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Abstract—This tutorial aims to provide an intuitive introduction to Gaussian
process regression (GPR). GPR models have been widely used in machine
learning applications due to their representation flexibility and inherent capability
to quantify uncertainty over predictions. The tutorial starts with explaining the
basic concepts that a Gaussian process is built on, including multivariate normal
distribution, kernels, non-parametric models, and joint and conditional probability.
It then provides a concise description of GPR and an implementation of a
standard GPR algorithm. In addition, the tutorial reviews packages for
implementing state-of-the-art Gaussian process algorithms. This tutorial is
accessible to a broad audience, including those new to machine learning,
ensuring a clear understanding of GPR fundamentals.

G aussian Process is a key model in proba-
bilistic supervised machine learning, widely
applied in regression and classification tasks.

It makes predictions incorporating prior knowledge
(kernels) and provides uncertainty measures over its
predictions [1]. Despite its broad application, under-
standing GPR can be challenging, especially for pro-
fessionals outside computer science, due to its reliance
on complex concepts like multivariate normal distribu-
tion, kernels, and non-parametric models.

This tutorial aims to explain GPR in a clear, ac-
cessible way, starting from fundamental mathematical
concepts including multivariate normal distribution, ker-
nels, non-parametric models, and joint and conditional
probability. To facilitate an intuitive understanding, the
tutorial extensively utilizes plots and provides prac-
tical code examples, available at https://github.com/
jwangjie/Gaussian-Process-Regression-Tutorial. This
tutorial is designed to make GPR accessible to a
diverse audience, ensuring that even those new to the
field can grasp its core principles.

MATHEMATICAL BASICS
This section explains the foundational concepts es-
sential for understanding Gaussian process regression
(GPR). We start with the Gaussian (normal) distribu-
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tion, followed by an explanation of multivariate normal
distribution (MVN) theories, kernels, non-parametric
models, and the principles of joint and conditional
probability. The objective of regression is to formulate
a function that accurately represents observed data
points and then utilize this function for predicting new
data points. Considering a set of observed data points
depicted in Fig. 1(a), an infinite array of potential
functions can be fitted to these data points. Fig. 1(b) il-
lustrates five such sample functions. In GPR, Gaussian
processes perform regression by defining a distribution
over this infinite number of functions [2].

Gaussian Distribution
A random variable X is Gaussian or normally dis-
tributed with mean µ and variance σ2 if its probability
density function (PDF) is [3]:

PX (x) =
1√
2πσ

exp

(
− (x − µ)2

2σ2

)
.

Here, X represents random variables and x is the
real argument. This normal distribution of X is usually
represented by PX (x) ∼ N (µ,σ2). The PDF of a uni-
variate normal (or Gaussian) distribution was plotted
in Fig. 2, where 1000 points from a uni-variate normal
distribution were randomly generated and plotted along
the X axis.

These randomly generated data points can be ex-
pressed as a vector x1 = [x1

1 , x2
1 , ... , xn

1 ]. By plotting
the vector x1 on a new Y axis at Y = 0, we projected
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(a) Data point observations
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(b) Five possible functions by GPR

FIGURE 1: A regression example: (a) Observed data
points, (b) Five sample functions fitting the observed
data points.
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FIGURE 2: Visualization of 1000 normally distributed
data points as red vertical bars on the X -axis, along-
side their PDF plotted as a two-dimensional bell curve.

the points [x1
1 , x2

1 , ... , xn
1 ] into a different space shown

in Fig. 3. We did nothing but vertically plot points
of the vector x1 in a new Y , x coordinates space.
Similarly, another independent Gaussian vector x2 =
[x1

2 , x2
2 , ... , xn

2 ] can be plotted at Y = 1 within the same
coordinate framework, as demonstrated in Fig. 3. It’s
crucial to remember that both x1 and x2 are a uni-
variate normal distribution depicted in Fig. 2.

Next, we selected 10 points randomly in vector
x1 and x2 respectively and connected these points in
order with lines as shown in Fig. 4(a). These connected
lines look like linear functions spanning within the
[0, 1] domain. We can use these functions to make
predictions for regression tasks if the new data points
are on (or proximate to) these linear lines. However,
the assumption that new data points will consistently
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FIGURE 3: Two independent uni-variate Gaussian vec-
tor points plotted vertically within the Y , x coordinates
space.

lie on these linear functions often does not hold. If
we plot more random generated uni-variate Gaussian
vectors, say 20 vectors like x1, x2, ... , x20 within [0, 1]
interval, and connecting 10 randomly selected sample
points of each vector as lines, we get 10 lines that look
more like functions within [0, 1] shown in Fig. 4(b). Yet,
we still cannot use these lines to make predictions for
regression tasks because they are too noisy. These
functions must be smoother, meaning input points that
are close to each other should have similar output
values. These “functions” generated by connecting
points from independent Gaussian vectors lack the re-
quired smoothness for regression tasks. Therefore, it is
necessary to correlate these independent Gaussians,
forming a joint Gaussian distribution, as described by
the theory of multivariate normal distribution.

