The Role of Self-Awareness and Hierarchical Agents
in Resource Management for Many-Core Systems

Maximilian Gétzingerl, Amir M. Rahmani', Martin PongratzQ, Pasi Liljebergl, Axel Jantsch?, and Hannu Tenhunen
! Department of Information Technology, University of Turku, Finland
2Institute of Computer Technology, TU Wien, Austria
{maxgot, amirah, pakrli, hatenhu} @utu.fi, {martin.pongratz, axel.jantsch} @tuwien.ac.at

Abstract—The future of Moore’s Law is in jeopardy. The
number of cores of many-core systems is steadily increasing for
every technology node generation. Voltage scaling does not keep
pace with the unabated decrease of transistor size. Higher leakage
power and manufacturing variabilities are the consequences
and lead to extremely critical power as well as thermal issues.
These phenomena can downgrade the performance or endanger
system’s functionality as well as its reliability if they are not
properly addressed. In near future, up to 90% of a many-core
chip’s area may have to remain inactive; this non-active area is
termed Dark Silicon. These issues make the problem of resource
management challenging. Future management systems need to
be intelligent, anticipatory, and self-adaptive. They are supposed
to integrate management of different aspects such as thermal,
power, energy, performance, quality of service, process variability,
occurrence of faults and aging effects, all in one. In this paper, we
study the contributions in the literature focusing on techniques for
dynamic resource management in multi- and many-core systems.
We put emphasis on advanced approaches that exhibit learning,
self-awareness, hierarchical monitoring and management. We
categorize the existing approaches from a new perspective and
argue that a self-aware hierarchical agent-based model is a proper
methodology to monitor and management many-core systems,
in particular when they need to deal with different competing
goals. In addition, we evaluate the main objectives and trends in
resource management of many-core systems in order to pave the
way for designing future computer systems ranging from high-
performance computers to embedded processors used in the era
of Internet-of-Things.

Keywords—Self-Awareness; Hierarchical Agent-Based System;
Many-Core; Dark Silicon; Power-, Thermal-, and Reliability Man-
agement;

I. INTRODUCTION

As transistors shrink with each technology generation and
voltage scaling has almost leveled off, the power- and thermal
density increases [1]. On the other hand, the number of
cores, which can be integrated in a single chip, is steadily
increasing [2] and leads to the era of many-core systems.
This consequently makes resource management issues more
critical [3], and can affect the functionality and efficiency
of many-core systems in short-term as well as in long-term
conditions. An example for the former could be overheating
that damages the device (in particular due to a positive feed-
back between temperature and leakage currents). In long-time,
thermal issues worsen the susceptibility of the devices to aging
and wear-out phenomena (such as time dependent dielectric
breakdown, thermal cycling, or electromigration) [4], [5]. As
a result, the reliability and the lifetime of the system can
drastically decrease [6], [7]. In addition, smaller feature size
implies relatively larger manufacturing process variability, thus
leading to more vulnerability to environmental changes [8],

[9]. These hardware variations are characterized through di-
versity in process-, voltage-, and thermal issues. Consequently,
manufacturing deviations or uneven workload lead to resource
under-utilization and/or hotspots which can cause performance
degredation as well as significant unbalanced chip life-time or
wear-outs [8], [10].

These effects and environmental variations can downgrade
the performance or endanger the system functionality if they
are not properly addressed. On top of the aforementioned
issues, there exists a utilization wall [11] that is becoming
more severe with the scaling of transistors, thus limiting the
utilization of transistors on a chip. High power density and
thermal issues are rapidly bringing computing systems to a
crossroad where a chip can accommodate a large number of
cores, however a significant fraction of them should be left
unpowered at any time [12]. In other words, it will not be
possible to run all cores and un-cores at the same time at full
throttle; a substantial amount will have to be turned off. These
large unpowered areas have to stay dark, and are called dark
silicon [13], [14]. There are various studies concerned with
dark silicon, estimating that 52% [15] or even up to 90% [11]
of a high end-chip may have to remain dark within 5 years.

There have been extensive efforts to propose smart resource
management techniques for many-core systems [9], [16]-[18],
which having different approaches or ideas. However, there
is still not a fully intelligent and self-adaptive solution [9]
in the literature which is able to consider its own state,
environmental situations, and a pool of competing goals. In
this paper, we investigate and study the existing contributions
aiming at tackling resource management issues for many-core
systems in an adaptive and intelligent fashion. We then argue
that further research on self-awareness with learning ability
and hierarchical agent-based monitoring and management can
considerably enhance the efficiency of the existing resource
management techniques and can be considered as a promising
avenue of research. The main contributions of this study are
as follows:

e Investigating the existing literature from the perspective
of self-adaptivity.

e Developing a comprehensive perspective on the area.

e Expediting progress on self-aware and hierarchical re-
source management of many-core systems.

e Supporting future research in the context of addressing
issues in the dark-silicon era.

The rest of the paper is organized as follows. Resource
management issues and possible solutions to circumvent them
is described in Section II. Whereas, Section III shows the
significance of self-awareness in complex resource manage-



ment scenarios. In Section IV, we discuss the advantages of
a hierarchical agent-based model in meeting different system
requirements. Section V investigates the resource management
issues and presents existing solutions in the literature to cope
with them. In section VI, we provide some guidelines and
suggestions how to extend existing approaches and algorithms.
Finally, Section VII concludes the paper.

II. RESOURCE MANAGEMENT

There are many elements in a complex many-core system
which can be considered as a resource. Some key examples
are: a time slot from a core or a processing element (PE),
the power budget of the chip, communication bandwidth, or
even the estimated age of a component. This has resulted in
emergence of different resource management fields for many-
core system such as power and thermal management, dynamic
mapping and core allocation, life-time balancing and relia-
bility management, networks-on-chip (NoC) communication
management, etc.

