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Abstract— Modern Networks-on-Chip (NoC) have the 
capability to tolerate and adapt to the faults and failures in the 
hardware. Monitoring and debugging is a real challenge due to 
the NoC system complexity and large scale size. A key 
requirement is an evaluation and benchmarking mechanism to 
quantitatively analyse a NoC system’s fault tolerant capability. 
A novel monitoring mechanism is proposed to evaluate the 
fault tolerant capability of an NoC by: (1) using a compact 
monitor probe to detect the events of each NoC node; (2) re-
using the exist NoC infrastructure to communicate analysis 
data of back to a terminal PC which removes the need for 
additional hardware resources and maintain hardware 
scalability and (3) calculating throughput, the number of 
lost/corrupted packets and generating a heat map of NoC 
traffic for quantitative analysis. The paper presents results on 
a case study using an example fault-tolerant routing algorithm 
and highlights the minimal area overhead of the monitoring 
mechanism (~6%). Results demonstrate that the proposed 
online monitoring strategy is highly scalable due to the 
compact monitor probe and the ability to reuse the existing 
NoC communication infrastructure. In addition, the traffic 
heat map generation and throughput display demonstrates 
benefits in aiding NoC system prototyping and debugging. 

Keywords— Networks-on-Chip, performance monitoring, 
fault tolerant, hardware adaption   

I. INTRODUCTION

The complexity of modern Systems-on-Chip has seen the 
introduction of new interconnection strategies such as NoC 
which allow scalable on-chip communication between large 
numbers of processing components. The NoC strategy was 
first introduced in [1] and is composed of routers, channels 
and processing elements. The topology defines how to 
connect NoC routers on-chip and the concept is similar to 
traditional computer networks where packets of information 
are communicated via paths across several routers, and 
routers define the path between the source and destination 
processing elements. NoCs are an active research field and 
widely used by many industrial applications [2]. 

Fault tolerance and adaptive capabilities are challenges 
[3], [4] for modern NoCs due to the increase in physical 
defects in advanced manufacturing processes, as often faults 
occur post manufacturing. Such adaptation reflects the 
capability of a NoC system to maintain or decrease the 
performance gracefully in the context of internal faults or 
external interference. Some approaches have been proposed 
to enhance the NoC system fault-tolerant capability, such as 
fault tolerant and detection methods [5]–[8] and adaptive 
routing policies when faults occur [9]–[14]. A quantitative 
analysis of the fault-tolerant capability is very beneficial for 
design, evaluation and benchmarking. The key analysis tasks 

include heat map generation of NoC traffic, throughput 
calculation, communication path regeneration and counting 
the number of lost/corrupted packets due to the occurrence of 
faults. However, the quantitative analysis is a significant 
challenge due to the large scale (+250 CPU cores per device 
by 2015), limited test pins (e.g. using logic analyser) and 
extra area overhead introduced by a built-in debugger (e.g. 
using Altera SignalTap, Xilinx Chipscope or Lattice Reveal 
Analyser). Therefore to aid the NoC system design and 
evaluation requires the development of a monitoring 
mechanism that can detect the events in the NoC, visualize 
the traffic distribution, calculate the throughput, the number 
of lost/corrupted packets etc. for performance analysis. 

In this paper, a monitoring mechanism is presented which 
aims to provide quantitative analysis of the fault tolerant 
capability of a NoC system. This approach is novel as (1) the 
NoC interconnection is reused to collect the system events, 
i.e. communication of monitoring data does not introduce
large hardware area overhead; (2) the monitor probe of each
node in the NoC system is area-efficient and (3) a generic
communication protocol is designed to provide compatibility
with other NoC systems. The proposed monitoring
mechanism is complementary to conventional simulators.
The conventional simulators can analyse the NoC system
performance using the simulation data over short time
periods, especially at the design time. However, the proposed
monitoring mechanism has the capabilities to observe online
the run-time behaviour of the entire hardware NoC system
and aid the hardware debugging and implementation. For
example it can observe real-time interactions with external
sensor data. The remainder of the paper is organized as
follows. Section 2 provides a summary of previous work and
section 3 discusses the proposed monitoring mechanism and
its hardware operation and section 4 introduces its software
front-end. Section 5 provides results from a case study of a
fault-tolerant NoC router, and section 6 provides a
conclusion and highlights future work.

II. RELATED WORK

A NoC performance analysis monitor scheme was 
proposed in [15]. It included a hardware trace monitor in the 
NoC system and trace software on the host computer. The 
trace monitor collects the NoC system states and sends the 
data to the PC software for the performance evaluation. It 
uses Ethernet to collect the data in real-time. However, the 
NoC operates at a relative low clock frequency (25MHz) to 
allow the data collection in real-time. The monitor also needs 
to connect every channel through additional, dedicated wires 
which prohibits scalability for a large system. An industrial 
NoC emulation and verification environment, namely 



NOCEVE, was proposed in [16]. It can analyse the 
performance of large-scale multi-FPGAs including traffic 
distribution, latency and throughput etc. Two models of real-
time visualization and post-execution data analysis were 
proposed. A run-time monitoring mechanism was also 
proposed in [17] to decide the optimal NoC buffer size and 
capture system behaviour. A monitoring probe module was 
embedded inside each router. All the monitoring probe 
modules send traffic information to a global interface which 
is responsible for gathering all the snapshot data. They are 
connected by a dedicated point-to-point (P2P) connection 
which prohibits system scalability. Similarly, a configurable 
monitor was proposed in  [18] where a probe component was 
embedded in the network interface to observe events 
between the router and processing element. The events were 
processed in the pre-processing module and then sent to a 
probe management unit for collection. However the probes 
introduced a high area overhead such that a 4 multi-purpose 
probe was approximately equal to 55% of the total area of 
the network interface and router. 

