
 Low Overhead Monitor Mechanism for Fault-tolerant Analysis of NoC

Junxiu Liu, Jim Harkin, Yuhua Li, Liam Maguire
School of Computing and Intelligent Systems,

University of Ulster, Magee Campus,
Derry, Northern Ireland, UK

{liu-j4, jg.harkin, y.li, lp.maguire}@ulster.ac.uk

Alejandro Linares-Barranco
Robotic and Technology of Computers Lab,

University of Seville,
Seville, Spain
alinares@us.es

Abstract— Modern Networks-on-Chip (NoC) have the
capability to tolerate and adapt to the faults and failures in the
hardware. Monitoring and debugging is a real challenge due to
the NoC system complexity and large scale size. A key
requirement is an evaluation and benchmarking mechanism to
quantitatively analyse a NoC system’s fault tolerant capability.
A novel monitoring mechanism is proposed to evaluate the
fault tolerant capability of an NoC by: (1) using a compact
monitor probe to detect the events of each NoC node; (2) re-
using the exist NoC infrastructure to communicate analysis
data of back to a terminal PC which removes the need for
additional hardware resources and maintain hardware
scalability and (3) calculating throughput, the number of
lost/corrupted packets and generating a heat map of NoC
traffic for quantitative analysis. The paper presents results on
a case study using an example fault-tolerant routing algorithm
and highlights the minimal area overhead of the monitoring
mechanism (~6%). Results demonstrate that the proposed
online monitoring strategy is highly scalable due to the
compact monitor probe and the ability to reuse the existing
NoC communication infrastructure. In addition, the traffic
heat map generation and throughput display demonstrates
benefits in aiding NoC system prototyping and debugging.

Keywords— Networks-on-Chip, performance monitoring,
fault tolerant, hardware adaption

I. INTRODUCTION

The complexity of modern Systems-on-Chip has seen the
introduction of new interconnection strategies such as NoC
which allow scalable on-chip communication between large
numbers of processing components. The NoC strategy was
first introduced in [1] and is composed of routers, channels
and processing elements. The topology defines how to
connect NoC routers on-chip and the concept is similar to
traditional computer networks where packets of information
are communicated via paths across several routers, and
routers define the path between the source and destination
processing elements. NoCs are an active research field and
widely used by many industrial applications [2].

Fault tolerance and adaptive capabilities are challenges
[3], [4] for modern NoCs due to the increase in physical
defects in advanced manufacturing processes, as often faults
occur post manufacturing. Such adaptation reflects the
capability of a NoC system to maintain or decrease the
performance gracefully in the context of internal faults or
external interference. Some approaches have been proposed
to enhance the NoC system fault-tolerant capability, such as
fault tolerant and detection methods [5]–[8] and adaptive
routing policies when faults occur [9]–[14]. A quantitative
analysis of the fault-tolerant capability is very beneficial for
design, evaluation and benchmarking. The key analysis tasks

include heat map generation of NoC traffic, throughput
calculation, communication path regeneration and counting
the number of lost/corrupted packets due to the occurrence of
faults. However, the quantitative analysis is a significant
challenge due to the large scale (+250 CPU cores per device
by 2015), limited test pins (e.g. using logic analyser) and
extra area overhead introduced by a built-in debugger (e.g.
using Altera SignalTap, Xilinx Chipscope or Lattice Reveal
Analyser). Therefore to aid the NoC system design and
evaluation requires the development of a monitoring
mechanism that can detect the events in the NoC, visualize
the traffic distribution, calculate the throughput, the number
of lost/corrupted packets etc. for performance analysis.

In this paper, a monitoring mechanism is presented which
aims to provide quantitative analysis of the fault tolerant
capability of a NoC system. This approach is novel as (1) the
NoC interconnection is reused to collect the system events,
i.e. communication of monitoring data does not introduce
large hardware area overhead; (2) the monitor probe of each
node in the NoC system is area-efficient and (3) a generic
communication protocol is designed to provide compatibility
with other NoC systems. The proposed monitoring
mechanism is complementary to conventional simulators.
The conventional simulators can analyse the NoC system
performance using the simulation data over short time
periods, especially at the design time. However, the proposed
monitoring mechanism has the capabilities to observe online
the run-time behaviour of the entire hardware NoC system
and aid the hardware debugging and implementation. For
example it can observe real-time interactions with external
sensor data. The remainder of the paper is organized as
follows. Section 2 provides a summary of previous work and
section 3 discusses the proposed monitoring mechanism and
its hardware operation and section 4 introduces its software
front-end. Section 5 provides results from a case study of a
fault-tolerant NoC router, and section 6 provides a
conclusion and highlights future work.