Multivariate Normal Distribution
It is quite usual and often necessary for a system
to be described by more than one feature variable
(x1, x2, ... , xD) that are correlated to each other. If we
would like to model these variables all together as
one Gaussian model, we need to use a multivariate
Gaussian/normal (MVN) distribution model [3]. The
PDF of a D-dimensional MVN is defined as [3]:

N (x |µ,Σ) =
1

(2π)D/2|Σ|1/2 exp
[
−1

2
(x − µ)TΣ−1(x − µ)

]
,

Here, D represents the number of the dimensionality,
x denotes the variable, µ = E[x ] ∈ RD is the mean
vector, and Σ = cov[x ] is the D ×D covariance matrix.
The Σ is a symmetric matrix that stores the pairwise
covariance of all jointly modeled random variables, with
Σij = cov(yi , yj ) as its (i , j) element.

A bi-variate normal (BVN) distribution offers a sim-
pler example to understand the MVN concept. A BVN
distribution can be visualized as a three-dimensional
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(a) Two Gaussian vectors
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(b) Twenty Gaussian vectors

FIGURE 4: Connecting points of independent Gaus-
sian vectors by lines: (a) Ten randomly selected points
in vectors x1 and x2, (b) Ten randomly selected points
in twenty vectors x1, x2, ... , x20 .

(3-D) bell curve, where the vertical axis (height) rep-
resents the probability density, as shown in Fig. 5(a).
The ellipse contours on the x1, x2 plane, illustrated
in Fig. 5(a) and 5(b), are the projections of this 3-
D curve. The shape of ellipses shows the correlation
degree between x1 and x2 points, i.e. how one variable
of x1 relates to another variable of x2. The function
P(x1, x2) denotes the joint probability density of x1

and x2. For a BVN, the mean vector µ is a two-

dimensional vector

[
µ1

µ2

]
, where µ1 and µ2 represent

the independent means of x1 and x2, respectively. The

covariance matrix is

[
σ11 σ12

σ21 σ22

]
, with the diagonal

terms σ11 and σ22 being the independent variance of
x1 and x2, respectively. The off-diagonal terms, σ12 and
σ21 represent correlations between x1 and x2. The BVN
is expressed as:[

x1

x2

]
∼ N

([
µ1

µ2

]
,

[
σ11 σ12

σ21 σ22

])
= N (µ,Σ) .

It is intuitively understandable that we need condi-
tional probability rather than joint probability for regres-
sion tasks. If slicing the 3-D bell curve of a BVN at a
certain constant point, as shown in Fig. 5(a), we can
obtain the conditional probability distribution P(x1| x2),
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(b) 2-D ellipse contours

FIGURE 5: BVN PDF visualization: (a) a 3-D bell curve
with the height representing the probability density, (b)
2-D ellipse contour projections showing the correlation
between x1 and x2 points.

with x = x2 = constant, shown in Fig. 6. This conditional
distribution is also Gaussian [1].

Kernels
Having introduced the MVN distribution, we want to
smooth the functions in Fig. 4(b) for regression tasks.
The kernel, or covariance function, plays a pivotal
role in this smoothing process, encapsulating our prior
knowledge about the functions we aim to model. In
regression, we desire the predictions to be smooth
and logical: similar inputs should yield similar outputs.
For example, consider two houses, A and B, with
comparable size, location, and features; we expect
their market prices to be similar. A natural measure
of ‘similarity’ between two inputs is the dot product
A ·B = ∥A∥∥B∥cosθ, where θ is the angle between two
input vectors. Smaller angles, indicating high similarity,
correspond to larger dot products, and vice versa.