In summary, current approaches have the aforementioned 
weaknesses of (1) they do not provide the quantitative 
analysis required for a fault-tolerant capability [17]; (2) 
prohibit scalability due to large area overheads of monitor 
trace module and data connection for events collection in the 
NoC system [15], [18]; and (3) commercial copyright as they 
are not open source [16]. To be available to the general 
public via open source can promote research by supporting 
independent review and evolution of code. For a modern 
NoC monitoring mechanism, several key functions need to 
be addressed: capability to provide analysis on NoC fault 
tolerance, scalability – do not have an impact on area 
overhead, and accessibility (open-source to NoC community) 
to aid others in designing and debugging the NoC. It is now 
timely to investigate such a monitoring mechanism as fault 
tolerance and adaptive capabilities are of paramount 
importance with ever increasing density of large scale 
electronic systems. 

III. LIGHT WEIGHT MONITOR PROBE AND STATISTICS 
NODE IN THE NOC 

In our previous work [8], [13], [14], [19], the authors 
developed a NoC router design, namely EMBRACE, which 
demonstrated a traffic-aware and online fault testing 
equipped router. This section outlines the monitor probe 
design based on the EMBRACE router and the 
communication protocol between the NoC and the computer. 

A. Regular NoC node
Fig. 1 (a) presents the overall system structure. A remote

server is used to compile the HDL code of the NoC system 
due to the long synthesis time of the hardware. The server is 
connected to a host computer via Ethernet. A JTAG server 
operates on the host computer which provides the bit-stream 
download and debugging service for the remote server. A 
NoC system is implemented on the FPGA board and the host 
computer is connected to the FPGA. The monitoring 
software runs on the host computer and provides analysis of 
the NoC fault tolerant capability based on traffic data from 
the NoC on the FPGA. 

The example NoC system in the Fig. 1 (a) is a 2D-mesh 
(���� � ����) NoC system and is composed of NoC nodes, 
probe modules and a single statistics node. Each NoC node is 
positioned by one pair of coordinates and is connected to the 
neighbouring router nodes through channels at North/E/S/W 
directions. The NoC node includes one router and one 
processing element (PE). A probe module is embedded in the 
PE but it collects all the traffic events of the corresponding 
router on all of the directions including N/E/S/W and the 
events of the PE at the local connection. For example, in Fig. 
1 (a) the probe in PE(2,2) collects all the events of router 
(2,2) on its N/E/S/W directions and the local connection 
events of PE(2,2). The PE obtains the event data from the 
probe and then constructs the statistics packets which are 
forwarded to statistics node (STAT). The STAT node is 
connected to the complete NoC system. The coordinate of 
the STAT node in Fig. 1 (a) is ����� 	 
��
 . It is 
responsible for collecting the statistics data from each NoC 
node (router/PE) and uploading it to the computer. In order 
to differentiate from the STAT node, all other nodes in the 
NoC except STAT are referred to as regular nodes. 

Similar to the computer network, the NoC uses a specific 
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Header Information Value 
Running Mode 0001

The number of sent packets (PE) 0010
The number of received packets (PE) 0011
The number of received packets (N) 0100
The number of received packets (E) 0101
The number of received packets (S) 0110
The number of received packets (W) 0111

Testing Mode 1xxx

Fig. 1.  Example NoC monitoring setup: (a) System structure; (b) The packet layout of the NoC 



packet format to forward the data across the network. The 
packet layout of EMBRACE is defined in Fig. 1 (b). When 
the MSB is ‘1’, the packet is used as a test vector for online 
fault detection. The fault detection packets are generated at 
each router and sent across the local N/E/S/W channels. 
However, if the MSB is ‘0’, the packet is a regular applica-
tion packet [8]. In the regular application mode of operation, 
the packet can have several functions - defined by the 
packets header between values ����

� and ��



�. When 
the packet header contains ����

�, it is classed as a normal 
packet containing data for the regular application mapped to 
the NoC; if the header is between ���
�
� to ��



