
A Benes̆ Based NoC Switching Architecture for
Mixed Criticality Embedded Systems

Steve Kerrison, David May and Kerstin Eder
University of Bristol, Department of Computer Science

Merchant Venturers Building, Woodland Road
Bristol, BS8 1UB, United Kingdom.

Email: {firstname.lastname}@bristol.ac.uk

Abstract—Multi-core, Mixed Criticality Embedded (MCE)
real-time systems require high timing precision and predictability
to guarantee there will be no interference between tasks. These
guarantees are necessary in application areas such as avionics and
automotive, where task interference or missed deadlines could
be catastrophic, and safety requirements are strict. In modern
multi-core systems, the interconnect becomes a potential point of
uncertainty, introducing major challenges in proving behaviour
is always within specified constraints, limiting the means of
growing system performance to add more tasks, or provide more
computational resources to existing tasks.

We present MCENoC, a Network-on-Chip (NoC) switching
architecture that provides innovations to overcome this with
predictable, formally verifiable timing behaviour that is con-
sistent across the whole NoC. We show how the fundamental
properties of Benes̆ networks benefit MCE applications and meet
our architecture requirements. Using SystemVerilog Assertions
(SVA), formal properties are defined that aid the refinement of
the specification of the design as well as enabling the imple-
mentation to be exhaustively formally verified. We demonstrate
the performance of the design in terms of size, throughput and
predictability, and discuss the application level considerations
needed to exploit this architecture.

I. INTRODUCTION

Real-time embedded systems perform a broad range of
processing tasks, many of which must take place within hard
deadlines in order to avoid loss of functionality or risks to
safety. Modern embedded systems are prolific in many safety-
critical areas, including automotive, industrial and avionics.
Alongside safety, these sectors must deliver increasingly so-
phisticated features, such as visual processing and automation,
requiring increases in computational capabilities and task
count, without compromising safety.

This feature growth has necessitated multi-core solutions
in-line with processor scaling trends [1]. However, the need
to preserve hard-real time and safety requirements in critical
tasks creates a unique problem set that must be handled at all
levels, from architecture, through the software development
process and up to certification. This is further confounded in
large systems, where tasks with differing levels of criticality
must co-exist [2].

This paper addresses the interconnect challenges of multi-
core, MCE systems. We propose a NoC architecture that is
designed to be both highly predictable in its routing and timing
behaviour, as well as formally verifiable. In doing so, the
architecture provides strong behavioural guarantees that allow

mixed-criticality tasks to be scheduled into a multi-core sys-
tem. This aligns with efforts to provide determinism at higher
levels, such as Time Triggered Ethernet [3] for distributed
systems. We show that, despite aggressive timing precision
requirements, the architecture is scalable and continues to be
verifiable due to the simple structures from which it is built.
The main contributions of this work are:

• Specification of a NoC that meets multi-core MCE needs.
• A novel, non-blocking and timing-predictable implemen-

tation addressing these requirements.
• Demonstration of scaling properties and performance.
• Formal verification to prove correct behaviour.
This paper is structured as follows. In Section II we discuss

related work. Section III defines the requirements for the
switching architecture. The implementation is explained in
Section IV, then its performance evaluated in Section V.
Software-level scheduling considerations are discussed in Sec-
tion VI. Formal verification is presented in Section VII,
including proof scaling results. Finally, Section VIII states our
conclusions and proposes future work.

II. RELATED WORK

Addressing mixed-criticality multi-core communication
builds upon several areas of research: multi-core systems;
mixed criticality hardware and software along with its cer-
tification challenges; and network architectures, in particular
NoC, to facilitate communication between large numbers of
nodes in a single device.

A. Multi-core MCE systems

Traditional multi-tasking requires time-slicing of tasks onto
a single processor. However, as processor operating frequen-
cies tend to no longer increase, further performance is now
more readily achieved through the addition of more proces-
sors [1]. The exchange of data between tasks is typically
achieved using a shared-memory model, where locations in
memory are accessed by multiple tasks. Alternatively, message
passing may be used, adopting a model such as CSP-style
communication. In either case, the movement of data between
processing elements and memory has increasing complexity to
ensure high performance and data consistency, although there
are claims that this can continue to scale [4].

ar
X

iv
:1

60
6.