Imagine a scenario in which we could lift our house
into a ‘magical’ space, where doing this dot product
becomes more powerful and tells us even more about

December 2023 An Intuitive Tutorial to Gaussian Process Regression 3
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FIGURE 6: The conditional probability distribution
P(x1| x2) obtained by cutting a slice on the PDF 3-D
bell curve of a BVN.

how similar our houses are. This magical space is
called “feature space”. The function that helps us do
this lift and enhanced compression in the feature space
is named as “kernel function”, denoted as k (x , x ′).
We do not actually move our data into this new high-
dimensional “feature space” (that could be computa-
tionally expensive); instead, the kernel function facili-
tates the comparison of data though providing us the
same dot product result as if we had done so. This
is known as the famous “kernel trick”. Formally, the
kernel function k (x , x ′) computes the similarity be-
tween data points in a high-dimensional feature space
without explicitly transforming the inputs [1]. Instead
of directly computing the dot product of transformed
inputs, ⟨ϕ(x),ϕ(x ′)⟩, with ϕ being the feature mapping
function, the kernel function accomplishes the same
result in a computationally efficient manner.

The squared exponential (SE) kernel, also known
as the Gaussian or Radial Basis Function (RBF) ker-
nel, is widely used in Gaussian processes due to
its exceptional properties [4]. It is recognized for its
adaptability across various functions. Additionally, ev-
ery function in its prior is smooth and infinitely differ-
entiable, leading to naturally smooth and differentiable
model predictions. The SE kernel function is defined
as 1:

cov(xi , xj ) = exp

(
−

(xi − xj )2

2

)
.

1This is a simplified SE kernel without hyperparameters for
simplicity. The general SE kernel will be further explained in
Sec. Hyperparameters Optimization.
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(a) Ten samples of the 20-VN prior with an
identity kernel
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(b) Ten samples of the 20-VN prior with a
RBF kernel

FIGURE 7: Samples of twenty-variate normal (20-
VN) distribution kernelized prior functions: (a) Ten 20-
VN with identity covariance, (b) Ten 20-VN with RBF
covariance.

In Fig. 4(b), we plotted 20 independent Gaussian
vectors by connecting 10 randomly selected sample
points from each vector in order by lines. Instead of
plotting 20 independent Gaussian, we can generate
10 twenty-variate normal (20-VN) distributions with an
identity covariance function as shown in 7(a). It is the
same as Fig. 4(b) due to the absence of correlations
among points by using identity as its kernel function.
Employing an RBF kernel as the covariance function,
on the other hand, we got smooth lines observed in
7(b).

By integrating covariance functions, we obtain
smoother lines, and they start to look like functions.
It is natural to consider continuing to increase the di-
mension of MVN. Here, dimension refers to the number
of variables in the MVN. When the dimension of MVN
becomes larger, the region of interest will be filled up
with more points. When the dimension reaches infinity,
there will be a point to represent every possible input
point. Utilizing MVN with infinite dimensions allows us
to fit functions with infinite parameters for regression
tasks, thus enabling predictions throughout the region
of interest. In Fig. 8, We illustrate 200 samples from
a two hundred-variate normal (200-VN) distribution

4 An Intuitive Tutorial to Gaussian Process Regression December 2023
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FIGURE 8: Two hundred kernelized prior functions
from a two hundred-variate normal distribution.

to conceptualize functions with infinite parameters.
We call these functions “kernelized prior functions”,
because there are no observed data points yet. All
functions are randomly generated by the MVN model
with kernel functions as prior knowledge before having
any observed data points.

Non-parametric Model
This section explains the distinction between paramet-
ric and non-parametric models [3]. Parametric models
assume that the data distribution can be modeled in
terms of a set of finite numbers of parameters. In
regression, given some data points, we would like to
predict the function value y = f (x) for a new specific x .
If we assume a linear regression model, y = θ1 + θ2x ,
we need to identify the parameters θ1 and θ2 to define
the function. often, a linear model is insufficient, and
a polynomial model with more parameters, like y =
θ1 +θ2x +θ3x2 is needed. We use the training dataset D
comprising n observed points, D = [(xi , yi ) | i = 1, ... , n]
to train the model, i.e. establish a mapping x to y
through basis functions f (x). After the training process,
all information in the dataset is assumed to be encap-
sulated by the feature parameters θ, thus predictions
are independent of the training dataset D. This can be
expressed as P(f∗ |X∗, θ, D) = P(f∗ |X∗, θ), in which f∗
are predictions made at unobserved data points X∗.
Thus, when conducting regressions using parametric
models, the complexity or flexibility of models is inher-
ently limited by the number of parameters. Conversely,
if the parameter number of a model grows with the size
of the observed dataset, it’s a non-parametric model.
Non-parametric models do not imply that there are no
parameters; but rather they entail an infinite number of
parameters.