�, the 
packet is classed as a statistics packet which contains  traffic 
event data on the number of packets a PE sent/received, the 
number of packets a router received at N/E/S/W, 
respectively. For the statistics packet, the most significant bit 
(M) of the payload (see top packet layout of Fig.1 (b)) is
used to indicate the channel status. If it is ‘1’, the channel is
defined as faulty; if it is ‘0’, the channel is fault-free. The
setting of the M bit is controlled via the online test
mechanism available in the example NoC [8]. Let’s take an
example to illustrate the packet layout definition. Assume the
STAT node is (5,2) in a 4x4 2D-mesh NoC; regular node
(2,2) sends packets to (3,2) and node (2,1) sends packets to
(2,2) as depicted in Fig. 1 (a) where ���� � �, ���� � �. If
node (2,2) sends a packet and the packet is ���������

��,
it is defined as a test packet (MSB is ‘1’) and therefore
performs testing on the channel between NoC node (2,2) and
(3,2); if the packet is �
�������

�� , then it is a normal
packet which means the destination is (3,2), the source is
(2,2) and the data application payload is ����

�� . If the
packet is ����������
��, then it is a statistic packet which
means the packet is sending it to the STAT node (5,2), where
it define the source node as (2,2)  and that 5 packets were
sent by PE(2,2). If the packet is ����������
��, then it is
again a statistic packet where the source node is (2,2) and the
router (2,2) has received 8 packets via its northern channel. If
the packet is ����������
��, then it is classed as a statistic
packet where the source node is (2,2) and its southern
channel of (2,2) is defined as faulty as the M bit of payload is
‘1’.

Based on the packet layout definition, the regular 
application, test vector and statistics packets can be 
forwarded correctly across the same NoC network without 
any additional interconnect. Extra area overhead is not 
introduced as the statistic data is forwarded across the 
existing NoC network. The work flow of the proposed 
hardware monitoring system is presented in Fig. 2. After the 
NoC is reset, the regular (NoC) node is in the idle state until 
it starts to run an application task. After the application has 
run for a time period (defined as window time), the 
application is interrupted and the monitor probe inside the 
PE collects the statistics data and then sends it to the STAT 
node. In this approach, the payload of the packets is 16-bit in 
length. In addition, the M bit of the payload is used to 
indicate the channel status. Therefore, a maximum 15 bits 
can be used for counting the event, i.e. the maximum number 
of traffic events is ��� � ������ , however this can be 

increased. Assume the NoC system clock frequency is 
100MHz, therefore the window time can be up to ~328 μs. 
Note that the window time can be longer if the payload width 
is set to be wider (16-bit is used as an example size). Note 
that in this approach, the monitor probe collects and sends 
the statistics data to the STAT node synchronously. The 
example application running in the NoC hardware is a 
spiking neural network (SNN) [13], which operates at a very 
low frequency e.g. the inter-spike interval in the order of 
milliseconds. As the average firing rate is low, the channel 
traffic status is idle at most of time, which allows all the 
statistic packets reach the STAT node within the data 
collection time. However, if the regular application traffic is 
heavy, an independent physical communication 
infrastructure, e.g. the dedicated channels in [15], [16], 
should be employed to collect the statistics data.   

B. STAT node
The STAT node is responsible for receiving statistics

data from all regular nodes in the NoC and uploading it to 
the PC. The structure of the STAT node is presented in Fig. 
3. It includes a FIFO, a statistics stream generator and a
communication interface. The FIFO is required as the packet
receive rate from the regular nodes and the byte stream send
rate to the computer can differ; the statistics stream generator
is responsible for converting the 36-bit statistics packets
from the NoC to an 8-bit byte streams for uploading to the
PC. The communication interface can be UART, SPI2USB
or Ethernet. The UART is a light weight communication
protocol which does not introduce much area overhead;
SPI2USB was implemented in [20] which has a high speed
rate but requires a microcontroller as a converter; Ethernet is
the highest speed protocol however it requires a soft core
processor on the FPGA due to its complex protocol,
therefore it has large area overhead [15]. However, these
three connection protocols can be selected based on the
requirement of application. In this paper, the light weight
UART protocol is used.

Fig. 2.  The work flow of regular node in the NoC 

Fig. 3.  The statistics node structure 

The STAT node and computer communicate with each 
other based on a communication protocol which is illustrated 



in Fig. 4. The communication begins with 0x42; the next 
byte is the type of statistical data which is consistent with 
Fig. 1 (b), e.g. the value of 2 represents the number of 
packets PE has transmitted; the third byte is the STAT node 
address; the fourth byte is the source node address which 
sent the statistics packets; the next two bytes of Data (byte 1 
and 2) correspond to the payload of statistics packets; and the 
final byte is 0x4C. The software hosted on the computer can 
analyse the NoC traffic events and provide a quantitative 
result on system performance. 

Fig. 4.  Data exchange format between STAT node and computer 

IV. NOC SYSTEM PERFORMANCE ANALYSIS SOFTWARE

Performance analysis software for the NoC system was
investigated for the host PC. It provides several functions in 
quantitatively evaluating NoC performance including 
throughput, the number of lost/corrupted packets calculation 
and the heat map generation of NoC traffic. In particular, the 
software highlights where faults have been detected and the 
number of lost packets as a result. This enables design 
exploration and evaluation of adaptive NoC routing 
algorithms when faults occur.  