08
68

6v
1

 [
cs

.A
R

]
 2

8
Ju

n
20

16

In a critical systems context, it is insufficient to provide
increased performance through multi-core. Predictability must
be preserved along with other protective measures to ensure
deadlines are met and tasks do not interfere. For example,
adding a task to an otherwise unused core in a system may
not intuitively affect other tasks, but its network and memory
access patterns may in fact do so. To guarantee safety, it
must therefore be proven that this is not the case. Minimizing
the effort required to do this, by ensuring the underlying
architecture can provide the necessary behavioural guarantees,
is then clearly desirable.

B. Mixed criticality hardware and software

A critical task has some function that either cannot be
interrupted or has a hard deadline to maintain. In a less critical
task, interruption to service or a deadline miss may be less
important. For example, in an automotive context, the braking
system must respond to any sensor reading that indicates a
loss of traction under braking. If the response is delayed, or
sensor data missed, safety of the vehicle may be negatively
affected. However, an in-car entertainment system can tolerate
occasionally dropped or corrupted video frames, to within
some defined Quality-of-Service (QoS), and safety may be
less of a concern.

Despite the clear differences in criticality in the above
examples, there may be some interaction between the tasks, as
the entertainment system may be integrated with the driver’s
controls and visual feedback. Therefore, these activities are
not necessarily completely isolated, but the most critical task
must clearly not be negatively affected by behaviour of the less
critical one. This presents a challenge in meeting certification
requirements, of which there may be several, whilst ensuring
that resource allocation and scheduling allows all tasks to
operate correctly in the broadest set of conditions [5].

Hardware must support mixed-criticality, first by providing
sufficient resources that guarantee hard real-time behaviour. In
this case, predictable timing is essential. Real-time processors
often sacrifice performance enhancements such as cache-
hierarchies in order to deliver such predictability. Secondly,
hardware must prevent tasks from interfering with each other,
for example by writing to incorrect memory regions or by
creating resource starvation.

The software must be suitably predictable to ensure that un-
derlying hardware guarantees can be provably exploited. Worst
Case Execution Time (WCET) [6] analysis may be performed
on a task to ensure that it completes within a desired deadline.
In a system of tasks, scheduling must take place, either online
or offline. Multi-core MCE systems pose additional problems
over single-core solutions. In a shared memory system, there
may be contention for access to the memory hierarchy or
other interconnects [2]. These may reduce predictability and
require more complex scheduling efforts or over-provisioning
of resources to guarantee safe behaviour. This exposes a
need to provide more predictability within the interconnect,
to tighten these bounds, aiding analysis and certification.

C. NoC architectures

A Network-on-Chip (NoC) is a collection of resources
on a single chip, typically including processing elements
(cores), memory elements (caches, DRAMs) and peripheral
components (external interfaces, timers, etc). These are all
interconnected by one or more networks, departing from
traditional bus architectures in favour of a more scalable,
routed arrangement. The intent of NoC is to deliver a chip with
processing elements numbering in the tens, hundreds or more,
thus achieving continued performance growth through many-
core scaling. In a multi-core MCE context, NoC is therefore
highly desirable in emerging chip designs, but one that must
meet the constraints outlined earlier in this section.

A variety of NoC topologies exist. Common approaches
include mesh structures, rings and higher-dimension exten-
sions of these. The Xeon Phi [7] uses a ring network to
connect its 63 processing elements together along with tag
caches and memory controllers. Progress into multi-layer 3D
stacked processors [8] is extending NoC requirements into
three physical dimensions.