II. RELATED WORK

A NoC performance analysis monitor scheme was
proposed in [15]. It included a hardware trace monitor in the
NoC system and trace software on the host computer. The
trace monitor collects the NoC system states and sends the
data to the PC software for the performance evaluation. It
uses Ethernet to collect the data in real-time. However, the
NoC operates at a relative low clock frequency (25MHz) to
allow the data collection in real-time. The monitor also needs
to connect every channel through additional, dedicated wires
which prohibits scalability for a large system. An industrial
NoC emulation and verification environment, namely

NOCEVE, was proposed in [16]. It can analyse the
performance of large-scale multi-FPGAs including traffic
distribution, latency and throughput etc. Two models of real-
time visualization and post-execution data analysis were
proposed. A run-time monitoring mechanism was also
proposed in [17] to decide the optimal NoC buffer size and
capture system behaviour. A monitoring probe module was
embedded inside each router. All the monitoring probe
modules send traffic information to a global interface which
is responsible for gathering all the snapshot data. They are
connected by a dedicated point-to-point (P2P) connection
which prohibits system scalability. Similarly, a configurable
monitor was proposed in [18] where a probe component was
embedded in the network interface to observe events
between the router and processing element. The events were
processed in the pre-processing module and then sent to a
probe management unit for collection. However the probes
introduced a high area overhead such that a 4 multi-purpose
probe was approximately equal to 55% of the total area of
the network interface and router.

In summary, current approaches have the aforementioned
weaknesses of (1) they do not provide the quantitative
analysis required for a fault-tolerant capability [17]; (2)
prohibit scalability due to large area overheads of monitor
trace module and data connection for events collection in the
NoC system [15], [18]; and (3) commercial copyright as they
are not open source [16]. To be available to the general
public via open source can promote research by supporting
independent review and evolution of code. For a modern
NoC monitoring mechanism, several key functions need to
be addressed: capability to provide analysis on NoC fault
tolerance, scalability – do not have an impact on area
overhead, and accessibility (open-source to NoC community)
to aid others in designing and debugging the NoC. It is now
timely to investigate such a monitoring mechanism as fault
tolerance and adaptive capabilities are of paramount
importance with ever increasing density of large scale
electronic systems.

III. LIGHT WEIGHT MONITOR PROBE AND STATISTICS
NODE IN THE NOC

In our previous work [8], [13], [14], [19], the authors
developed a NoC router design, namely EMBRACE, which
demonstrated a traffic-aware and online fault testing
equipped router. This section outlines the monitor probe
design based on the EMBRACE router and the
communication protocol between the NoC and the computer.

A. Regular NoC node
Fig. 1 (a) presents the overall system structure. A remote

server is used to compile the HDL code of the NoC system
due to the long synthesis time of the hardware. The server is
connected to a host computer via Ethernet. A JTAG server
operates on the host computer which provides the bit-stream
download and debugging service for the remote server. A
NoC system is implemented on the FPGA board and the host
computer is connected to the FPGA. The monitoring
software runs on the host computer and provides analysis of
the NoC fault tolerant capability based on traffic data from
the NoC on the FPGA.

The example NoC system in the Fig. 1 (a) is a 2D-mesh
(���� � ����) NoC system and is composed of NoC nodes,
probe modules and a single statistics node. Each NoC node is
positioned by one pair of coordinates and is connected to the
neighbouring router nodes through channels at North/E/S/W
directions. The NoC node includes one router and one
processing element (PE). A probe module is embedded in the
PE but it collects all the traffic events of the corresponding
router on all of the directions including N/E/S/W and the
events of the PE at the local connection. For example, in Fig.
1 (a) the probe in PE(2,2) collects all the events of router
(2,2) on its N/E/S/W directions and the local connection
events of PE(2,2). The PE obtains the event data from the
probe and then constructs the statistics packets which are
forwarded to statistics node (STAT). The STAT node is
connected to the complete NoC system. The coordinate of
the STAT node in Fig. 1 (a) is ����� 	
�� . It is
responsible for collecting the statistics data from each NoC
node (router/PE) and uploading it to the computer. In order
to differentiate from the STAT node, all other nodes in the
NoC except STAT are referred to as regular nodes.

Similar to the computer network, the NoC uses a specific

P

P P P P

P P P P

P P P P

P P P

Header Information Value
Running Mode 0001

The number of sent packets (PE) 0010
The number of received packets (PE) 0011
The number of received packets (N) 0100
The number of received packets (E) 0101
The number of received packets (S) 0110
The number of received packets (W) 0111

Testing Mode 1xxx

Fig. 1. Example NoC monitoring setup: (a) System structure; (b) The packet layout of the NoC

packet format to forward the data across the network. The
packet layout of EMBRACE is defined in Fig. 1 (b). When
the MSB is ‘1’, the packet is used as a test vector for online
fault detection. The fault detection packets are generated at
each router and sent across the local N/E/S/W channels.
However, if the MSB is ‘0’, the packet is a regular applica-
tion packet [8]. In the regular application mode of operation,
the packet can have several functions - defined by the
packets header between values ����
� and ��

�. When
the packet header contains ����
�, it is classed as a normal
packet containing data for the regular application mapped to
the NoC; if the header is between ���
�� to ��

�, the
packet is classed as a statistics packet which contains traffic
event data on the number of packets a PE sent/received, the
number of packets a router received at N/E/S/W,
respectively. For the statistics packet, the most significant bit
(M) of the payload (see top packet layout of Fig.1 (b)) is
used to indicate the channel status. If it is ‘1’, the channel is
defined as faulty; if it is ‘0’, the channel is fault-free. The
setting of the M bit is controlled via the online test
mechanism available in the example NoC [8]. Let’s take an
example to illustrate the packet layout definition. Assume the
STAT node is (5,2) in a 4x4 2D-mesh NoC; regular node
(2,2) sends packets to (3,2) and node (2,1) sends packets to
(2,2) as depicted in Fig. 1 (a) where ���� � �, ���� � �. If
node (2,2) sends a packet and the packet is ���������
��,
it is defined as a test packet (MSB is ‘1’) and therefore
performs testing on the channel between NoC node (2,2) and
(3,2); if the packet is �
�������
�� , then it is a normal
packet which means the destination is (3,2), the source is
(2,2) and the data application payload is ����
�� . If the
packet is ������������, then it is a statistic packet which
means the packet is sending it to the STAT node (5,2), where
it define the source node as (2,2) and that 5 packets were
sent by PE(2,2). If the packet is ������������, then it is
again a statistic packet where the source node is (2,2) and the
router (2,2) has received 8 packets via its northern channel. If
the packet is ������������, then it is classed as a statistic
packet where the source node is (2,2) and its southern
channel of (2,2) is defined as faulty as the M bit of payload is
‘1’.

Based on the packet layout definition, the regular
application, test vector and statistics packets can be
forwarded correctly across the same NoC network without
any additional interconnect. Extra area overhead is not
introduced as the statistic data is forwarded across the
existing NoC network. The work flow of the proposed
hardware monitoring system is presented in Fig. 2. After the
NoC is reset, the regular (NoC) node is in the idle state until
it starts to run an application task. After the application has
run for a time period (defined as window time), the
application is interrupted and the monitor probe inside the
PE collects the statistics data and then sends it to the STAT
node. In this approach, the payload of the packets is 16-bit in
length. In addition, the M bit of the payload is used to
indicate the channel status. Therefore, a maximum 15 bits
can be used for counting the event, i.e. the maximum number
of traffic events is ��� � ������ , however this can be

increased. Assume the NoC system clock frequency is
100MHz, therefore the window time can be up to ~328 μs.
Note that the window time can be longer if the payload width
is set to be wider (16-bit is used as an example size). Note
that in this approach, the monitor probe collects and sends
the statistics data to the STAT node synchronously. The
example application running in the NoC hardware is a
spiking neural network (SNN) [13], which operates at a very
low frequency e.g. the inter-spike interval in the order of
milliseconds. As the average firing rate is low, the channel
traffic status is idle at most of time, which allows all the
statistic packets reach the STAT node within the data
collection time. However, if the regular application traffic is
heavy, an independent physical communication
infrastructure, e.g. the dedicated channels in [15], [16],
should be employed to collect the statistics data.

B. STAT node
The STAT node is responsible for receiving statistics

data from all regular nodes in the NoC and uploading it to
the PC. The structure of the STAT node is presented in Fig.
3. It includes a FIFO, a statistics stream generator and a
communication interface. The FIFO is required as the packet
receive rate from the regular nodes and the byte stream send
rate to the computer can differ; the statistics stream generator
is responsible for converting the 36-bit statistics packets
from the NoC to an 8-bit byte streams for uploading to the
PC. The communication interface can be UART, SPI2USB
or Ethernet. The UART is a light weight communication
protocol which does not introduce much area overhead;
SPI2USB was implemented in [20] which has a high speed
rate but requires a microcontroller as a converter; Ethernet is
the highest speed protocol however it requires a soft core
processor on the FPGA due to its complex protocol,
therefore it has large area overhead [15]. However, these
three connection protocols can be selected based on the
requirement of application. In this paper, the light weight
UART protocol is used.

Fig. 2. The work flow of regular node in the NoC

Fig. 3. The statistics node structure

The STAT node and computer communicate with each
other based on a communication protocol which is illustrated

in Fig. 4. The communication begins with 0x42; the next
byte is the type of statistical data which is consistent with
Fig. 1 (b), e.g. the value of 2 represents the number of
packets PE has transmitted; the third byte is the STAT node
address; the fourth byte is the source node address which
sent the statistics packets; the next two bytes of Data (byte 1
and 2) correspond to the payload of statistics packets; and the
final byte is 0x4C. The software hosted on the computer can
analyse the NoC traffic events and provide a quantitative
result on system performance.

Fig. 4. Data exchange format between STAT node and computer

IV. NOC SYSTEM PERFORMANCE ANALYSIS SOFTWARE

Performance analysis software for the NoC system was
investigated for the host PC. It provides several functions in
quantitatively evaluating NoC performance including
throughput, the number of lost/corrupted packets calculation
and the heat map generation of NoC traffic. In particular, the
software highlights where faults have been detected and the
number of lost packets as a result. This enables design
exploration and evaluation of adaptive NoC routing
algorithms when faults occur.