A. Traffic heat map generation
The traffic heat map feature of the software enables

researcher to quickly identify busy (hot-spot) nodes, 
congested and faulty channels. The clear view of the heat 
map helps designers in optimising the mapping of 
application tasks to the different PEs, and also designing 
more efficient routing algorithms etc. to enhance the fault-
tolerant capability of the NoC. 

Firstly in the software, the physical parameters of routers 
and channels need to be identified as part of the visualisation 
parameters of the data on the NoC. Each node consists of 
one router and 4 input channels. The size parameters of the 
routers and channels are defined in Fig. 5 - the width of a 
router is �� , the height of router is �� ; the width of a 
channel is �� , the length of channel is �� ; the margin 
between the channel and router top edge is � , the distance 
between the input and output channel is �! and the margin 
between the output channel and router bottom edge is �". 

To plot the router and channels in map, the start point of 

every router and channel should be identified. The physical 
position is defined by (1), assume that: one node (i, j) in a #$�% � #$�&  NoC system, �'(� )(
 is the start point of the 
traffic heat map in the x/y-axis. R(i, j) is the start point of 
router (i, j) and N/E/S/WIC(i, j) is the start point of the 
Northern/E/S/W input channel of router (i, j). Based on the 
size parameters in Fig. 5 and coordinates in (1), any size of 
NoC system can be visualised successfully. 
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Fig. 5.  The size parameters of components in the NoC system 

Secondly, a colour filled scheme for the channel is 
employed to generate the heat effects in the map. The darker 
the colour of a channel, the heavier the traffic is. The colour 
is presented in the RGB data format, for example, if RGB = 
(0, 0, 0), the colour is black. The colours between red and 
yellow are used to present the traffic load in this approach. If 
the channel is red, the traffic is heavy and if yellow, the 
traffic is light. For the colour between red and yellow, the R 
and B values can be set to 237 and 47; only the Green value 
needs to be changed. Therefore, the �*+ � ����� *� ��
 
where G is the only value needs to be set and � , * , ���. 
If G= 0, the colour is red; if G= 255, the colour is yellow. 
The NoC router sends one packet per clock cycle (a packet 
only contains one flit in this approach – as defined by the 
example SNN application [13] used in this study). For a 
given window time of N clock cycles, the maximum number 
of packets that can be sent or received is equal to N. Assume 
that the number of traffic events in Fig. 4 is �-.-/01, the G 
value can be calculated by (2). For example, if the window 
time is N=300 clock cycles and the number of events is �-.-/01 � ���, then G=34 (by (2)) and RGB (237, 34, 47) 
will be used to fill the channel colour. This colour is close to 
red which means the traffic is heavy. In addition, the M bit of 
payload, shown in Fig. 1 (b), is used to indicate the status of 
a channel. If it is ‘0’, the channel is fault-free. However, If it 
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is ‘1’, the channel is faulty and the RGB is set to (0,0,0), i.e. 
the colour black. 

* � ��� � �
 < �-.-/01; 
 (2) 

The router uses the distributed adaptive routing algorithm 
[8], [13]. Every port (N/E/S/W and local) can send and 
receives packets at the same time. The colour filled scheme 
is applied to the input and output directions of all the ports. 
Based on the coordinates definition and colour filled scheme, 
a traffic heat map is generated. The heat map shows the 
overall traffic status in a visualized manner and enables 
behaviour analysis of routing algorithm when faults occur. 

B. Throughput calculation
Each NoC router has four ports to connect neighbouring

nodes and a local port to connect the PE. The router works 
on a clock frequency of 100MHz and the channel width is 
36-bit, therefore the maximum throughput for a single port is 
3.6Gbps [13]. For a given window time of N clock cycles, 
the router throughput, T, can be calculated by (3), where A� � �B 	 �C 	 �1 	 �� 	 �D , i.e. the number of 
received packets through North/E/S/W/Local ports, EF is the 
clock frequency. The throughput of each node is visualised 
in a 3D column-format so clarity across the 2-D mesh. 

G � A� H ��; H EF (3) 

Average throughput is also used to reflect the system 
performance. It is defined by (4), where the GI.J  is the 
average throughput of the system and G�6� 7
  is the 
throughput of router (i,j). 

GI.J �K K G�6� 7
LMNO
PQ�

LMNR
SQ� T�#$�% � #$�&
 (4) 

C. The number of loss/corrupted packets calculation
The symbols of �BTCTUTVTD  and ?BTCTUTVTD  are defined

as the number of received(R)/sent(S) packets through 
North/E/S/W/Local port. The total number of faults 
experienced in the NoC is reflected by the number of packets 
which are lost in communication due to the fault, e.g. a fault 
in a channel etc. We calculate the impact, F, from the faults 

on packet transmission, using (5). F is equal to the total 
number of packets a router receives on the N/E/S/W/L ports, 
minus the total number of packet the router has sent. For a 
fault-free router, the number of total received packets is 
equal to the number of packets sent. For a faulty router the 
total number of transmitted and received packets will vary. W � ��B 	 �C 	 �U 	 �V 	 �D
 < �?B 	 ?C 	 ?U 	 ?V 	 ?D
 (5) 

