment/software/amrex
job:
setup:
- setupAMReX.sh

# Location:
# Experiment/simulation/FlowBoiling

job:

setup:

- flashSetup.sh
submit:

- flashSubmit.sh
archive:

- "xhdf5«"

- "x.log"

FIGURE 3. Contents of Jobfiles at different locations along
the directory tree.

functionality and documentation for Jobrunner see A.
Dhruv [6].

Data archiving is the last remaining concern for
reproducibility. This is implemented using Jobrun-
ner's archive command which picks up file pat-
terns listed in Jobfiles (see Figure 3) and moves
them to a jobnode.archive/<mm-dd-yyyy> directory un-
der the target node of an experiment (see Experi-
ment/simulation/FlowBoiling in Figure 2). The direc-
tories containing the data are eventually moved to
a cloud-based archival service along with a clone
of the Github source repository to preserve the tree
structure. Note that the raw data is itself not included
in the repository because that can be quite large. It
is organized in such a way that the archive can be
unpacked below the directory structure maintained in
the repository to exactly reconstruct all the artifacts of
the experiment. See Lab-Notebooks/Outflow-Forcing-
BubbleML [3] for an example lab notebook for recent
publications.
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# Setting up software and dependencies
jobrunner setup software/amrex
jobrunner setup software/flashx

# Setting up and running experiments
jobrunner setup simulation/FlowBoiling
jobrunner submit simulation/FlowBoiling

# Archiving results to jobnode.archive
jobrunner archive \
simulation/FlowBoiling

# Running Flash-X test suite
jobrunner submit tests

FIGURE 4. Jobrunner commands for setting up dependen-
cies, running tests and experiments, and archive data. These
commands are executed from the root of the directory-tree

An increasing emphasis on reproducibility and greater
scrutiny of computational science results is slowly
changing the perception of what constitutes a good
computational experiment. The concept of maintain-
ing laboratory notebooks in computational sciences
has been gaining popularity to enforce structure and
rigor in scientific studies. This is a welcome change,
and deserves encouragement. However, unlike more
traditional scientific disciplines, computational scien-
tists have challenges in how frequently their execution
environments may change, and the kind of impact
they may have on the continuity of their experiments.
Additionally, they often participate in teams that may be
geographically diverse, therefore they need distributed
digital mechanisms to record their work. Tools such as
Jupyter notebook and Github repositories can help, but
need additional care to fully capture the provenance
of a computational experiment. We have presented
an approach that addresses many of the challenges
faced by software that is being developed while also
being used for production. It is our hope that tools and
ideas presented here serve as a motivation for other
scientists to design and organize their experiments.
Integration of well-organized laboratory notebooks with
reproducibility and data capsules can improve the qual-
ity of scientific artifacts, and enhance productivity of
collaborative research.
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