Multiple mesh networks can be used to handle the dif-
ferent traffic patterns and access requirements, for example
physically separating network memory accesses, core-to-core
exchange and peripheral communication. Such approaches
are seen in the five-network TILE64 [9] and three-network
Adapteva Epiphany [10]. Alternatively, the network may be
segmented through Time-Division Multiplexing (TDM), such
as in the picoChip [11] processor, where bandwidth is guar-
anteed at pre-defined times, but may be over-provisioned.

Due to the size of NoC systems, congestion handling and
fault tolerance must also be considered. Groups of cores may
have more active communication, and thus benefit from using
additional nearby routes. Failures may require message re-
transmission [12], re-routing, or be mitigated through redun-
dant hardware [13]. Dynamic mechanisms for routing, partic-
ularly unconstrained or non-deterministic, can be undesirable
in a critical systems context because they reduce the certainty
of timing in message delivery. Further, any network where
messages may be blocked by other messages can dramatically
increase the upper bound for communication time, resulting in
an infeasible system specification or conditions that are unsafe
for critical tasks.

D. Clos and Benes̆ networks

Large scale interconnectivity has previously been addressed
in telecommunications, where circuits must be formed between
telephone endpoints, focused through potentially several tele-
phone exchanges locally, nationally or internationally. It was
required to develop interconnects that did not place infeasible
wiring overheads or switch complexity upon the exchanges.
Clos [14] described a multi-stage network of smaller crossbar
switches, layered in order to provide N : N connectivity with
lower wiring complexity than a monolithic solution. Timing
changes or re-routing artefacts such as clicking are easily de-
tected by the human ear, hence such networks must minimize

1

2

3

4

1

2

3

4

5

1

2

(a) Clos

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(b) Benes̆

Fig. 1. Example of eight-port Clos and Benes̆ network structures with
equivalent sections highlighted.

or completely remove such occurrences. This strictness bears
many similarities to the requirements of modern MCE systems.

Figure 1a depicts a Clos topology. It comprises three
switching stages where the degree of the switches different
at each stage. A Benes̆ [15] network refines the Clos concept
into a topology of 2x2 switching elements. It retains the same
properties, but is constructed from the smallest possible switch
size, shown in Fig. 1b. Any larger switch in a Clos or Benes̆
network can be realised using sub-networks of Benes̆ switches.

For our Mixed Critcality Embedded Network-on-Chip
(MCENoC), particular properties provided by these networks
are desirable for several reasons:

1) The number of routing stages for any communication is
consistent.

2) It is proven that any N : N permutation of two-party
communications is always routable in Benes̆ structures
[15], [16].

3) The number of stages and switching elements used scales
logarithmically with the number of nodes.

4) The switching elements can be built upon simple cross-
bars, which are straightforward to create in VLSI [17]
and are then replicated many times.

Many variations on these networks exist, as well as strate-
gies for routing on them [16]. However, we focus on preserv-
ing predictability, whilst keeping the core design simple and
scalable, therefore the MCENoC design choices reflect this.

III. REQUIREMENTS

In this section we define high-level requirements for the
MCENoC design. These are refined into a specification that
guides the implementation. Both the specification and im-
plementation are subjected to scrutiny through the formal
verification process detailed in Section VII.

The aim of this work is to provide a communication
architecture that enables real-time embedded software to have
precise behavioural guarantees in a multi-core context. With
this, the behaviour of the entire system can be reasoned
about statically, thus allowing verification and certification of
applications using the system. To focus this effort, several
requirements are specified.

All nodes in the network can be considered equidistant:
Predictability is simplified significantly when communication

N x N

network

r st
c l k

Input Output

cl m[0]
act [0]

er r [0]
ack[0]

dat [0]

...

c l m[N- 1]
act [N- 1]

er r [N- 1]
ack[N- 1]

dat [N- 1]

c l m[0]
act [0]

er r [0]
ack[0]

dat [0]

...

c l m[N- 1]
act [N- 1]

er r [N- 1]
ack[N- 1]

dat [N- 1]

Fig. 2. Top-level signalling of the design, valid as a per-switch or whole-
network abstraction.

between nodes is a uniform distance, as placement of compu-
tation and data is less constrained.