Stuck-at and crosstalk faults are employed in this paper 
as they are the most common faults in the NoC (the detailed 
fault models can be found in the authors’ previous work [8]). 
When a packet is forwarded to a faulty channel with stuck-at 
fault, it will be corrupted. However, if the packet is 
forwarded to a faulty channel with crosstalk fault, it has a 
~90% possibility of being corrupted and ~10% possibility of 
being lost (e.g. due to being overwritten inside the buffer, 
corrupted channels, soft errors) based on the study performed 
in [21]. Lost packets never reach their destination while 
corrupted packets do however the integrity of the packet 
payload is no longer guaranteed. Therefore, the number of 
lost (XY) and corrupted packets (�Y) can be calculated by (6). 
The fault model can be selected in the software interface to 
allow performance evaluation under different fault 
conditions. 

XY � Z �� [\]^_ < `\9E`]a\�b
 � W� ^cd[[\`a_9E`]a\ 
�Y � Z W� [\]^_ < `\9E`]a\�be � W� ^cd[[\`a_9E`]a\ 

(6) 

The traffic heat map, throughput and the number of 
lost/corrupted packets provides efficient metrics to analyse 
the fault-tolerant capability of a NoC system. The current 
version of the tool supports mesh and torus topologies 
however other topologies can be supported via minimal 
modification. An example is given in the next section to 
illustrate how the physical hardware monitoring mechanism 
provides data to the software for analysis. 

V. A CASE STUDY AND EVALUATION

This section presents an example case study using the 
proposed monitoring mechanism. Fig. 6 shows the monitor 

Fig. 6.  Monitor software interface 



software interface which runs on a host PC
to provide quantitative analysis of the NoC p
evaluate the NoC routing policy under real
fault conditions. The software provides 
including 1). a control panel where the NoC
running time are defined; 2). a traffic hea
generated according to the NoC traff
throughput calculation and 3D display of thr
the number of lost/corrupted packets calcula
impact from faults in the NoC. Note faults 
the NoC channels using fault injectors [8], 
facilitated via the software interface. In th
UART is employed as it has a small area ove

In this paper a case study on an 8x8 
system of 2D-mesh topology was implemen
DE4 development board (Stratix EP4
FPGA). Each router implements a fault-tole
algorithm [8] developed by the authors. At 

TABLE I. THE TRAFFIC PATTERNS OF BENC

# Traffic patterns
(a) (8,*)->(*,8)
(b) (8,*)->(*,8), varied P
(c) (6,2)->(2,6), (3,2)->(2

(d) (6,2)->(2,6),  
WC(6,2) is faulty 

(e) (6,2)->(2,6), 
WC(6,2), WC(5,3~6) are

(f) (6,2)->(2,6), 
NC&SC(3~4,2), WC(3,2) a

Fig. 7.  Traffic heat map of different traffic pa

C. Its main role is 
performance, e.g. 
l-time traffic and
several facilities 

C system size and 
at map which is 
fic; 3). average 
roughput, and 4). 

ation to define the 
are injected into 
[22] and are not 

his approach, the 
erhead.  
(64 cores) NoC 

nted in the Altera 
4SGX530KH4C2 
erant NoC routing 

the local port of 

each router, a PE is attached whic
generator. The packets generator
according to the packet layout show
controls the number of packets issue
traffic patterns listed in Table I we
the monitoring mechanism in this 
patterns were chosen as they can e
congestion-avoid and fault-tolerance
6 traffic scenarios were injected int
executed in real-time and the resulta
to the software for analysis. Traff
transpose traffic where node (8,i)f g h
��i; (b) presents a different va
(PIR) of 20 and 1 respectively (i.e. t
20 and 1 clock cycles); (c) present a
(6,2) and (3,2) send packets to (2,6) 
congestion will occur in the western
(3,2); (d) presents a traffic patte
channel. Node (6,2) sends packets to
faulty; (e) presents a traffic patte
channels. The source/destination no
However, the WCs of (6,2), (5,3), (5
and (f) presents a clustered fault
output channel (NC) and southern
(3,2) and (4,2) are faulty. The WC
Note that 1). The PIR is 1 for all t
traffic pattern (b), which means th
one clock cycle; 2). These traffic
illustrate the proposed mechanism

CHMARKING

PIR 
2,3) 

e faulty 

are faulty 

atterns Fig. 8.  The throughput of NoC routers displa

80
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5 6 7 8

D
IM

y

Th
ro

ug
hp

ut
 [G

bp
s]

DIMx (a)

0
0.5

1
1.5

2
2.5

3
3.5

1

Th
ro

ug
hp

ut
 [G

bp
s]

80
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8

D
IM

y

Th
ro

ug
hp

ut
 [G

bp
s]

DIMx (c)

0
0.5

1
1.5

2
2.5

3
3.5

1

Th
ro

ug
hp

ut
 [G

bp
s]

80
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5 6 7 8

D
IM

y

Th
ro

ug
hp

ut
 [G

bp
s]

DIMx (e)