A. Traffic heat map generation
The traffic heat map feature of the software enables

researcher to quickly identify busy (hot-spot) nodes,
congested and faulty channels. The clear view of the heat
map helps designers in optimising the mapping of
application tasks to the different PEs, and also designing
more efficient routing algorithms etc. to enhance the fault-
tolerant capability of the NoC.

Firstly in the software, the physical parameters of routers
and channels need to be identified as part of the visualisation
parameters of the data on the NoC. Each node consists of
one router and 4 input channels. The size parameters of the
routers and channels are defined in Fig. 5 - the width of a
router is �� , the height of router is �� ; the width of a
channel is �� , the length of channel is �� ; the margin
between the channel and router top edge is � , the distance
between the input and output channel is �! and the margin
between the output channel and router bottom edge is �".

To plot the router and channels in map, the start point of

every router and channel should be identified. The physical
position is defined by (1), assume that: one node (i, j) in a #$�% � #$�& NoC system, �'(�)(is the start point of the
traffic heat map in the x/y-axis. R(i, j) is the start point of
router (i, j) and N/E/S/WIC(i, j) is the start point of the
Northern/E/S/W input channel of router (i, j). Based on the
size parameters in Fig. 5 and coordinates in (1), any size of
NoC system can be visualised successfully.

R
h

M
m

M
u

M
b

Fig. 5. The size parameters of components in the NoC system

Secondly, a colour filled scheme for the channel is
employed to generate the heat effects in the map. The darker
the colour of a channel, the heavier the traffic is. The colour
is presented in the RGB data format, for example, if RGB =
(0, 0, 0), the colour is black. The colours between red and
yellow are used to present the traffic load in this approach. If
the channel is red, the traffic is heavy and if yellow, the
traffic is light. For the colour between red and yellow, the R
and B values can be set to 237 and 47; only the Green value
needs to be changed. Therefore, the �*+ � ����� *� ��
where G is the only value needs to be set and � , * , ���.
If G= 0, the colour is red; if G= 255, the colour is yellow.
The NoC router sends one packet per clock cycle (a packet
only contains one flit in this approach – as defined by the
example SNN application [13] used in this study). For a
given window time of N clock cycles, the maximum number
of packets that can be sent or received is equal to N. Assume
that the number of traffic events in Fig. 4 is �-.-/01, the G
value can be calculated by (2). For example, if the window
time is N=300 clock cycles and the number of events is �-.-/01 � ���, then G=34 (by (2)) and RGB (237, 34, 47)
will be used to fill the channel colour. This colour is close to
red which means the traffic is heavy. In addition, the M bit of
payload, shown in Fig. 1 (b), is used to indicate the status of
a channel. If it is ‘0’, the channel is fault-free. However, If it

23
4
35
��6� 7 � 8'(6 � ��� 	 ��� 9)(7 � ��� 	 ��:;$��6� 7 � �'(6 � ��� 	 �� 	 � �)(7 � �� 	 �7 <
 � ��� 7 = �>$��6� 7 � 8'(�6 	
 � �� 	 6 � ��� 9)(7 � ��� 	 ��: 	 � � 6 = #$�& <
?$��6� 7 � �'(6 � ��� 	 �� 	 � 	 �� 	�!�)(�7 	
 � �� 	 7 � ��� 7 = #$�% <
@$��6� 7 � �'(6 � �� 	 �6 <
 � ���)(7 � ��� 	 �� 	 � 	 �� 	�!� 6 = �

(1)

is ‘1’, the channel is faulty and the RGB is set to (0,0,0), i.e.
the colour black.

* � ��� � �
 < �-.-/01; (2)

The router uses the distributed adaptive routing algorithm
[8], [13]. Every port (N/E/S/W and local) can send and
receives packets at the same time. The colour filled scheme
is applied to the input and output directions of all the ports.
Based on the coordinates definition and colour filled scheme,
a traffic heat map is generated. The heat map shows the
overall traffic status in a visualized manner and enables
behaviour analysis of routing algorithm when faults occur.

B. Throughput calculation
Each NoC router has four ports to connect neighbouring

nodes and a local port to connect the PE. The router works
on a clock frequency of 100MHz and the channel width is
36-bit, therefore the maximum throughput for a single port is
3.6Gbps [13]. For a given window time of N clock cycles,
the router throughput, T, can be calculated by (3), where A� � �B 	 �C 	 �1 	 �� 	 �D , i.e. the number of
received packets through North/E/S/W/Local ports, EF is the
clock frequency. The throughput of each node is visualised
in a 3D column-format so clarity across the 2-D mesh.

G � A� H ��; H EF (3)

Average throughput is also used to reflect the system
performance. It is defined by (4), where the GI.J is the
average throughput of the system and G�6� 7 is the
throughput of router (i,j).