There exist several techniques and knobs to tune and ad-
just different system properties in order to enhance resource
utilization, reliability, efficiency, and performance. Dynamic
resource management can balance the workload to reduce
power consumption, evenly distribute temperature, minimize
thermal hotspots, enhance fault tolerance, or even balance the
lifetime of the system. The actuation knobs widely used by
these management techniques are: clock gating, power gating,
dynamic voltage and frequency scaling (DVES), dynamic
application scheduling and mapping, task migration, network-
on-chip adaptation, etc. In this section, we briefly present some
of the popular knobs in this context.

Dynamic Voltage and Frequency Scaling: Adaptive up-
scaling and downscaling of voltage and/or frequency (VF) of
on-chip components is one of the most effective and widely
used way to counteract thermal, power, and aging issues [19],
[20]. It represents an approach that can dynamically modify a
component’s power consumption, thus avoid overheating [20].

Voltage scaling is a highly effective method to reduce static-
as well as dynamic power. Equation 1 shows the proportional
relation of the static power Psq+; and the supply voltage Vpp.
Whereas, as shown in Equation 2, dynamic power Pyypnamic
quadratically depends on the supply voltage for given load
capacitance Cj,,q and operation frequency f.

Petatic = Ileakage *Vpp (D
denamic = C(load * VDQD * f (2)

Frequency scaling concerns with the regulation of a compo-
nent’s operating frequency. As shown in Equation 2, dynamic
power Pgynamic is proportionally related with the operating
frequency. The lower the frequency, the lower the dynamic
power is. Even though according to Equation 1, static power
Pgtqtic does not depend on the frequency f directly, in fact
it indirectly does. A core needs a certain minimum supply
voltage for a given frequency [21], [22]. For instance, Intel
Single-Chip Cloud computer (SCC) [21], which offers 16
frequency levels to regulate the speed of a frequency Island,
requires 0.8V to supply a core running at 533MHz, while for
a core running at 800MHz a minimum of 1.1V is required.
Therefore, choosing a lower frequency can lead to a lower
requirement for supply voltage and, in further consequence, to
a reduction of static power as well.

In [19], it has been shown that by lowering the VF
level, energy savings of 4% to 24% can be achieved with
the performance penalty of approximately 2.5%. Similarly,
in [20], it is reported that 20% - 50% less power consumption
and a significant reduction of temperature can be obtained by
reducing the supply voltage by about 10%.

Clock Gating: Cores in a many-core system need to have
the support to be halted (i.e., freezed) when they are idle
for short period of time [23]. One technique is to clock-
gate them while all the rest of the chip can still work at
different variable speeds, controlled by clock frequency or
supply voltage [13]. Clock gating is widely used to reduce dy-
namic power in particular at the Register Transfer Level [24],
[25]. It is an efficient approach to minimize heat, radiation
and power consumption while preserving the state of the
core/component [26], [27]. According to [28], clock tree in
computer systems consumes 15-45% of total systems power.
As can be observed from Equation 2, clock gating blocks
dynamic power consumption, however it does not mitigate the
leakage power and its associated issues.

Power Gating: With the scaling of transistor size, each
new technology generation results in a considerably higher
leakage power. Accordingly to [29] and [30], leakage power
can increase even up to 30 times from one generation to the
next one. Therefore, it is of utmost importance to have the
possibility to turn off idle cores to avoid unnecessary static
power consumption [30]. Power gating is a widely accepted
and effective solution to overcome this problem, however it
has also disadvantages. Gating the power supply leads to a
charged-up virtual ground rail which is close to Vpp. When
the power supply is connected again, the virtual ground rail
capacitance has to discharge to ground which leads to a wake-
up time latency Tyqke—up [31]. Therefore, compared with the
clock gating, power gating better reduces temperature as well
as power due to saving both static and dynamic power, but
has the drawback of a high boot up latency. Additionally,
power gating can lead to noise on the power lines when
circuit portions are switched on or off [32]. However, as
presented in [32], there are different techniques to mitigate
this phenomenon.

Dynamic Application Mapping: Application mapping is
the process where a core is chosen for a task in order to
maximize the system performance while minimizing latency
and power consumption. In the case where workloads have
unpredictable nature and applications enter and leave the
systems at runtime, mapping has to be performed dynamically
rather than at design time [33]. The allocation of tasks and the
scheduling of applications on a many-core system can also im-
pact power consumption and system’s peak temperature [34],
[35]. Distributing the workload stress across the system’s cores
can lead to a higher system’s reliability and lifetime [36].
However, dynamic task mapping (DTM) may lead to missing
deadlines when timing constraints are not carefully consid-
ered [35]. Therefore, it can be observed that DTM can have a
direct or indirect impact on different system characteristics and
resources such as power, temperature, performance, life-time,
fault tolerance, etc.

Task Migration: Task migration has been recently intro-
duced in the on-chip context as an effective way to balance
different system characteristics at runtime [37]. Several task
migration techniques exist in the literature [38], [39]. Even
though task migration has shown to be effective, it has its own



associated drawbacks such as the delay to detach the task from
the source core, move the task to the new location, and attach it
to the destination core [37]. This overhead might be negligible
in bus-based multi-core systems, but it is considerable in
NoC-based many-core systems. In terms of performance, the
distance between the core on that a given task is processed
and the location of the task’s resources should be as small
as possible. Otherwise delays and the runtime will get longer.
On the other hand, the locations of the tasks also influence
the thermal profile of the chip. Many tasks packed in the
same region can lead to a high thermal stressing or even
hotspots [40], [41]. A well thermal balanced situation can be
brought off with proper task migration [42], [43].

Reconfigurable On-Chip Communication: Network-on-
Chip (NoC) is the widely accepted communication medium
for many-core systems; mostly due to its scalability and
flexibility [44]. There are many NoC-based multi- and many-
core systems in the market such as Intel 80-core TeraFLOPS
processor [45], Tilera 64-core TILE64 processor [46], etc. Re-
configuration of a NoC can be also considered as a way of ac-
tuation which can impact different system-level characteristics
such as improving performance by avoiding congestion [47],
mitigating hotspots [48], reducing power consumption [49],
improving fault tolerance and reliability [50], etc.