0
0.5

1
1.5

2
2.5

3
3.5

1

Th
ro

ug
hp

ut
 [G

bp
s]

ch encompasses a packet 
r generates the packets 
wn in the Fig. 1 (b) and 
ed to the local router. Six 
ere employed to evaluate 
case study. These traffic 

evaluate the capability of 
e of the NoC system. All 
o the NoC on the FPGA, 
ant statistics data transfer 
fic pattern (a) presents a 
) sends packets to (i,8), 
aried packet injection rate 
the packets are sent every 
a congested traffic where 
and (2,3) respectively. A 

n output channel (WC) of 
ern with a single faulty 
o (2,6) and WC of (6,2) is
ern with multiple faulty 
odes are the same as (d). 
5,4), (5,5), (5,6) are faulty 
ty region. The northern 

n output channel (SC) of 
C of (3,2) is also faulty. 
he traffic patterns except 

he packets are sent every 
c patterns are chosen to 
m clearly however the 

ayed in 3-D column

8

2 3 4 5 6 7 8

D
IM

y

DIMx (b)

8

2 3 4 5 6 7 8

D
IM

y

DIMx (d)

8

2 3 4 5 6 7 8

D
IM

y

DIMx (f)



performance analysis of more complex traffic patterns can be 
found via the open source website, see the section conclusion 
and 3). The traffic patterns in Table I can be used to evaluate 
the system behaviours under different traffic scenarios, such 
as different packets injection rate, idle and congestion, fault-
free and faulty, distributed and clustered faulty channel 
distribution. The traffic patterns are generated by traffic 
generators which are attached to the NoC on the FPGA; 
therefore new traffic scenario can be added to the NoC using 
modified traffic generators.  

When the data is presented to the software from the 
hardware monitor, the traffic heat map structure, shown in 
Fig. 7, is generated to enable visual analysis of the system 
performance. It can be seen that in the traffic pattern (a) node 
(8,i) sends packets to (i,8) where f g h
��i . The shape of 
communication paths are at right angles. The packets are 
forwarded along the x-dimension first and then y-dimension 
as the routing algorithm [8] follows the XY routing policy if 
there is no congestion or faults are not detected; (b) the 
channel colour is varied as the PIR varies in rate. For 
example, the colour of communication path from (8,2) to 
(2,8) is lighter than from (8,1) to (1,8) as the former PIR is 
20 and the latter PIR is 1; (c) a congestion occurs in the 
western output channel of node (3,2) as (3,2) and (6,2) both 
forward the packets to the west port. The NoC routing 
algorithm [8] distributes traffic to the south port to relax the 
congestion instead of waiting at the west port; (d) it forwards 
the packets to the south port of node (6,2) as the WC is 
faulty; (e) the algorithm [8] forwards the packets to the fault-
free port in the system with distributed faulty channels and 
the packets are delivered to the destination eventually, and 
(f) the packets are forwarded to a dead-end as routing
algorithm [8] under evaluation does not have global traffic
statuses of the nodes (e.g. >3 hops away). Based on the
traffic heat map, the reliability of the NoC system can be
analysed in a visualized manner, e.g. the congestion-avoid
capability in the traffic pattern (c) and the fault tolerant
capability in (d)-(f) can be viewed. This enables first order
analysis of the effectiveness of the adaptive routing
algorithm or any NoC routing policy to be evaluated under
real-time traffic and fault conditions.

The throughput of each traffic pattern is presented in Fig. 
8 and show the 3D column-format display. The 3D 
throughput display is used to alow the throughput of every 
node to be viewed and also provides a throughput 
distribution of the entire NoC system. The x/y-axis values 
are the router ID in the x/y dimension and the z-axis 
corresponds to the throughput of the router. It can be seen 
that for the traffic pattern – (a) each router has the same 
throughput as all the routers receive the same amount of 
packets. The node (8,8) does not send packets to itself, 
therefore the throughput of router (8,8) is zero; (b) two kinds 
of throughput are presented as the PIR is varied; (c) the 
throughput of router (2,3) and (3,2) are higher than others 
because they are the hotspots and lots of traffic pass through 
them, and in (d)~(f) the throughput of each node are present. 
Every node in the communication path has the same 
throughput. The throughput diagram provides several 
benefits, e.g. the throughput of each router can be obtained, 

the traffic of routers can be compared and analysed 
especially for the congested and faulty scenarios. It also 
provides real-time data on the entire NoC system 
performance and thereby aids system design in evaluating 
routing algorithm design and application mapping. 

Average throughput GI.J�  under traffic patterns (a)~(f) 
are presented in Table II. The data in the table illustrates that 
(1). the traffic pattern (a-c) have a high average throughput 
as they have more communicating nodes compared to other 
traffic patterns; (2). the average throughput of (e) is greater 
than (d) for the same source/destination node as the total 
throughput sum of (e) is greater than (d) and (3). for traffic 
pattern (f), the number of lost/corrupted packets is 25/230, 
0/255 for crosstalk and stuck-at fault models, respectively. 
This outcome is expected as the example algorithm [8] does 
not have access to the global traffic status of nodes. From the 
traffic heat map and the throughput values presented in Fig. 
7, Fig. 8 and Table II, it can be seen that the impact from 
clustered faults results in packets being forwarded to a faulty 
channel where they are either lost or the payload is 
corrupted and further forwarded to incorrect destination 
routers. Therefore, we can see under such fault conditions 
that the average throughput is low. The proposed monitoring 
mechanism and software interface enables the analysis of 
such fault scanerios in assessing the fault tolerant capabilities 
and effectiveness of routing policy in the NoC. 