Latency through the network is tightly bounded: Both
worst- and best-cases should be known to provide guarantees
of expected performance and satisfy task deadlines.

Communication between two nodes is non-blocking:
Refining the previous requirement, by removing blocking, the
flow of data through the network is simpler to model, analyse
and produce bounds for. Buffering and flow control may still
be present in network endpoints, however.

Invalid or erroneous communications cannot interfere
with more critical communications: Where multiple flows
exist within the network, those attached to critical tasks must
have priority in the network. Less critical tasks, which may
have less strict certification and verification requirements, must
not be able to steal routes required by higher criticality tasks,
and a failure condition should be asserted if this is attempted.

The switching architecture should scale into many cores:
The target is a design that can ultimately scale up to hundreds
of cores or more. Thus, the logic utilisation and internal
connectivity scaling should support this.

Routing decisions must be statically resolvable with min-
imal overhead at large scales: All online control should be
conducted in-band, without a central arbiter of other similar
global control mechanism. A large amount of uncertainty can
then be removed from the system’s communication profile.

IV. MCENOC ARCHITECTURE

The MCENoC architecture is constructed from a replicated
set of relatively simple switches, forming a Benes̆ network.
The edges of the network then provide an interface to nodes,
which can be processing elements, memory, or other periph-
erals. Interface bridging is expected to take place at he edge,
with certain system level protocol constraints imposed by the
network. The design is implemented in SystemVerilog 2009
and includes a number of SystemVerilog Assertion (SVA) [18]
properties for validation of the specification and verification
of the design. In this section we first address the switch
implementation, then the network construction, followed by
system level considerations.

A. Switching element

Each switching element is configurable to have 2p ports,
where p is the number of bits required to define a route

through the switch. A block-level diagram of signals is shown
in Fig. 2, with an arbitrary number of ports with signals
denoted as sig0 . . .sigN−1. Each port has both forward- and
backward-propagated signals, allowing the transfer of data,
flow control and error condition between network stages, as
well as permitting an idle state.

With no allocated ports, all outputs are set to their defaults
and there is scope for fine-grained clock gating. Allocation of
a port q is achieved by clocking in p configuration bits into
datq whilst asserting the clmq and actq . The configuration
bits specify the target port number, r. Following this, input
q is connected to output r and propagation of future signals
takes place, through a buffer of depth one.

1) Conflict identification and resolution: An output r can
only be successfully allocated if no other input port is already
using it. If the requested output port is not in an idle state, then
a conflict is present, where the port is either already claimed,
or multiple inputs are simultaneously attempting to claim it.
In the former case, errq is asserted until clmq is de-asserted,
after which a new attempt at routing can begin. In the latter
case, the input port with the lowest value of q obtains the
route, with all other claims being rejected.

2) Port states: The switch input ports each have four
possible states.
Wait: The input is not connected to any output and fewer than

p configuration bits have been provided.
Accept: The input is connected to the requested output and is

propagating data.
Reject: There were p configuration bits received, but a conflict

or protocol violation was observed and the port must
be unclaimed before attempting configuration again. No
output connection was made.

Abort: A previously accepted connection is being destroyed
due to an incoming error condition from the forward
switching stage.

If all input ports are in the wait state and no clm signals
are asserted, the switch can be considered idle and may be
clock-gated. Successful connections can be destroyed either
from the initiator, by de-asserting the relevant clm signal, or
from the destination, by asserting err.

B. Network construction

To determine the network construction for an N node
network, a switching element size, B, must be selected. If
raising B to a positive integer value (in the set of natural
numbers, N) yields N , then the number of stages is:

S = 2 logB(N)− 1, if ∃x ∈ N | Bx = N. (1)

Otherwise, any N = 2x port network, where B ≥ 2, has
a middle stage with m directional bits (2m ports per switch),
where 2m ≤ B, such that:

X = dlogB(N)e, (2a)
S = 2 logB(X)− 1, (2b)

m = log2(
N

BX−1). (2c)

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(a) Four- and two-port switches

1

2

3

4

1

2

3

4

5

6

7

8

1

2

3

4

(b) Eight-port switches

Fig. 3. Two 32-port networks using four- and two-port switches vs. eight-
and four-port switches.