Resource Management in Complex Many-core Systems:
There is a high demand for efficient and intelligent thermal
management techniques to circumvent different issues in com-
plex many-core systems and maximize the resource utilization.
Although, all these techniques and their combinations have
been developed to great sophistication and are used in indus-
trial practice today, the resource management of many-core
systems still lacks efficiency and intelligence. The management
in many-core systems has to have the ability to decide on its
own about which parts to be made dark, dim, or work on full
throttle. A self-aware system is needed that can learn about
the variabilities of the chip and workload; a system that can
monitor and set these things in every granularity.

ITII. SELF-AWARENESS AND ITS SIGNIFICANCE

To cope with the emerging issues in the dark silicon era,
a smart and comprehensive resource management strategy for
many-core systems is needed. A computer system, especially a
many-core system has to provide an intelligent load balancing
as well as a sophisticated voltage-frequency controlling. The
goal is to control the system in charge of managing phenomena
such as aging and overheating [8]. However, such a system
will face several questions such as when will computation
power be needed? How much will be needed? Where it will be
needed? What is the current goal of the system? In the case of
partially or fully conflicting goals (e.g., Lifetime balancing vs.
Performance), what will be the strategy? Does the evaluation
of the parameter in question need to consider history? In what
kind of situation the system is currently being used? How
should the system adapt to changes in situation?

Therefore, the system itself needs to be smart; it has to
know how it can meet its requirements under given constraints.
There are many properties that are linked to the concept of
“smartness of a computer system”, for example: self-adaptivity,
self-awareness, and autonomy. Smart resource management
systems have to be adaptive and able to change their be-
havior to achieve their goals in an efficient way, although
environmental conditions or demands are subject to change.

Self-
Adaptiveness

Self-Configuration Self-Healing

Self-Optimization Self-Protection

Self-Awareness Context-Awareness

Fig. 1. The pyramid of self-adaptiveness. A system can only be self-adaptive
if it is self-aware [53].

Self-awareness can enable autonomy of making decisions and
taking actions [51]. As Figure 1 shows, a system has to be self-
aware to be self-adaptive [52]. The computer system has to
“feel” itself as well as the environment to react and efficiently
adapt its behavior. For going not beyond the scope of this
paper, we refer to [53] for a detailed description of the other
self*-properties.

Self-awareness can be seen as an ability of an object to
monitor its own state and behavior to adapt its activities to
changes in its internal state as well as the external environ-
ment [52]. Originally, this behavior stems from human’s psy-
chology where he/she needs to cope with different situations.
While it originates from biology and psychology, it recently
has become widely studied and utilized in computer science.
For example in [9], it is shown that a self-aware system can
enable an intelligent load balancing as well as power reduction
and hotspot mitigation.

In analogy to living subjects, the system-on-chip has to pro-
cess the data of its sensors to figure out what is going on and
how it should behave in the given situation [54]. Systems that
only observe their own states have a restricted view on their
own behaviour and performance, and therefore, they cannot
be labeled as true self-aware systems. The term self-awareness
comprises three main competencies: self-monitoring, attention,
and situation awareness. A self-aware system has to track the
environmental conditions, its own state, and how it behaves in
a dynamically changing environment. In other words, such a
system has to know about itself and its environment [54].

To realize self-awareness, the underlying many-core system
needs to have access to a rich set of sensors and actuators,
so that necessary sensory data is available for it to enable a
continuous tracking and interpreting of its own as well as the
environmental conditions in a closed-loop [8]. Additionally, an
adaptive and reflective middleware is needed which is capable
of managing the system resources on the basis of abundant
sensory data (e.g., power sensors, thermal meters, performance
counters, network traffic meters, aging sensors, etc.). In other
words, a flexible hardware-software stack is required which
constitutes the interface between the application layer and
the operating system (OS) layer. This middleware traces pa-
rameters from the application, the own resources, and the
environment to enable the necessary actions accordingly [9].
More precisely, while application requirements are generally
the main goal that should be reached, parameters associated
with the underlying hardware and the environment constitute
the complementary constraints. All these parameters and re-
quirements serve as input for a cost function based on which
it is decided whether an action is needed to be taken or not [9].

A. Classes of Self-Awareness

Self-awareness can be divided into different categories of
awareness. They are briefly presented in the following. More
details on this concept can be found in [16].



Stimulus-aware: This is the foundation stone of the other
forms of awareness. In principle, it means a self-aware system
should have the property of recognizing an event as an event
to react to it.

Interaction-aware: A system is called interaction-aware if it
is able to understand reactions to its own acting in a way that
it can provoke other participants to react as well.
Time-aware: A system is called to be time-aware when it
can take into account not only actual ongoing parameters,
but also the ones from the past. This property can enable
predictions for the future and appropriate learning algorithms
to be realized.

Goal-aware: Goal-aware constitutes the most abstracted
knowledge. The system has knowledge about its goals as well
as its objectives and is supposed to have a practicable strategy
to reach them.

All these awareness categories are essential in order to actu-
alize a system which is capable of efficiently and intelligently
managing its own resources and meeting the given constraints
and goals.

B. Properties of Self-Awareness and Self-Aware Resource
Management

The aim of a self-aware and thermal-aware resource man-
agement approach is to seek for a fair compromise of per-
formance and energy consumption with explicit consideration
of thermal stress. The system performance has to be set to a
level that the given goals are fulfilled, while the hardware is
used in a energy-efficient way and its functionality is not in
hazard [55]. However, there can be more goals where some
might be partially conflicting [55]. In addition, different goals
can compete with each other in demanding resources that
might not be always possible or beneficial for the general
functionality of the system to provide. Therefore, the system
has to carefully navigate the goal space and explore: what it
has to do, how it has to be done, and until when it has to be
continued.