GAUSSIAN PROCESSES
Before delving into the Gaussian processes, we first
do a quick review of the foundational concepts we

have covered. In regression, our objective is to model
a function f based on observed data points D (the
training dataset) from the unknown function f. Tradi-
tional nonlinear regression methods often give a single
function that is considered to best fit the dataset.
However, there could be more than one function that
fits the observed data points equally well. We ob-
served that when the dimension of MVN was infinite,
we could make predictions at any point using these
infinite numbers of functions. These functions are MVN
because it is our (prior) assumption. More formally,
the prior distribution of these infinite functions is MVN,
representing the expected outputs of f over inputs x
before observing any data. When we start to have
observations, instead of infinite numbers of functions,
we only keep functions that fit the observed data
points, forming the posterior distribution. This posterior
is the prior updated with observed data. When we
have new observations, we use the current posterior as
prior, and new observed data points to obtain a fresh
posterior.

Definition of Gaussian processes: A Gaussian
process model describes a probability distribution over
possible functions that fit a set of points. Because
we have the probability distribution over all possible
functions, we can compute the means to represent
the maximum likelihood estimate of the function, and
the variances as an indicator of prediction confidence.
Key points include: i) the function prior is updated with
new observations; ii) a Gaussian process model is
a probability distribution over possible functions, with
any finite samples of functions being jointly Gaussian
distributed; iii) the mean function derived from the pos-
terior distribution of possible functions is the function
used for regression predictions.

Now, it is time to explore the standard Gaussian
process model. All the parameter definitions align the
classic textbook by Rasmussen (2006) [1]. Besides
the covered basic concepts, Appendix A.1 and A.2
of [1] are also recommended reading. The regression
function modeled by a multivariate Gaussian is given
by:

P(f |X) = N (f |µ, K) ,

where X = [x1, ... , xn] represents the observed data
points, f = [f (x1), ... , f (xn)] the function values, µ =
[m(x1), ... , m(xn)] the mean function, and Kij = k (xi , xj )
the kernel function, which is a positive definite. With no
observation, we default the mean function to m(X) = 0,
assuming the data is normalized to zero mean. The
Gaussian process model is thus a distribution over
functions whose shapes (smoothness) are defined by
K. If points xi and xj are considered similar by the

December 2023 An Intuitive Tutorial to Gaussian Process Regression 5
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FIGURE 9: A illustrative process of conducting re-
gressions by Gaussian processes. The red points are
observed data, the blue line represents the mean
function estimated by the observed data points, and
predictions will be made at new blue points.

kernel, their respective function outputs, f (xi ) and f (xj ),
are expected to be similar too. The regression process
using Gaussian processes is illustrated in Fig. 9: given
observed data (red points) and a mean function f (blue
line) estimated from these observed data points, we
predict at new points X∗ as f(X∗).

The joint distribution of f and f∗ is expressed as:[
f
f∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K K∗

KT
∗ K∗∗

])
,

where K = K (X, X), K∗ = K (X, X∗) and K∗∗ = K (X∗, X∗).
The mean is assumed to be

(
m(X), m(X∗)

)
= 0.

While this equation describes the joint probability
distribution P(f, f∗ |X, X∗) over f and f∗, in regressions,
we need the conditional distribution P(f∗ | f, X, X∗) over
f∗ only. The derivation of the conditional distribution
P(f∗ | f, X, X∗) from the joint distribution P(f, f∗ |X, X∗)
is achieved by using the Marginal and conditional
distributions of MVN theorem [5, Sec. 2.3.1]. The result
is:

f∗ | f, X, X∗ ∼ N
(

KT
∗ K−1 f, K∗∗ − KT

∗ K−1 K∗

)
.

In realistic scenarios, we typically have access only
to noisy versions of true function values, y = f (x) + ϵ,
where ϵ represents additive independent and identi-
cally distributed (i.i.d.) Gaussian noise with variance
σ2

n . The prior on these noisy observations then be-
comes cov(y ) = K + σ2

n I. The joint distribution of the
observed values and the function values at new testing
points is: (

y
f∗

)
∼ N

(
0,

[
K + σ2

n I K∗

KT
∗ K∗∗

])
.

By deriving the conditional distribution, we get the
predictive equations for Gaussian process regression:

f̄∗ |X, y, X∗ ∼ N
(
f̄∗, cov(f∗)

)
,

where

f̄∗
∆= E[f̄∗ |X, y, X∗]

= KT
∗[K + σ2

n I]−1y ,

cov(f∗) = K∗∗ − KT
∗[K + σ2

n I]−1K∗ .