TABLE II.  THE AVERAGE THROUGHPUT, THE NUMBER OF 
LOST/CORRUPTED PACKETS 

Traffic jklm  
[Gbps] 

Stuck-at Crosstalk XY �Y XY �Y 
(a) 3.012 0 0 0 0 
(b) 1.979 0 0 0 0 
(c) 0.573 0 0 0 0 
(d) 0.430 0 0 0 0 
(e) 0.526 0 0 0 0 
(f) 0.191 0 255 25 230 

For the example 8x8 2D-mesh NoC system, the area 
overhead of each component is presented in Table III based 
on an Altera FPGA device and Quartus II software. The 
hardware monitor probe only occupies 87 LC Combinational 
(LCCs) and 125 LC Registers (LCRs). The STAT node 
occupies 146 LCCs and 184 LCRs. The entire NoC system 
only needs one STAT node which is connected to a router. 
The two area overheads are used to evaluate the compactness 
of the monitoring mechanism – one is the probe area 
overhead of a single router ( nY ) and the other is the 
monitoring mechanism area overhead of the entire NoC 
system (n!). Therefore, the area overhead of nY9is 11.27% 
(87/772=11.27%) for LCCs and 13.27% for LCRs; n!  is 
5.93% ((87*DIMx*DIMy+772+146)/109,451= 5.93%, 
where DIMx=8, DIMy=8) for LCCs and 6.01% for LCRs, 
i.e. nY is ~12.27% and n! is ~5.97% (right of Table III). To
benchmark the monitor mechanism we can compare area
overhead against an existing state of the art approach [18].
For example, the area overheads of [18] (using 4
multipurpose probes) are nY � ��o , n! � �
o . This
demonstrates that [18] has a large area overhead as its
architecture dictates that four type event detectors are
included. The area overhead of our approach is relatively low



and it has the added advantage of monitoring fault tolerance 
capabilities and providing analysis. The low area overhead of 
monitors and analysis of fault tolerance capabilities are very 
beneficial for evaluating large-scale NoC in the era of 
reliable systems. 

TABLE III.  THE AREA OVERHEAD OF MONITORING MECHANISM 
Component LCCs LCRs Approach pq (%) pr(%)

Monitor probe 87 125 [18] 55 31 NoC Router [8] 772 942 
STAT node 146 184 This paper 12 6 8x8 2D-mesh NoC 109,451 151,853 

VI. CONCLUSION

A monitoring mechanism was proposed in this paper and 
the novelty lies in exploiting the monitor probe to detect the 
events in the NoC router and employing the STAT node to 
transmit the statistics data to computer. In addition, the key 
aspect of the proposed approach is the quantitative analysis 
of fault tolerant capability and the traffic heat map 
generation to reflect the hardware adaption capability 
visually for the NoC system. Some metrics are provided by 
the monitor software to evaluate the NoC system 
performance, such as throughput, traffic heat map and the 
number of lost/corrupted packets. An 8x8 (64 cores) NoC 
system with a fault tolerant routing algorithm was evaluated 
for the case study. The results showed that the monitoring 
mechanism can evaluate the system performance 
successfully, especially the routing policy analysis. 
Moreover, the area overhead of the monitoring components 
in the NoC is low, only ~6% which does not prohibit NoC 
scalability. The monitoring software (Open Source) can be 
found at http://isrc.ulster.ac.uk/jliu/research.html. It can 
easily be used for other NoC platforms as long as the data 
exchange format between the NoC and computer are 
consistent. Future work aims to add more functions to the 
monitor software and to decrease the area overhead of 
monitoring components further. 

ACKNOWLEDGMENT 
Junxiu Liu is supported by the University of Ulster’s Vice-
Chancellor’s Research Scholarship. This research is also 
supported in part by Spanish grant (with support from the 
European Regional Development Fund) BIOSENSE 
(TEC2012-37868-C04-02). 

REFERENCES 
[1] L. Benini and G. De Micheli, “Networks on chips: a new SoC

paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002. 
[2] S. Madduri, R. Vadlamani, W. Burleson, and R. Tessier, “A monitor

interconnect and support subsystem for multicore processors,” in
Design, Automation & Test in Europe, 2009, pp. 761–766. 

[3] M. Amin, M. Tagel, G. Jervan, and T. Hollstein, “Design
Methodology for Fault-Tolerant Heterogeneous MPSoC under Real-
Time Constraints,” in 7th International Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2012, pp. 1–6. 