In [52], [56], [57], a set of properties of such a self-aware
system are defined which are briefly introduced here:

Semantic interpretation: It describes the abstraction of
information from a given set of data. It is related to stimulus-
awareness discussed before.

Desirability scale: The desirability scale serves to determine
whether an event or situation is desirable or not. There can
be more than two states on a scale; for example: excellent,
very good, good, fair, etc.

Semantic attribution: The algorithm that has the property
of semantic attribution, maps events and situations on the
desirability scale.

History of a property: A history value of a property
corresponds to its evolution. To be aware of a property means
to be aware of its history.

Goals: A goal constitutes the target of calculations with its
requirements and can consist of a set of different sub-goals.
These goals can also compete with each other.

The purpose: The purpose of a system is about achieving
all given goals as best it can.

Expectation on environment: The system expects from its
environment to be bounded to some constraints so that the
system can properly operate.

Expectation on subject: The system expects from itself to
follow certain constraints and to provide certain requirements

Output units
(predicted word)

Context units

Input units
(copy of prior hidden state)

(current word)

Fig. 2. A simple computer model built to recognize the contexts of words
in given stream of sentences [58].

so that it can properly operate.
Inspection engine: The inspection engine integrates all im-
portant observations into one consistent inertial system.

C. Learning Ability

Elman [58] presents a computer model (see Figure 2)
built to explore the context of words in a given stream of
sentences. The model consist of an input unit, an output unit,
and a processing layer (called hidden unit). First, the system is
supposed to recognize where a word starts and ends in a given
stream received from the input unit. The output is separated
into words. Secondly, the computer system should understand
the context of these words. Therefore, Elman added a learning
unit (called context unit) which is fed with information from
the processing layer. It understands more and more contexts
with each information it gets. In other words, the context unit
supports the processing layer with its decisions.

This simple concept can be also exploited in different
domains such as on-chip resource management. Due to man-
ufacturing process variations, not every many-core chip from
one series is identical. Additionally, not every core of such
a chip will be exactly the same. Therefore, the chip itself
needs to learn about the circumstances and environmental
conditions through its smart resource management framework.
It has to learn things such as What temperatures are fine
for different chip areas? How much load is manageable for
different components without damaging or over-stressing them
in long-term?

In the same way Elman did in his work, a self-aware many-
core system can learn about its own abilities, weaknesses,
requirements as well as goals given by the application. The
learning ability is an essential for self-awareness and can result
in significant improvements in system efficiency [59].

IV. HIERARCHICAL AGENT-BASED ARCHITECTURE FOR
MONITORING AND MANAGEMENT

SoC architectures are often rigid and lack self-adaptation
or exhibit self-adaptivity in simplified ways. The self-adaptive
capabilities are often limited in terms of efficiency and com-
prehensiveness where complex trade-offs are typically not
considered [16]. As components need be abstracted to acquire
knowledge about their semantics and desirability, a model-
based design is required in this context. With such an architec-
ture, components can be represented by a function, a timing,
and communication specifications [9].

A fine- and coarse-grained knowledge can be obtained when
a hierarchical online framework is utilized in an architecture
[60], [61]. With such a detailed representation of knowledge,
a self-adaptive system can more efficiently operate and meet
its goals as well as expectations [16]. Separating different
monitoring layers is essential in this context as many-core
systems are becoming extremely complex where all monitoring
services have their own requirements and constraints [9]. In



‘Application Platform
Agent Agent

Fig. 3. The figure shows a possible structure of an agent-based model [9].
other words, if different observations are separated to different
layers, the information with all its semantic content can be
abstracted properly [9]. Guang et al. [62] present a hierarchical
agent-based model that can be considered as an appropriate
architecture to develop and realize the discussed properties of
a self-aware and self-adaptable system. A hierarchical agent-
based architecture consists of agents which are modules that
are hierarchically structured and process data on different
levels of abstraction [9]. Therefore, this architecture can pro-
vide services needed for a reliable monitoring as well as
reconfiguration in both coarse- and fine-grained granularity.
Through the different scopes and priorities of several system’s
agents, the system can be fully or partially reconfigured [17],
making this model a promising choice to implement self-
adaptation [9]. A disadvantage of this system could be the
transmission time between two low-level agents, which are
placed on totally different branches and have to communicate
over multiple hierarchical levels.

As shown in Figure 3, there are two agents on the top level
of this model: an application agent and a platform agent. While
the application agent sends runtime application requirements to
the platform agent, the latter is responsible for: task mapping,
process scheduling, run-time resource management, and fault
tolerance of the entire system. The application agent is not
aware of the hardware conditions. The whole platform appears
like a black box to it, where it can input requirements as well
as goals and get results back. Whereas, the platform agent is
aware of the entire hardware in a high level of abstraction [9].
The platform agent sends commands to agents below it and
these agents report about their knowledge as well as their
insights to the platform agent and execute commands that
they get. There can be more than two layers in the hierarchy
where each layer is connected to different monitoring and
reconfiguration functions on different granularities. Such a
system (see Figure 3) is freely expandable and does not need
to be necessarily symmetrically structured [9].

On the bottom of the model, cell agents are placed, which
monitor and reconfigure smaller units associated with them.
All agents that reside between the platform agent and the
cell agents are called cluster agents. Every cluster agent is
connected to at least one cell agent or cluster agent [9]. All
cluster- and cell agents are distributed over the whole chip
and have their own tasks. Each gets its instructions from the
agent above and reports their results to the same direction.
While the platform agent has a global influence on the entire
chip, with a wide range of monitoring services, a cell agent is
only involved with the regional workload, voltage, frequency,
etc [9]. A cluster agent’s sphere of influence depends on the
location of the cluster agent as well as on its connections.