GI.J �K K G�6� 7LMNO
PQ�

LMNR
SQ� T�#$�% � #$�& (4)

C. The number of loss/corrupted packets calculation
The symbols of �BTCTUTVTD and ?BTCTUTVTD are defined

as the number of received(R)/sent(S) packets through
North/E/S/W/Local port. The total number of faults
experienced in the NoC is reflected by the number of packets
which are lost in communication due to the fault, e.g. a fault
in a channel etc. We calculate the impact, F, from the faults

on packet transmission, using (5). F is equal to the total
number of packets a router receives on the N/E/S/W/L ports,
minus the total number of packet the router has sent. For a
fault-free router, the number of total received packets is
equal to the number of packets sent. For a faulty router the
total number of transmitted and received packets will vary. W � ��B 	 �C 	 �U 	 �V 	 �D < �?B 	 ?C 	 ?U 	 ?V 	 ?D (5)

Stuck-at and crosstalk faults are employed in this paper
as they are the most common faults in the NoC (the detailed
fault models can be found in the authors’ previous work [8]).
When a packet is forwarded to a faulty channel with stuck-at
fault, it will be corrupted. However, if the packet is
forwarded to a faulty channel with crosstalk fault, it has a
~90% possibility of being corrupted and ~10% possibility of
being lost (e.g. due to being overwritten inside the buffer,
corrupted channels, soft errors) based on the study performed
in [21]. Lost packets never reach their destination while
corrupted packets do however the integrity of the packet
payload is no longer guaranteed. Therefore, the number of
lost (XY) and corrupted packets (�Y) can be calculated by (6).
The fault model can be selected in the software interface to
allow performance evaluation under different fault
conditions.

XY � Z �� [\]^_ < `\9E`]a\�b
 � W� ^cd[[\`a_9E`]a\
�Y � Z W� [\]^_ < `\9E`]a\�be � W� ^cd[[\`a_9E`]a\

(6)

The traffic heat map, throughput and the number of
lost/corrupted packets provides efficient metrics to analyse
the fault-tolerant capability of a NoC system. The current
version of the tool supports mesh and torus topologies
however other topologies can be supported via minimal
modification. An example is given in the next section to
illustrate how the physical hardware monitoring mechanism
provides data to the software for analysis.

V. A CASE STUDY AND EVALUATION

This section presents an example case study using the
proposed monitoring mechanism. Fig. 6 shows the monitor

Fig. 6. Monitor software interface

software interface which runs on a host PC
to provide quantitative analysis of the NoC p
evaluate the NoC routing policy under real
fault conditions. The software provides
including 1). a control panel where the NoC
running time are defined; 2). a traffic hea
generated according to the NoC traff
throughput calculation and 3D display of thr
the number of lost/corrupted packets calcula
impact from faults in the NoC. Note faults
the NoC channels using fault injectors [8],
facilitated via the software interface. In th
UART is employed as it has a small area ove

In this paper a case study on an 8x8
system of 2D-mesh topology was implemen
DE4 development board (Stratix EP4
FPGA). Each router implements a fault-tole
algorithm [8] developed by the authors. At

TABLE I. THE TRAFFIC PATTERNS OF BENC

Traffic patterns
(a) (8,*)->(*,8)
(b) (8,*)->(*,8), varied P
(c) (6,2)->(2,6), (3,2)->(2

(d) (6,2)->(2,6),
WC(6,2) is faulty

(e) (6,2)->(2,6),
WC(6,2), WC(5,3~6) are

(f) (6,2)->(2,6),
NC&SC(3~4,2), WC(3,2) a

Fig. 7. Traffic heat map of different traffic pa

C. Its main role is
performance, e.g.
l-time traffic and
several facilities

C system size and
at map which is
fic; 3). average
roughput, and 4).

ation to define the
are injected into
[22] and are not

his approach, the
erhead.
(64 cores) NoC

nted in the Altera
4SGX530KH4C2
erant NoC routing

the local port of

each router, a PE is attached whic
generator. The packets generator
according to the packet layout show
controls the number of packets issue
traffic patterns listed in Table I we
the monitoring mechanism in this
patterns were chosen as they can e
congestion-avoid and fault-tolerance
6 traffic scenarios were injected int
executed in real-time and the resulta
to the software for analysis. Traff
transpose traffic where node (8,i)f g h
��i; (b) presents a different va
(PIR) of 20 and 1 respectively (i.e. t
20 and 1 clock cycles); (c) present a
(6,2) and (3,2) send packets to (2,6)
congestion will occur in the western
(3,2); (d) presents a traffic patte
channel. Node (6,2) sends packets to
faulty; (e) presents a traffic patte
channels. The source/destination no
However, the WCs of (6,2), (5,3), (5
and (f) presents a clustered fault
output channel (NC) and southern
(3,2) and (4,2) are faulty. The WC
Note that 1). The PIR is 1 for all t
traffic pattern (b), which means th
one clock cycle; 2). These traffic
illustrate the proposed mechanism

CHMARKING

PIR
2,3)

e faulty

are faulty

atterns Fig. 8. The throughput of NoC routers displa

80
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5 6 7 8

D
IM

y

Th
ro

ug
hp

ut
 [G

bp
s]

DIMx (a)