For example, if the desired switch element size is four ports,
then a 32-port network will contain four 4-port stages and
a middle stage of twice as many 2-port switches, whereas
a 64-port network is simply five 2-port stages. Two 32-port
network examples are shown in Fig. 3. All network diagrams
are generated in TikZ that is emitted from SystemVerilog
during the initial phase of simulation, giving a direct
representation of the structure that is in use.

The connectivity of ports in the network, cin, of index i and
at each stage n is shown in Eq. (3). Due to the symmetry of
the network, it can be considered as two halves connected in
a similar progression, where n = 0 is the middle stage. The
ith port in the inner stage connects to the jth port in the next
stage, wrapped in accordance to the block size at that stage.
The block size, bn, is determined by the stage, n, where the
total number of connection stages, s, for half of the network,
is obtained using S. The connectivity formula accepts any
power-of-two size of switching element, B.

cjn+1 ←→cin, where : (3a)

j =
(
k + b k

bn
c
)
mod bn + o, (3b)

k = (i− o) ·B, o = b i
bn
· bnc, (3c)

bn = min
(
B2+s−(s−n), N

)
, s = S−1

2 . (3d)

The network can be considered folded horizontally, where
input port q and output port r belong to the same node.

The topology of the network guarantees that on an s stage
network requiring p routing bits, a route can be established
p + s cycles. Following this, an input can propagate through
the network in p cycles. In the case where a route conflict
occurs, the worst-case latency in the input receiving an err
signal is 2p + s, where the conflict occurs in the final stage
and the error must propagate back through all prior stages.

C. System implementation

There is redundancy present in the routing configuration due
to the in-band control that is used. If a two-port switching
element receives a route configuration on one input, the other
input could be implicitly routed to the other available output.
However, we choose to require the redundant configuration,
to make route setup time consistent across all inputs, as well

4 8 16 32
Total number of ports

0

400

800

1200

1600
S

lic
es

Switch size
1-bit
2-bit
3-bit

(a) Utilisation

4 8 16 32
Total number of ports

0

4000

8000

12000

16000

B
is

ec
t

B
W

(M
b

/s
)

Switch size
1-bit
2-bit
3-bit

(b) Network bandwidth

4 8 16 32
Total number of ports

0
5

10
15
20
25
30

M
b

/s
/s

lic
e Switch size

1-bit
2-bit

3-bit

(c) Efficiency

Fig. 4. Scaling behaviour of MCENoC when synthesized to FPGA target.

as to allow early identification of an erroneous route request.
If implicit routing was possible, an unexpected route will be
identified in at least 2s cycles, whereas with redundant route
configuration, it is at most 2p+ s cycles.

Although no blocking takes place within the network, it can
be imposed by the connected nodes. The cts signal signifies
that the source is clear to send, and is asserted by default
during route setup, allowing the route configuration bits to be
loaded into the network. Upon completing the route setup, cts
is then controlled by the destination node. If the destination
cannot receive more data, it must de-assert cts, and the source
must not transmit more data until it is re-asserted.

To accommodate transmission latency, the receiver should
have a buffer of at least 2s bits in size, and de-assert cts if
less than this is available. This prevents loss of data. If data
production and consumption rates can be determined statically,
as may be the case for certain tasks in a real-time context, then
it may be possible to ignore the flow control signals, as the
switching element behaviour is not affected by cts.

V. SCALING AND PERFORMANCE

In this section we illustrate the scaling properties of the
MCENoC, examine logic utilisation when various configura-
tions are synthesised to FPGA, and provide a comparison and
evaluation against other designs.