V. SELF-AWARE AND HIERARCHICAL RESOURCE
MANAGEMENT AND THE OVERLOOKED CHALLENGES
In previous sections we discussed about problems and
avenues that come up with new technologies. In this section we
present connections between them to show that it is possible

to counteract thermal, power, and resource management issues
with a learning self-aware hierarchical agent-based model.

A. Power and Thermal Management

Adaptive DVFS has been proven to be an extremely effective
way to meet power- as well as thermal management challenges
[19], [20], [63], [64]. A component’s power consumption
can be modulated to avoid overheating or for just saving
power [20]. Many-core systems are mostly planned to be ho-
mogeneous but in reality they are heterogeneous. This hetero-
geneity comes from manufacturing variabilities and intrinsic as
well as extrinsic defects [65]. Runtime schedulers as well as
global power managers that ignore the heterogeneous design
will most probably barter for performance losses together
with a high power wastage [66], [67]. The various cores will
vary in frequency, leakage, hardware functionality, and aging
effects [64].

MaxBIPS, for example, is an algorithm that exhaustively
tries to find the best VF level combinations to drive the
hardware at a performance as high as possible under given
constraints [63]. Their dynamic management policies achieve
better results than static power managements or chip-wide
DVES [63]. However, MaxBIPS is not scalable and, therefore,
it is not suitable for many-core systems [59].

Winter et al. show in their work [64] that global power
management based on linear optimizations are not scalable
and, therefore, inadequate for many-core systems. They an-
alyze a global power management for complex many-core
architectures and propose a scheduling and power management
algorithm (Steepest Drop) for a many-core system with up to
256 cores. They show that their approach performs similar as
prior algorithms like LinOpt [68], but it has 75x less runtime
overhead on a 256-core system.

In [59], Chen and Marculescu state that the above men-
tioned algorithm [64] from Winter is not suitable for many-
core systems as it does not take budged overshoot into account.
Therefore, they introduce an on-line distributed reinforcement
learning algorithm (OD-RL) which is also based on DVFS. The
new approach shows that it suppresses the budged overshoot
better than the prior ones. The OD-LR algorithm saves 98%
budged overshoot due to its ability for adaptation and learning.

Wang et al. show in their work [69] that there is a need for
a globally and hierarchically coordinated power management
control. They state that other works [70]-[72], which do not
consider the global application behaviour and do not follow a
hierarchical structure, are mostly inefficient in terms of per-
formance and power consumption. Their centralized controller
constitutes a bottleneck and slows down the system when the
number of cores is increasing. Also, works like [73] can be
regarded as sub-optimal solutions because of their lack of
global information [69]. Therefore, Wang et al. [69] propose
a Hierarchical MultiAgent based Power (HIMAP) allocation
scheme which uses clock gating and frequency scaling in a
hierarchical structured way and reduces application’s execution
time up to 38% to 45% compared with PGCapping [71],
PEPON [72], and DPPC [70] approaches.

Based on the above discussed works, it can be concluded
that a power and thermal management system performs better
when: 1) it is self-aware, ii) it is able to learn, iii) its architecture
is hierarchical, and iv) its structure is agent-based.



B. Application Mapping and Core Allocation Management

From the hardware viewpoint, the hierarchy of the agent-
based model is only virtual. Each agent is mapped on one
of the cores where it can carry out its tasks in parallel and
communicate with each other over the given communication
infrastructure. In other words, the various cores are allocated
for the different tasks and respectively the different agents are
allocated [23], [36].

Hanumaiah er al. [74] propose that the relation of temper-
ature and performance is not as trivial as the connection be-
tween power and performance. While power and performance
are connected over a simple algebraic equation, hundreds of
equations will be needed to solve the other connection. This
is aggravated by the fact that many-core systems are distinctly
more complex than a single core processor. Optimizations
made for single core are not necessarily convenient for many-
cores [75].

There exists a lot of works that consider static thermal-aware
mapping strategies such as [76], [77]. These works consider
temperature and communication load, and use heuristics to find
a static mapping but they do not take throughput requirements
into account [35]. Whereas Sun et. al. consider throughput
and task deadlines in their work [78]. However, in all these
static mapping strategies, communication between different
tasks is not considered [35]. Heuristic-based approaches are
not able to achieve optimal results and the performance of
such systems may degrade massively when the number of
controllable resources is increasing [79].

A dynamic mapping strategy is needed to take all circum-
stances into account [35]. Ge and Qiu [34] propose a runtime
multi-agent distributed task migration approach for choosing
the best task allocation policy. Results show that their solution
could save up to 18% of overall power consumption compared
to random task mapping.

C. Reliability Management

Reliability management has different sub-classes such as
fault tolerance and testing. The former is important to keep
the system running when some faults occur; temporal as well
as permanent. The latter is necessary to recognize faults. As
we are focusing on dynamic resource management, we just
consider online testing techniques and approaches.

Fault Tolerance: A many-core system is self-aware if all
the parallelled running entities are self-aware [9]. This char-
acteristic lead consecutively to advantages in terms of safety
and fault tolerance. Permanent faults are usually handled by
using redundancy techniques [80]. Through these techniques
the system is reconfigured to keep on working. If one cell
agent or cluster agent becomes inoperative, another one can
take over its task [80], [81]; as long as the spare agent can
control the same hardware and has the same possibilities of
acting.

In case of the platform agent, the situation unfortunately is
not that simple. There is no agent on top of the platform agent
(see Figure 3) which can take over its responsibilities when it
is broken. If the platform agent stops working, it would lead
to a fatal system failure [9]. A possible solution to circumvent
such an error is to use a backup platform agent with the same
functionality. In case of a failure of the main agent, the backup
agent could turn the main agent off and work in its stead [82].

There are also software-based techniques for fault tolerance.
In case of a failure in a hardware component, the application

code will be adapted in a way that the faulty component(s) will
not be used [83], [84]. The hardware needs to be reconfigured
when using such a software-based technique [80].