0
0.5

1
1.5

2
2.5

3
3.5

1

Th
ro

ug
hp

ut
 [G

bp
s]

80
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8

D
IM

y

Th
ro

ug
hp

ut
 [G

bp
s]

DIMx (c)

0
0.5

1
1.5

2
2.5

3
3.5

1

Th
ro

ug
hp

ut
 [G

bp
s]

80
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5 6 7 8

D
IM

y

Th
ro

ug
hp

ut
 [G

bp
s]

DIMx (e)

0
0.5

1
1.5

2
2.5

3
3.5

1

Th
ro

ug
hp

ut
 [G

bp
s]

ch encompasses a packet
r generates the packets
wn in the Fig. 1 (b) and
ed to the local router. Six
ere employed to evaluate
case study. These traffic

evaluate the capability of
e of the NoC system. All
o the NoC on the FPGA,
ant statistics data transfer
fic pattern (a) presents a
) sends packets to (i,8),
aried packet injection rate
the packets are sent every
a congested traffic where
and (2,3) respectively. A

n output channel (WC) of
ern with a single faulty
o (2,6) and WC of (6,2) is
ern with multiple faulty
odes are the same as (d).
5,4), (5,5), (5,6) are faulty
ty region. The northern

n output channel (SC) of
C of (3,2) is also faulty.
he traffic patterns except

he packets are sent every
c patterns are chosen to
m clearly however the

ayed in 3-D column

8

2 3 4 5 6 7 8

D
IM

y

DIMx (b)

8

2 3 4 5 6 7 8

D
IM

y

DIMx (d)

8

2 3 4 5 6 7 8

D
IM

y

DIMx (f)

performance analysis of more complex traffic patterns can be
found via the open source website, see the section conclusion
and 3). The traffic patterns in Table I can be used to evaluate
the system behaviours under different traffic scenarios, such
as different packets injection rate, idle and congestion, fault-
free and faulty, distributed and clustered faulty channel
distribution. The traffic patterns are generated by traffic
generators which are attached to the NoC on the FPGA;
therefore new traffic scenario can be added to the NoC using
modified traffic generators.

When the data is presented to the software from the
hardware monitor, the traffic heat map structure, shown in
Fig. 7, is generated to enable visual analysis of the system
performance. It can be seen that in the traffic pattern (a) node
(8,i) sends packets to (i,8) where f g h
��i . The shape of
communication paths are at right angles. The packets are
forwarded along the x-dimension first and then y-dimension
as the routing algorithm [8] follows the XY routing policy if
there is no congestion or faults are not detected; (b) the
channel colour is varied as the PIR varies in rate. For
example, the colour of communication path from (8,2) to
(2,8) is lighter than from (8,1) to (1,8) as the former PIR is
20 and the latter PIR is 1; (c) a congestion occurs in the
western output channel of node (3,2) as (3,2) and (6,2) both
forward the packets to the west port. The NoC routing
algorithm [8] distributes traffic to the south port to relax the
congestion instead of waiting at the west port; (d) it forwards
the packets to the south port of node (6,2) as the WC is
faulty; (e) the algorithm [8] forwards the packets to the fault-
free port in the system with distributed faulty channels and
the packets are delivered to the destination eventually, and
(f) the packets are forwarded to a dead-end as routing
algorithm [8] under evaluation does not have global traffic
statuses of the nodes (e.g. >3 hops away). Based on the
traffic heat map, the reliability of the NoC system can be
analysed in a visualized manner, e.g. the congestion-avoid
capability in the traffic pattern (c) and the fault tolerant
capability in (d)-(f) can be viewed. This enables first order
analysis of the effectiveness of the adaptive routing
algorithm or any NoC routing policy to be evaluated under
real-time traffic and fault conditions.

The throughput of each traffic pattern is presented in Fig.
8 and show the 3D column-format display. The 3D
throughput display is used to alow the throughput of every
node to be viewed and also provides a throughput
distribution of the entire NoC system. The x/y-axis values
are the router ID in the x/y dimension and the z-axis
corresponds to the throughput of the router. It can be seen
that for the traffic pattern – (a) each router has the same
throughput as all the routers receive the same amount of
packets. The node (8,8) does not send packets to itself,
therefore the throughput of router (8,8) is zero; (b) two kinds
of throughput are presented as the PIR is varied; (c) the
throughput of router (2,3) and (3,2) are higher than others
because they are the hotspots and lots of traffic pass through
them, and in (d)~(f) the throughput of each node are present.
Every node in the communication path has the same
throughput. The throughput diagram provides several
benefits, e.g. the throughput of each router can be obtained,

the traffic of routers can be compared and analysed
especially for the congested and faulty scenarios. It also
provides real-time data on the entire NoC system
performance and thereby aids system design in evaluating
routing algorithm design and application mapping.