The current design can operate at up to 400MHz according
to the Xilinx Vivado timing reporting tools, with the worst-case
being 333MHz. The size of the switching element governs the
achievable clock speed, rather than the network size, although
a fully integrated system may have other effects upon timing.

The architecture’s performance and resource utilisation
scaling are shown in Fig. 4. The FPGA slice utilisation
(Fig. 4a) scales superlinearly, but to a manageable degree
for the network sizes testing. Bisection bandwidth (Fig. 4b)
scales linearly with the number of nodes, which is expected
given that the operating frequency is fixed for each switching
element size. Consolidating these two metrics into a measure
of efficiency — Mbit/s per slice, shown in Fig. 4c — indicates
that the two-bit switching element is marginally preferable
over others for the network sizes that were synthesised.

To reason about integration with computational IP, we con-
sider the Microblaze core. Its device utilisation is dependent
upon configuration, however an example small configuration
can use less than 800 slices1 in the Xilinx v7 architecture.

1Evident through public discussion: http://tinyurl.com/j35p7ld

This indicates that, conservatively speaking, a sixteen-core
Microblaze system and MCENoC network is possible on the
Kintex-7K160T that we are using as our current target, which
has 25 k-slices available.

The bisection bandwidth, B of the MCENoC can be cal-
culated through the simple equation Eq. (4), where w is the
bit-width of data transfer, f is the operating frequency and n
is the number of ports. The current design assumes each port
uses 1-bit serialised data. Therefore, at 364MHz (the operating
frequency of our 2-bit switch implementation), an eight-node
MCENoC provides a bisection bandwidth of 2.9Gbit/s. A 32-
node system achieves in excess of 11.6Gbit/s.

B = f × w × n bit/s. (4)

As an example comparison, the Epiphany E64G401 [10] has
102GB/s bisection bandwidth in an ASIC that features double
the node count, 8-bit data width and three separate networks
compared to our MCENoC example. On a per-node, per-bit-
width basis, the E64G401’s network achieves 199Mbit/s vs.
the 32-node MCENoC’s 725Mbit/s. More in-depth evaluation
would be better served by application-specific case studies.

VI. ROUTING AND SCHEDULING

It is proven in [15] that a route exists for any permutation
of 1 : 1 communication between all nodes in a Benes̆ network.
However, calculating the routes for a permutation without
global knowledge is non-trivial [16]. For the MCENoC, we
assume that for pre-defined tasks, routes are determined stat-
ically, thus online methods are not required. There are still
design decisions to make, in the form of switch size selection,
as well as scheduling strategies. This section investigates the
implications of the network design with respect to these issues.

A. Network equivalence

Routing algorithms such as [19] assume two-port switches
as per a traditional Benes̆ network, where our header-based
configuration requires one bit per switch. However, networks
with higher degree switching elements can be equivalent,
simply consuming a larger number of header bits. Figure 5
shows an example 8-port permutation in two network variants.
Taking a single route from this — connecting port 0 to port 1
— the header bits are 10001. In Fig. 5a, a single bit is used,
left to right, to configure each stage. In Fig. 5b, two bits are
used in the outer stages and a single bit in the middle stage,
interpreted as 10-0-01, giving the same connection.

http://tinyurl.com/j35p7ld

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(a) Two-port switching elements.

1

2

1

2

3

4

1

2

(b) Four-port and two-port elements.

Fig. 5. Route equivalence in two eight-node MCENoC implementations.

B. Scheduling

In a practical system, a single routing permutation will
be insufficient, as each node may have several other nodes
with which it needs to communicate. This can be resolved
through Time Division Multiplexing (TDM) of permutations.
We assume that the nodes are responsible for ensuring the
time divisions are adhered to, keeping the switching elements
and network control simple, but requiring tightly synchronised
timing between nodes. Such synchronisation is tractable due
to the predictable latency of the network allowing precise time
exchange between nodes. This can take place periodically, or
be embedded into each permutation.