Online Testing: Manufacturing variations as well as the
continuously scaling of transistors lead to an increasing like-
lihood for a hardware defect [85], [86]. The continuously
increasing complexity of system-on-chips and an ever-growing
need for reducing the time-to-market period lead to a demand
for reliable software based self-tests (SBST) [85], [86]. Test-
ing methods can be deterministic, random, and hybrid (both
deterministic and random) [87], [88].

Most of the state-of-the-art testing systems are not power-
aware [23]. However, this is an important feature when con-
cerning the fact that testing a core under test usually consumes
more power than a core in normal mode [23]. Therefore,
testing should only be done when there are enough resources
left and the temperature is safe [86]. Otherwise, it can harm
the chip in short-term as well as in long-term. Haghbayan et
al. [23] propose an approach to opportunistically test dark core
when there are enough resources left [23]. With this method,
the system’s reliability could be significantly improved while
the chip is running normally [86], [89].

D. Communication Management

Because NoCs are extremely scalable and flexible in their
functionality [18], NoC is the most promising on-chip com-
munication technique for many-core systems [90]. NoCs,
respectively their components, are also shrinking with each
generation, and therefore, they face the same obstacles in terms
of power consumption and reliability like the rest of a many-
core chip [18]. Today, the power consumption of a many-core
system is largely driven by on-chip networks, with their inter-
connects [45], [91]. Different NoC components (e.g., routers,
links, network interfaces, etc.) can be reconfigured by adap-
tively changing routing algorithm [47], link bandwidth [92],
number and formation of virtual channels [49], or even the
topology (e.g., from a full mesh to an irregular mesh in case
of faulty links or routers) [93]. Clock gating, power gating and
even DVFS can be applied to the NoC components to adjust
power consumption and to reduce heating and aging [18].
This is also considered as reconfiguration as for example
scaling VF of a router not only has an impact on its power
consumption but also affects the bandwidth provided by the
NoC. That is why NoCs need to be self-adaptive as well as
reconfigurable to improve efficiency, provide reliability, and
still guarantee the performance [18]. Since 2006 these issues
have forced laying the foundation of self-adaptivity as well
as self-awareness of NoCs: being able to monitor the network
and react accordingly [18], [94].

VI. INFERENCES AND DISCUSSIONS

The previous section described existing solutions including
their results, advantages as well as drawbacks. In this section,
we provide some guidelines and suggestions how to extend the
mentioned approaches and algorithms.

Communication: In a hierarchical agent-based model,
agents are only connected with the agents above and below
them. Since the cores are connected with a network and
the hierarchical agent-based model is mapped on the parallel
hardware; as a consequence, all agents are connected to each
other. Therefore, it is possible to establish side-connections
between any two agents. While, instructions and reports will
be transferred over the hierarchical instructional channels,



additional data can be send over the side channels to provide
it for other agents. This technique may reduce overhead.

Safety: It would be also possible to expand the number
of spare platform agents to 3 or more. It is a matter of
resource-issue and can be done as long as cores are available.
Furthermore, cell agents could be available in duplicate given
the systems constraints are not violated.

In addition, critical agents could store their learned knowl-
edge in a global shared space when they are in an idle
mode. In the case of a malfunctioning agent, another one
will be able to not only take over its task, but also it can
download the knowledge of its predecessor. Furthermore, the
most important knowledge could be even stored in a non-
volatile storage. If the entire chip is broken and has to be
replaced by a new one, the knowledge could also be transferred
to the replacement chip. However, not every knowledge can
be adopted; knowledge about manufacturing process variations
would be mostly useless.

Design process: Designing and implementing self-aware
systems need to be carried out through elaborated and tested
methods. To develop such a self-aware as well as self-adaptive
system from scratch would not be sensible and economic.
Therefore, it would be desirable to have a toolbox that enables
creating hierarchically agent-based systems which can be con-
figured as per need. With such a toolbox it would be possible
to explore different possible learning as well as abstracting
algorithms and methods for different goals. As a further con-
sequence, this toolbox can be used to implement and explore
hierarchical self-aware resource management systems.

VII. CONCLUSION

The hierarchical agent-based approach offers flexible and
scalable way to organize on-chip management of resources and
various non-functional requirements. Through its hierarchical
appearance, fine-grained as well as coarse-grained knowledge
can be obtained. A self-adaptive system can more efficiently
operate and meet the goals and expectations when it is scalable.
The learning capability is necessary to cope with the changing
demands and hardware and its variabilites. In addition, modu-
larity, reuse and portability should be taken into account. These
principles and techniques apply not only to on-chip systems
but will also prove to be useful in many embedded- and cyber-
physical systems that are distributed in nature and consist of
potentially many sensor, actuator and processing nodes.

REFERENCES

[1]1 S. Drivers, “The international technology roadmap for semiconductors
(itrs),” Tech. Rep., 2009.

[2] J. Kong et al., “Recent thermal management techniques for micropro-
cessors,” In ACM Computing Surveys, 2012.

[3] M. H. Haghbayan et al., “Dark silicon aware power management for
manycore systems under dynamic workloads,” in /CCD, 2014.

[4] J. S. S. T. Association, “Failure mechanisms and models for semi-
conductor devices,” JEDEC Publication JEP122G, 2010.

[5]1 G. Sonnenfeld et al., “An agile accelerated aging, characterization and
scenario simulation system for gate controlled power transistors,” in
AUTOTESTCON, 2008.

[6] P. Gupta et al., “Underdesigned and opportunistic computing in pres-
ence of hardware variability,” Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 1, 2013.

[71 S. Borkar et al., “Parameter variations and impact on circuits and
microarchitecture,” in DAC, 2003.

[8] S. Sarma er al., “On-chip self-awareness using cyberphysical-systems-
on-chip (cpsoc),” in CODES, 2014.