[4] A. Agarwal, B. Raton, C. Iskander, et al., “Survey of Network on
Chip Architectures & Contributions,” Journal of Engineering,
Computing and Architecture, vol. 3, no. 1, pp. 1–15, 2009. 

[5] A. Das, A. Kumar, and B. Veeravalli, “Fault-tolerant Network
Interface for Spatial Division Multiplexing based Network-on-Chip,”

in 7th International Workshop on Reconfigurable and 
Communication-Centric Systems-on-Chip (ReCoSoC), 2012, pp. 1–8. 

[6] C. Grecu and A. Ivanov, “Testing Network-on-chip Communication
Fabrics,” IEEE Transactions on CAD of Integrated Circuits and
Systems, vol. 26, no. 12, pp. 2201–2214, 2007. 

[7] M. Hervé, P. Almeida, F. L. Kastensmidt, et al., “Concurrent Test of
Network-on-Chip Interconnects and Routers,” in 11th Latin American 
Test Workshop (LATW), 2010, pp. 1–6. 

[8] J. Liu, J. Harkin, Y. Li, and L. Maguire, “Online Traffic-Aware Fault
Detection for Networks-on-Chip,” Journal of Parallel and Distributed
Computing, vol. 74, no. 1, pp. 1984–1993, 2014. 

[9] P. Lotfi-Kamran, A. M. Rahmani, M. Daneshtalab, A. Afzali-Kusha,
and Z. Navabi, “EDXY - A low cost congestion-aware routing
algorithm for network-on-chips,” Journal of Systems Architecture,
vol. 56, no. 7, pp. 256–264, Jul. 2010. 

[10] A. Vitkovskiy, V. Soteriou, and C. Nicopoulos, “A Dynamically
Adjusting Gracefully Degrading Link-Level Fault-Tolerant
Mechanism for NoCs,” IEEE Transactions on CAD of Integrated
Circuits and Systems, vol. 31, no. 8, pp. 1235–1248, 2012. 

[11] C. Feng, Z. Lu, A. Jantsch, M. Zhang, and Z. Xing, “Addressing
Transient and Permanent Faults in NoC with Efficient Fault-Tolerant
Deflection Router,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 21, no. 6, pp. 1053–1066, Jun. 2013. 

[12] A. Ben Ahmed and A. Ben Abdallah, “Graceful Deadlock-free Fault-
tolerant Routing Algorithm for 3D Network-on-Chip Architectures,”
Journal of Parallel and Distributed Computing, vol. 74, no. 4, pp.
2229–2240, Jan. 2014. 

[13] S. Carrillo, J. Harkin, L. McDaid, et al., “Advancing Interconnect
Density for Spiking Neural Network Hardware Implementations
using Traffic-aware Adaptive Network-on-Chip Routers,” Neural
Networks, vol. 33, no. 9, pp. 42–57, Sep. 2012. 

[14] S. Carrillo, J. Harkin, L. J. McDaid, et al., “Scalable Hierarchical
Network-on-Chip Architecture for Spiking Neural Network Hardware
Implementations,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 12, pp. 2451–2461, 2013. 

[15] A. Alhonen, E. Salminen, J. Nieminen, and T. D. Hämäläinen, “A
Scalable, Non-Interfering, Synthesizable Network-on-Chip Monitor,”
in NORCHIP, 2010, pp. 1–6. 

[16] O. Hammami, X. Li, and J.-M. Brault, “NOCEVE : Network On
Chip Emulation and Verification Environment,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE),
2012, pp. 163–164. 

[17] A. Ben Ahmed, T. Ochi, S. Miura, and A. Ben Abdallah, “Run-Time
Monitoring Mechanism for Efficient Design of Application-Specific
NoC Architectures in Multi/Manycore Era,” in 7th International
Conference on Complex, Intelligent, and Software Intensive Systems,
2013, pp. 440–445. 

[18] L. Fiorin, G. Palermo, and C. Silvano, “A Configurable Monitoring
Infrastructure for NoC-Based Architectures,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, pp. 1–5, 2013.

[19] J. Harkin, F. Morgan, S. Hall, et al., “Emulating Biologically Inspired
Architectures in Hardware: A New Reconfigurable Paradigm for
Computation,” in Reconfigurable Communication-Centric Systems-
on-Chip Workshop, 2008, pp. 10–19. 

[20] A. Jimenez-Fernandez, G. Jimenez-Moreno, A. Linares-Barranco, et.
al, “A Neuro-Inspired Spike-Based PID Motor Controller for Multi-
Motor Robots with Low Cost FPGAs,” Sensors, 12(4), pp.3831-3856,
Jan. 2012. 

[21] F. A. Pereira, L. Carro, E. Cota, and F. L. Kastensmidt, “Evaluating
SEU and Crosstalk Effects in Network-on-Chip Routers,” in 12th
IEEE International On-Line Testing Symposium, 2006, pp. 191–192. 

[22] M. Birner and T. Handl, “ARROW - A Generic Hardware Fault
Injection Tool for NoCs,” 12th Euromicro Conference on Digital
System Design, Architectures, Methods and Tools, pp. 465–472, Aug.
2009.