A Benes̆ style network combined with TDM abstracts other
topologies well. For example, to emulate a 2D mesh, the
MCENoC network can be divided into four permutations, with
each permutation representing one of four directions. Adding
dimensions requires two additional permutations. A broadcast
from a single node can reach all other nodes in log2(n + 1)
permutations as the number of nodes that can forward the
message doubles with each permutation.

Applying TDM to the network increases the route calcula-
tion time linear to the number of permutations required. The
low overhead of the in-band route setup enables low latencies,
even between instances of a particular permutation where a
large number of permutations are used. The duration of each
permutation can be adjusted depending on the payloads that
need to be transmitted. An example performance profile of a
worst-case TDM schedule in which all nodes talk directly to
all other nodes is shown in Fig. 6.

This assumes N TDM phases are needed, are of equal
duration, and have a set efficiency achieve by sizing the
payload appropriately in relation to the route setup and tear-
down latency. Applying this conservative model gives a worst
case time between cycles of the TDM of 914 µs for 128
cores with 99% payload efficiency. In a 65 k-node system this
reaches 1.12 s. However, the time per message is 17.03 µs.
Therefore, with repetition of routes within the TDM cycle,
the latency between critical communications can be kept very
low.

The underlying switching architecture is sufficiently flexible
and predictable that scheduling even complex communication

100 101 102 103 104 105

Number of nodes

10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101

P
er

m
u

ta
ti

on
cy

cl
e

(s
)

Payload efficiency
99 % 0 %

Fig. 6. Time taken to cycle through N communications in an N-node network
at 364Mbit/s/port, considering a desired payload efficiency.

patterns is tractable. Low latency and predictability is favoured
over high bandwidth, although the network utilisation can
be kept close to 100% if the number of permutations and
arrangement of communications is carefully selected.

To avoid the need for all traffic to be statically scheduled, a
dynamic system can be used during pre-allocated slack phases
in the network. In [20], a resource controller grants network
time to requesting nodes, managing available slack in the
system’s mesh network. For strict and unimpeded control,
separate control and data networks can be used. A similar
approach can also be applied to the MCENoC, using TDM to
provide this separation.

VII. FORMAL VERIFICATION

Formal methods of verification [21] allow properties of a
design to be specified and proven exhaustively, covering all
parts of the design’s state-space that could be affected by that
particular property. This is achieved with the use of formal
verification tools (in the case of this paper, JasperGold), which
can prove or disprove these properties, providing counterex-
ample traces in the case of failure. This has benefits over
traditional, test-driven verification, in that it does not rely on
random or pre-defined test vectors to expose design flaws or
implementation faults.

Complete verification coverage requires that properties de-
scribe all aspects of the design. Further, the exhaustive nature
of formal verification means that complex properties and
behaviours can lead to infeasibly long proof times.

The construction of formal properties also serves as a
test of the specification, requiring it to be formalised in a
syntax more rigid than natural language. Thus, properties can
expose deficiencies in an implementation, the way in which
the specification is defined, as well as its interpretation.

In formal verification terminology, a property is a formal
description of the behaviour of a device over a period of time.
This is typically formulated as a sequence of preconditions,
which if met, a postcondition sequence must occur. If a
property is asserted, then a verification environment (formal or
simulation-based) will trigger a failure if the property is ever
found not to hold. If a property is assumed, then it constrains
the verification to consider only states where it holds true.

The MCENoC is designed with formal verification as the
intended verification method. Given that is is constructed

0 10 20 30 40 50 60 70
Total number of ports

0

100

200

300

400
N

u
m

.
sw

it
ch

es
Switch size

1-bit
2-bit
3-bit

(a) Num switches

2 4 8 16 32
Number of ports per switch

10−2
10−1

100
101
102
103
104

P
ro

of
ti

m
e

(s
)

(b) Core proof time

0 10 20 30 40 50 60 70
Total number of ports

0

100

200

300

400

P
ro

of
ti

m
e

(s
)

Switch size
1-bit
2-bit
3-bit

(c) Network proof time

Fig. 7. Performance and scaling of the MCENoC formal verification

TABLE I
EXAMPLES OF SPECIFICATION CRITERIA AT EACH DESIGN LEVEL.