(9]

[10]

(11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[34]

[35]

[36]

(371

L. Guang et al., “Hierarchical agent monitoring design approach to-
wards self-aware parallel systems-on-chip,” ACM Trans. Embed. Com-
put. Syst., vol. 9, no. 3, 2010.

M. H. Haghbayan et al., “A lifetime-aware runtime mapping approach
for many-core systems in the dark silicon era,” in DATE, 2016.

M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of
the coming dark silicon apocalypse,” in DAC, 2012.

H. Esmaeilzadeh et al., “Dark silicon and the end of multicore scaling,”
in ISCA, 2011.

H. Khdr et al., “Thermal constrained resource management for mixed
ilp-tlp workloads in dark silicon chips,” in DAC, 2015.

A. Rahmani et al., The Dark Side of Silicon, 1st ed. Springer, 2016.
J. Henkel et al., “New trends in dark silicon,” in DAC, 2015.

F. Faniyi et al., “Architecting self-aware software systems,” in WICSA,
2014.

S. M. A. H. Jafti et al., “Self-adaptive noc power management with
dual-level agents - architecture and implementation.” in PECCS, 2012.

J. Isoaho et al., “Survey of self-adaptive nocs with energy-efficiency
and dependability,” Int. J. Embed. Real-Time Commun. Syst., vol. 3,
no. 2, 2012.

C.-H. Hsu et al., “Compiler-directed dynamic voltage/frequency
scheduling for energy reduction in microprocessors,” in ISLPED, 2001.
Y.-W. Yang and K. S.-M. Li, “Temperature-aware dynamic frequency
and voltage scaling for reliability and yield enhancement,” in ASPDAC,
20009.

J. Howard et al., “A 48-Core 1A-32 message-passing processor with
DVES in 45nm CMOS,” in ISSCC, 2010.

S. Terdvdinen er al., “Software-based on-chip thermal sensor calibration
for dvfs-enabled many-core systems,” in DFTS, 2015.

M. H. Haghbayan et al., “A power-aware approach for online test
scheduling in many-core architectures,” IEEE Transactions on Com-
puters, vol. 65, no. 3, 2016.

S. Huda et al., “Clock gating architectures for fpga power reduction,”
in FPL, 2009.

M. Shaker and M. Bayoumi, “Novel clock gating techniques for low
power flip-flops and its applications,” in MWSCAS, 2013.

V. Tiwari et al., “Reducing power in high-performance microproces-
sors,” in Design Automation Conference, 1998. Proceedings, 1998.

Q. Wu et al., “Clock-gating and its application to low power design
of sequential circuits,” IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, vol. 47, no. 3, 2000.

M. Pedram, “Power minimization in ic design: Principles and applica-
tions,” ACM Trans. Des. Autom. Electron. Syst., vol. 1, no. 1, 1996.

K. Bernstein e al., “Design and cad challenges in sub-90nm cmos
technologies,” in /ICCAD, 2003.

H. Singh et al., “Enhanced leakage reduction techniques using interme-
diate strength power gating,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 15, no. 11, 2007.

A. Abdollahi et al., “An effective power mode transition technique in
mtcmos circuits,” in Proceedings. 42nd Design Automation Conference,
2005., 2005.

A. Mukheijee and M. Marek-Sadowska, “Clock and power gating with
timing closure,” IEEE Design Test of Computers, vol. 20, no. 3, 2003.

M.-H. Haghbayan et al., “MapPro: Proactive Runtime Mapping for
Dynamic Workloads by Quantifying Ripple Effect of Applications on
Networks-on-Chip,” in NOCS, 2015.

Y. Ge and Q. Qiu, “Task allocation for minimum system power in a
homogenous multi-core processor,” in /GSC, 2010.

V. Chaturvedi et al., “Thermal-aware task scheduling for peak temper-
ature minimization under periodic constraint for 3d-mpsocs,” in RSP,
2014.

M. H. Haghbayan et al., “A lifetime-aware runtime mapping approach
for many-core systems in the dark silicon era,” in DATE, 2016.
S. Holmbacka et al., “A task migration mechanism for distributed many-

core operating systems,” The Journal of Supercomputing, vol. 68, no. 3,
2014.



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

P. K. Saraswat et al., “Task migration for fault-tolerance in mixed-
criticality embedded systems,” SIGBED Rev., vol. 6, no. 3, 2009.

S. Bertozzi et al., “Supporting task migration in multi-processor
systems-on-chip: A feasibility study,” in Proceedings of the Design
Automation Test in Europe Conference, 2006.
K. R. Vaddina et al., “Thermal analysis of job allocation and scheduling
schemes for 3d stacked noc’s,” in DSD, 2011.

A. Kanduri et al., “Dark silicon aware runtime mapping for many-core
systems: A patterning approach,” in /CCD, 2015.

D. Cuesta et al., “Adaptive task migration policies for thermal control
in mpsocs,” in ISVLSI, 2010.

F. Mulas et al., “Thermal balancing policy for multiprocessor stream
computing platforms,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 28, no. 12, 2009.

A. Jantsch and H. Tenhunen, Eds., Networks on Chip.
Academic Publishers, 2003.

S. R. Vangal et al., “An 80-tile sub-100-w teraflops processor in 65-nm
cmos,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, 2008.

S. Bell et al., “Tile64 - processor: A 64-core soc with mesh intercon-
nect,” in ISSCC, 2008.

P. Lotfi-Kamran et al., “Edxy-a low cost congestion-aware routing algo-
rithm for network-on-chips,” Journal of Systems Architecture, vol. 56,
2010.

A. M. Rahmani et al., “Congestion aware, fault tolerant, and thermally
efficient inter-layer communication scheme for hybrid noc-bus 3d
architectures,” in NOCS, 2011.

——, “Forecasting-based dynamic virtual channel management for
power reduction in network-on-chips,” Journal of Low Power Electron-
ics, vol. 5, no. 3, 2009.