Average throughput GI.J� under traffic patterns (a)~(f)
are presented in Table II. The data in the table illustrates that
(1). the traffic pattern (a-c) have a high average throughput
as they have more communicating nodes compared to other
traffic patterns; (2). the average throughput of (e) is greater
than (d) for the same source/destination node as the total
throughput sum of (e) is greater than (d) and (3). for traffic
pattern (f), the number of lost/corrupted packets is 25/230,
0/255 for crosstalk and stuck-at fault models, respectively.
This outcome is expected as the example algorithm [8] does
not have access to the global traffic status of nodes. From the
traffic heat map and the throughput values presented in Fig.
7, Fig. 8 and Table II, it can be seen that the impact from
clustered faults results in packets being forwarded to a faulty
channel where they are either lost or the payload is
corrupted and further forwarded to incorrect destination
routers. Therefore, we can see under such fault conditions
that the average throughput is low. The proposed monitoring
mechanism and software interface enables the analysis of
such fault scanerios in assessing the fault tolerant capabilities
and effectiveness of routing policy in the NoC.

TABLE II. THE AVERAGE THROUGHPUT, THE NUMBER OF
LOST/CORRUPTED PACKETS

Traffic jklm
[Gbps]

Stuck-at Crosstalk XY �Y XY �Y
(a) 3.012 0 0 0 0
(b) 1.979 0 0 0 0
(c) 0.573 0 0 0 0
(d) 0.430 0 0 0 0
(e) 0.526 0 0 0 0
(f) 0.191 0 255 25 230

For the example 8x8 2D-mesh NoC system, the area
overhead of each component is presented in Table III based
on an Altera FPGA device and Quartus II software. The
hardware monitor probe only occupies 87 LC Combinational
(LCCs) and 125 LC Registers (LCRs). The STAT node
occupies 146 LCCs and 184 LCRs. The entire NoC system
only needs one STAT node which is connected to a router.
The two area overheads are used to evaluate the compactness
of the monitoring mechanism – one is the probe area
overhead of a single router (nY) and the other is the
monitoring mechanism area overhead of the entire NoC
system (n!). Therefore, the area overhead of nY9is 11.27%
(87/772=11.27%) for LCCs and 13.27% for LCRs; n! is
5.93% ((87*DIMx*DIMy+772+146)/109,451= 5.93%,
where DIMx=8, DIMy=8) for LCCs and 6.01% for LCRs,
i.e. nY is ~12.27% and n! is ~5.97% (right of Table III). To
benchmark the monitor mechanism we can compare area
overhead against an existing state of the art approach [18].
For example, the area overheads of [18] (using 4
multipurpose probes) are nY � ��o , n! � �
o . This
demonstrates that [18] has a large area overhead as its
architecture dictates that four type event detectors are
included. The area overhead of our approach is relatively low

and it has the added advantage of monitoring fault tolerance
capabilities and providing analysis. The low area overhead of
monitors and analysis of fault tolerance capabilities are very
beneficial for evaluating large-scale NoC in the era of
reliable systems.

TABLE III. THE AREA OVERHEAD OF MONITORING MECHANISM
Component LCCs LCRs Approach pq (%) pr(%)

Monitor probe 87 125 [18] 55 31 NoC Router [8] 772 942
STAT node 146 184 This paper 12 6 8x8 2D-mesh NoC 109,451 151,853

VI. CONCLUSION

A monitoring mechanism was proposed in this paper and
the novelty lies in exploiting the monitor probe to detect the
events in the NoC router and employing the STAT node to
transmit the statistics data to computer. In addition, the key
aspect of the proposed approach is the quantitative analysis
of fault tolerant capability and the traffic heat map
generation to reflect the hardware adaption capability
visually for the NoC system. Some metrics are provided by
the monitor software to evaluate the NoC system
performance, such as throughput, traffic heat map and the
number of lost/corrupted packets. An 8x8 (64 cores) NoC
system with a fault tolerant routing algorithm was evaluated
for the case study. The results showed that the monitoring
mechanism can evaluate the system performance
successfully, especially the routing policy analysis.
Moreover, the area overhead of the monitoring components
in the NoC is low, only ~6% which does not prohibit NoC
scalability. The monitoring software (Open Source) can be
found at http://isrc.ulster.ac.uk/jliu/research.html. It can
easily be used for other NoC platforms as long as the data
exchange format between the NoC and computer are
consistent. Future work aims to add more functions to the
monitor software and to decrease the area overhead of
monitoring components further.

ACKNOWLEDGMENT
Junxiu Liu is supported by the University of Ulster’s Vice-
Chancellor’s Research Scholarship. This research is also
supported in part by Spanish grant (with support from the
European Regional Development Fund) BIOSENSE
(TEC2012-37868-C04-02).

REFERENCES
[1] L. Benini and G. De Micheli, “Networks on chips: a new SoC

paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.
[2] S. Madduri, R. Vadlamani, W. Burleson, and R. Tessier, “A monitor

interconnect and support subsystem for multicore processors,” in
Design, Automation & Test in Europe, 2009, pp. 761–766.

[3] M. Amin, M. Tagel, G. Jervan, and T. Hollstein, “Design
Methodology for Fault-Tolerant Heterogeneous MPSoC under Real-
Time Constraints,” in 7th International Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2012, pp. 1–6.