In this expression, the variance function cov(f∗) reveals
that the uncertainty in predictions depends solely on
the input values X and X∗, not on the observed out-
puts y. This characteristic is a distinctive property of
Gaussian distributions [1].

ILLUSTRATIVE EXAMPLE
This section demonstrates an implementation of the
standard GPR, adhering to the algorithm outlined in
Rasmussen (2006) [1, Algorithm 2.1].

L = cholesky(K + σ2
n I)

α = L⊤ \ (L \ y)

f̄∗ = K⊤
∗ α

v = L \ K∗

V[f̄∗] = K (X∗, X∗) − v⊤v.

log p(y | X) = −1
2

y⊤(K + σ2
n I)−1y − 1

2
log det(K + σ2

n I)

− n
2

log 2π

The inputs of this algorithm are X (inputs), y(targets),
K (covariance function), σ2

n(noise level), and X∗(test
input). The outputs include f̄∗ (mean), V[f̄∗] (variance),
and log p(y | X) (log marginal likelihood).

An example result is illustrated in Fig. 10. We con-
ducted regression within the [-5, 5] interval. Observed
data points (training dataset) were generated from a
uniform distribution between -5 and 5. The functions
were evaluated at evenly spaced points between -5
and 5. The regression function is composed of mean
values estimated by a GPR model. Twenty samples of
posterior mean functions, along with 3 times variances,
were also plotted.

Hyperparameters Optimization
We have covered the basics of GPR and provided
a straightforward example. However, practical GPR
models often present more complexity. The selection
of the kernel function is critical, as it greatly affects the
model’s ability to generalize [6]. Kernel functions range
from well-established options like the RBF to custom
designs tailored to specific needs based on model
requirements such as smoothness, sparsity, drastic
changes, and differentiability [4]. Selecting an appropri-
ate kernel function for a specific GPR task is detailed

6 An Intuitive Tutorial to Gaussian Process Regression December 2023
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FIGURE 10: An illustrative example of standard GPR.
Black crosses represent observed data points gen-
erated by the blue dotted line (true function). Given
these data points, infinite possible posterior functions
were obtained, with 20 samples plotted in different
colors. The mean function, derived from the probability
distribution of these functions, is plotted as a red solid
line. The blue shaded area around the mean function
indicates 3 times prediction variances.

in Duvenaud (2014) [4]. Additionally, hyperparameter
optimization plays an essential role in kernel-based
methods. For example, consider the widely used RBF
kernel:

k (xi , xj ) = σ2
f exp

(
− 1

2l
(xi − xj )

T(xi − xj )
)

,

In this kernel, σf (vertical scale) and l (horizontal scale)
are hyperparameters. The parameter σf determines
the vertical span of the function, while l indicates the
rate at which the correlation between two points de-
creases with increasing distance. The influence of the
hyperparameter l on the smoothness of the function
is demonstrated in Fig. 11. Increasing the value of l
results in a smoother function, while a smaller l value
leads to a function with more fluctuations or ‘wiggles’.
The optimal hyperparameters Θ∗ are determined by
maximizing the log marginal likelihood [1]:

Θ∗ = arg max
Θ

log p(y |X,Θ) .

Thus, considering hyperparameters, a more general-
ized prediction equation at new testing points is [7]:

f̄∗ |X, y, X∗,Θ ∼ N
(
f̄∗, cov(f∗)

)
.

Note that after learning/optimizing the hyperparame-
ters, the predictive variance cov(f∗) depends on not
only the inputs X and X∗ but also the outputs y [8].
With the optimized hyperparameters, σf = 0.0067 and
l = 0.0967, the regression result of the observed data
points shown in Fig. 11 is depicted in Fig. 12. Here,
the hyperparameters optimization was conducted by
the GPy package, which will be introduced in the next
section.
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FIGURE 11: Effect of the hyperparameter l on function
smoothness: A larger l yields a smoother function,
while a smaller l produces a more wiggly function.
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FIGURE 12: Regression result with the optimized hy-
perparameters σf and l .