——, “High-Performance and Fault-Tolerant 3D NoC-Bus Hybrid
Architecture Using ARB-NET-Based Adaptive Monitoring Platform,”
IEEE Transactions on Computers, vol. 63, no. 3, 2014.

Kluwer

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, 2003.

N. Dutt et al., “Self-aware cyber-physical systems-on-chip,” in /CCAD,
2015.

M. Salehie et al., “Self-adaptive software: Landscape and research
challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, 2009.

J. Preden et al., “The benefits of self-awareness and attention in fog
and mist computing,” Computer, vol. 48, no. 7, 2015.

H. J. Siegel et al., “Energy-aware resource management for computing
systems,” in C3, 2014.

N. Dutt et al., “Toward smart embedded systems: A self-aware system-
on-chip (soc) perspective,” ACM Trans. Embed. Comput. Syst., vol. 15,
no. 2, 2016.

A. Jantsch and K. Tammemae, “A framework of awareness for artificial
subjects,” in CODES+ISSS, 2014.

J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, 1990.

Z. Chen and D. Marculescu, “Distributed reinforcement learning for
power limited many-core system performance optimization,” in DATE,
2015.

P. R. Lewis et al., “A survey of self-awareness and its application in
computing systems,” in SASOW, 2011.

T. Becker et al., “Epics: Engineering proprioception in computing
systems,” in CSE, 2012.

L. Guang et al., “Interconnection alternatives for hierarchical monitor-
ing communication in parallel socs,” Microprocessors and Microsys-
tems, vol. 34, no. 5, 2010.

C. Isci et al., “An analysis of efficient multi-core global power man-
agement policies: Maximizing performance for a given power budget,”
in MICRO, 2006.

J. A. Winter et al., “Scalable thread scheduling and global power
management for heterogeneous many-core architectures,” in PACT,
2010.

S. Borkar, “Designing reliable systems from unreliable components:

the challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, 2005.

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

(751

[76]

[(77]

(78]

(791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

(911

[92]

[93]

[94]

J. A. Winter and D. H. Albonesi, “Scheduling algorithms for unpre-
dictably heterogeneous cmp architectures,” in DSN, 2008.

S. Herbert and D. Marculescu, “Variation-aware dynamic volt-
age/frequency scaling,” in HPCA, 2009.

R. Teodorescu and J. Torrellas, “Variation-aware application scheduling
and power management for chip multiprocessors,” in ISCA, 2008.

X. Wang et al., “Adaptive power allocation for many-core systems
inspired from multiagent auction model,” in DATE, 2014.

K. Ma et al, “Dppc: Dynamic power partitioning and control for
improved chip multiprocessor performance,” IEEE Transactions on
Computers, vol. 63, no. 7, 2014.

K. Ma and X. Wang, “Pgcapping: exploiting power gating for power
capping and core lifetime balancing in cmps,” in PACT, 2012.

A. Sharifi et al.,, “Pepon: performance-aware hierarchical power bud-
geting for noc based multicores,” in PACT, 2012.

Y. Ge et al., “A multi-agent framework for thermal aware task migra-
tion in many-core systems,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, no. 10, 2012.

V. Hanumaiah et al., “Throughput optimal task allocation under thermal
constraints for multi-core processors,” in DAC, 2009.

R. Rao and S. Vrudhula, “Efficient online computation of core speeds
to maximize the throughput of thermally constrained multi-core proces-
sors,” in ICCAD, 2008.

C. Addo-Quaye, “Thermal-aware mapping and placement for 3-d noc
designs,” in SOC Conference, 2005.

Y. Cheng et al., “Thermal-constrained task allocation for interconnect
energy reduction in 3-d homogeneous mpsocs,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 21, no. 2, 2013.

C. Sun et al., “Three-dimensional multiprocessor system-on-chip ther-
mal optimization,” in CODES+ISSS, 2007.

X. Wang et al., “A low cost, high performance dynamic-programming-
based adaptive power allocation scheme for many-core architectures in
the dark silicon era,” in ESTIMedia, 2013.

S. Miiller et al., “A multi-layer software-based fault-tolerance approach
for heterogenous multi-core systems,” in LATS, 2015.

S. Shamshiri et al., “A cost analysis framework for multi-core systems
with spares,” in ITC, 2008.

P. Rantala et al., “Agent-based reconfigurability for fault-tolerance in
network-on-chip,” in ERSA, 2007.

A. Meixner and D. J. Sorin, “Detouring: Translating software to
circumvent hard faults in simple cores,” in DSN, 2008.

M. Scholzel, “Software-based self-repair of statically scheduled super-
scalar data paths,” in DDECS, 2010.

M. Kaliorakis et al., “Accelerated online error detection in many-core
microprocessor architectures,” in VTS, 2014.

M. H. Haghbayan et al., “Online testing of many-core systems in the
dark silicon era,” in DDECS, 2014.

M. Psarakis et al., “Systematic software-based self-test for pipelined
processors,” in DAC, 2006.

T. H. Lu et al., “Effective hybrid test program development for software-
based self-testing of pipeline processor cores,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 19, no. 3, 2011.

M. Shafique et al., “The eda challenges in the dark silicon era,” in DAC,
2014.

J. Howard et al., “A 48-core ia-32 processor in 45 nm cmos using on-die
message-passing and dvfs for performance and power scaling,” IEEE
Journal of Solid-State Circuits, vol. 46, no. 1, 2011.

L. Shang et al, “Dynamic voltage scaling with links for power
optimization of interconnection networks,” in HPCA, 2003.

Y. C. Lan et al., “A bidirectional noc (binoc) architecture with dynamic
self-reconfigurable channel,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 30, no. 3, 2011.

F. J. et al., “An efficient implementation of distributed routing algo-
rithms for nocs,” in NOCS, 2008.

C. Ciordas et al., “A monitoring-aware network-on-chip design flow,”
in DSD), 2006.