[4] A. Agarwal, B. Raton, C. Iskander, et al., “Survey of Network on
Chip Architectures & Contributions,” Journal of Engineering,
Computing and Architecture, vol. 3, no. 1, pp. 1–15, 2009.

[5] A. Das, A. Kumar, and B. Veeravalli, “Fault-tolerant Network
Interface for Spatial Division Multiplexing based Network-on-Chip,”

in 7th International Workshop on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), 2012, pp. 1–8.

[6] C. Grecu and A. Ivanov, “Testing Network-on-chip Communication
Fabrics,” IEEE Transactions on CAD of Integrated Circuits and
Systems, vol. 26, no. 12, pp. 2201–2214, 2007.

[7] M. Hervé, P. Almeida, F. L. Kastensmidt, et al., “Concurrent Test of
Network-on-Chip Interconnects and Routers,” in 11th Latin American
Test Workshop (LATW), 2010, pp. 1–6.

[8] J. Liu, J. Harkin, Y. Li, and L. Maguire, “Online Traffic-Aware Fault
Detection for Networks-on-Chip,” Journal of Parallel and Distributed
Computing, vol. 74, no. 1, pp. 1984–1993, 2014.

[9] P. Lotfi-Kamran, A. M. Rahmani, M. Daneshtalab, A. Afzali-Kusha,
and Z. Navabi, “EDXY - A low cost congestion-aware routing
algorithm for network-on-chips,” Journal of Systems Architecture,
vol. 56, no. 7, pp. 256–264, Jul. 2010.

[10] A. Vitkovskiy, V. Soteriou, and C. Nicopoulos, “A Dynamically
Adjusting Gracefully Degrading Link-Level Fault-Tolerant
Mechanism for NoCs,” IEEE Transactions on CAD of Integrated
Circuits and Systems, vol. 31, no. 8, pp. 1235–1248, 2012.

[11] C. Feng, Z. Lu, A. Jantsch, M. Zhang, and Z. Xing, “Addressing
Transient and Permanent Faults in NoC with Efficient Fault-Tolerant
Deflection Router,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 21, no. 6, pp. 1053–1066, Jun. 2013.

[12] A. Ben Ahmed and A. Ben Abdallah, “Graceful Deadlock-free Fault-
tolerant Routing Algorithm for 3D Network-on-Chip Architectures,”
Journal of Parallel and Distributed Computing, vol. 74, no. 4, pp.
2229–2240, Jan. 2014.

[13] S. Carrillo, J. Harkin, L. McDaid, et al., “Advancing Interconnect
Density for Spiking Neural Network Hardware Implementations
using Traffic-aware Adaptive Network-on-Chip Routers,” Neural
Networks, vol. 33, no. 9, pp. 42–57, Sep. 2012.

[14] S. Carrillo, J. Harkin, L. J. McDaid, et al., “Scalable Hierarchical
Network-on-Chip Architecture for Spiking Neural Network Hardware
Implementations,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 12, pp. 2451–2461, 2013.

[15] A. Alhonen, E. Salminen, J. Nieminen, and T. D. Hämäläinen, “A
Scalable, Non-Interfering, Synthesizable Network-on-Chip Monitor,”
in NORCHIP, 2010, pp. 1–6.

[16] O. Hammami, X. Li, and J.-M. Brault, “NOCEVE : Network On
Chip Emulation and Verification Environment,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE),
2012, pp. 163–164.

[17] A. Ben Ahmed, T. Ochi, S. Miura, and A. Ben Abdallah, “Run-Time
Monitoring Mechanism for Efficient Design of Application-Specific
NoC Architectures in Multi/Manycore Era,” in 7th International
Conference on Complex, Intelligent, and Software Intensive Systems,
2013, pp. 440–445.

[18] L. Fiorin, G. Palermo, and C. Silvano, “A Configurable Monitoring
Infrastructure for NoC-Based Architectures,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, pp. 1–5, 2013.

[19] J. Harkin, F. Morgan, S. Hall, et al., “Emulating Biologically Inspired
Architectures in Hardware: A New Reconfigurable Paradigm for
Computation,” in Reconfigurable Communication-Centric Systems-
on-Chip Workshop, 2008, pp. 10–19.

[20] A. Jimenez-Fernandez, G. Jimenez-Moreno, A. Linares-Barranco, et.
al, “A Neuro-Inspired Spike-Based PID Motor Controller for Multi-
Motor Robots with Low Cost FPGAs,” Sensors, 12(4), pp.3831-3856,
Jan. 2012.

[21] F. A. Pereira, L. Carro, E. Cota, and F. L. Kastensmidt, “Evaluating
SEU and Crosstalk Effects in Network-on-Chip Routers,” in 12th
IEEE International On-Line Testing Symposium, 2006, pp. 191–192.

[22] M. Birner and T. Handl, “ARROW - A Generic Hardware Fault
Injection Tool for NoCs,” 12th Euromicro Conference on Digital
System Design, Architectures, Methods and Tools, pp. 465–472, Aug.
2009.