Gaussian Processes Packages
This section reviews three Python packages for im-
plementing Gaussian processes. GPy is a mature
and well-documented package in development since
2012 [9]. It utilizes NumPy for computations, offering
sufficient stability for tasks that are not computationally
intensive. However, GPR is computationally expensive
in high dimensional spaces (beyond a few dozen). For
complex and computationally intense tasks, packages
incorporating advanced algorithms and GPU acceler-
ation are especially preferable. GPflow [9] originates

December 2023 An Intuitive Tutorial to Gaussian Process Regression 7
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from GPy with a similar interface. It leverages Tensor-
Flow as its computational backend. GPyTorch [10] is
a more recent package that provides GPU accelera-
tion through PyTorch. Like GPflow, GPyTorch supports
automatic gradients, which simplifies the development
of complex models, such as those embedding deep
neural networks within GP frameworks.

CONCLUSION
A Gaussian process is a probability distribution over
possible functions that fit a set of points [1]. A Gaussian
process regression model provides prediction values
together with uncertainty estimates. The model in-
corporates prior knowledge about the nature of the
functions through the use of kernel functions.

The GPR model discussed in this tutorial is the
standard or “vanilla” approach to Gaussian processes
[11]. There are two primary limitations with it: 1) The
computational complexity is O(N3), where N repre-
sents the dimension of the covariance matrix K . 2) The
memory consumption increases quadratically with data
size. Due to these constraints, standard GPR models
become impractical for large datasets. In such cases,
sparse Gaussian Processes are employed to alleviate
computational complexity [12].

ACKNOWLEDGMENTS
The author would like to express sincere gratitude
to Prof. Krzysztof Czarnecki from the University of
Waterloo. His insightful and constructive feedback have
significantly contributed to the progression and en-
hancement of the quality of this tutorial. The author
is deeply thankful for his invaluable guidance and
support.

REFERENCES
1. C. E. Rasmussen and C. K. I. Williams, Gaussian

Processes for Machine Learning. The MIT Press,
2006.

2. Z. Ghahramani, “A Tutorial on Gaussian Processes
(or why I don’t use SVMs),” in Machine Learning
Summer School (MLSS), 2011.

3. K. P. Murphy, Machine Learning: A Probabilistic Per-
spective. The MIT Press, 2012.

4. D. Duvenaud, “Automatic model construction with
Gaussian processes,” Ph.D. dissertation, University
of Cambridge, 2014.

5. C. M. Bishop and N. M. Nasrabadi, Pattern recogni-
tion and machine learning. Springer, 2006.

6. D. Duvenaud, “The Kernel Cookbook,” Available
at https://www.cs.toronto.edu/~duvenaud/cookbook,
2016.

7. Z. Dai, “Computationally efficient GPs,” Available at
https://www.youtube.com/watch?v=7mCfkIuNHYw,
2019.

8. Z. Chen and B. Wang, “How priors of initial hy-
perparameters affect Gaussian process regression
models,” Neurocomputing, vol. 275, pp. 1702–1710,
2018.

9. A. G. De G. Matthews, M. Van Der Wilk, T. Nickson,
K. Fujii, A. Boukouvalas, P. León-Villagrá, Z. Ghahra-
mani, and J. Hensman, “GPflow: A Gaussian process
library using TensorFlow,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 1299–1304,
2017.

10. J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger,
and A. G. Wilson, “GPyTorch: Blackbox Matrix-Matrix
Gaussian Process Inference with GPU Acceleration,”
in Advances in Neural Information Processing Sys-
tems, 2018.

11. R. Frigola, F. Lindsten, T. B. Schön, and C. E.
Rasmussen, “Bayesian Inference and Learning in
Gaussian Process State-Space Models with Particle
MCMC,” in Advances in Neural Information Process-
ing Systems, 2013, pp. 3156–3164.

12. H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaus-
sian process meets big data: A review of scalable
GPs,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

Jie Wang is a postdoctoral research associate at the
University of Waterloo. He earned his Ph.D. degree in
Mechanical Engineering from the University of Calgary.
His research bridges machine learning and traditional
robotics, primarily focusing on enhancing the perfor-
mance of mobile robots in real-world settings while
ensuring safety and efficiency. For further informa-
tion or collaboration inquiries, he can be reached at
jwangjie@outlook.com.

8 An Intuitive Tutorial to Gaussian Process Regression December 2023

https://www.cs.toronto.edu/~duvenaud/cookbook
https://www.youtube.com/watch?v=7mCfkIuNHYw

	MATHEMATICAL BASICS
	Gaussian Distribution
	Multivariate Normal Distribution
	Kernels
	Non-parametric Model

	GAUSSIAN PROCESSES
	ILLUSTRATIVE EXAMPLE
	Hyperparameters Optimization
	Gaussian Processes Packages

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES
	Biographies
	Jie Wang