ID Description Property
C1 No two active inputs can share the

same output channel.
no_shared_direction

C15 A port rejects further data in the event
of an inbound error signal and propa-
gates the error signal.

reject_on_err

N4 All routes through the network connect
to the expected destination if no rout-
ing conflict arises and the target port
does not assert an error.

route_correct

S4 Higher priority tasks must create their
routes before lower priority tasks.

N/A

from simple, replicated elements, a large portion of the proof
process is possible within seconds. In the rest of this section
we examine the steps necessary for formal proof of MCENoC,
as well as the performance scaling of the proof process at
various system levels and sizes.

A. Specification

To form the specification of the design, we take the general
requirements from Section III and produce more specific
criteria. These are classified at several levels:
C: Core switching elment level. The behaviour of a single

switch and its interfaces.
N: Network level. Connectivity to the edge of the Benes̆ net-

work, signal propagation and routing behaviour within.
S: System level. Behaviours when interacting with nodes.

Example specification criteria are given in Table I. At the
core and network level, all specification items need to have one
or more properties that fully describe the relevant behaviour
of the MCENoC. However, the system level includes consid-
erations outside of the scope of the MCENoC itself. It is still
possible to define properties at the system level, but it may not
be possible to verify them formally when solely examining the
MCENoC implementation. However, these properties can still
be used as assumptions that assist in the proof of other, lower
level specification items.

B. Property definition

Properties are defined in SVA [18], and then asserted for
each of the ports or instances defined in any configuration of
the system. Checking of these properties is performed using
the Cadence JasperGold formal verification tool.

Listing 1 gives an example property for a core switching
element, seeking to prove that specification criteria C15 is
met. This criteria refers to the rejection of further data if an

error signal is received, and that the error signal propagates.
Thus, C15 ensures that on error, a switch stops forwarding
on the connected port, but communicates the error backwards
through the established route.

The property is defined as reject_on_err(i) where
i is the port number. The portion before the |=> symbol
signifies the pre-condition, stating that the port is connected
and that the connected error signal has risen in the current
clock cycle. Checking of the post-condition begins one cycle
later. This is a two-cycle sequence, where first the port is
expected to enter the ABORT state, which should include the
error output being asserted downstream. After another cycle
(signified by ##1), the port’s forward connections should all
be de-asserted, releasing the forward connection.

Listing 1 Property example to check criterion C15
property reject_on_err(i);

portstate[i] == ACCEPT and
$rose(ports.err_in[direction[i]])

|=>
portstate[i] == ABORT and ports.err_out[i]
##1 !(ports.clm_out[direction[i]] |
ports.act_out[direction[i]] |
ports.dat_out[direction[i]]);

endproperty

This property can only fail if the pre-condition is met and
then the post-condition sequence contradicts the definition. A
formal verification tool can provide coverage in both respects,
first demonstrating that the pre-condition is reachable, and then
proving exhaustively that, under any condition where the pre-
condition is reached, the post-condition sequence holds true.

C. Proof performance

The performance of the verification process was conducted
on a dual-socket Intel Xeon X5460 server. Default JasperGold
prover settings were used. Two levels of verification were
tested: a single switching element and a full network. Results
are shown in Fig. 7.

Figure 7a demonstrates the scaling of the number of
switches with network size, depending on the size of each
switching element. Figure 7b shows the proof time for core
switching element properties. The proof time grows exponen-
tially with the port count, which is an expected outcome as the
number of generated assertions increases, as does the internal
state of the switch. This demonstrates that the proof effort is
tractable for sizes that are desirable for synthesis.

In Fig. 7c, the full network proof time is demonstrated.
This includes network level properties as well as re-proof of

switch-level properties. The majority of the proof burden is
dependent upon the number of switches, hence using higher
order switches reduces the overall proof time. However, these
results omit the checking of route_correct (specification
N4 in Table I), which on its own requires approximately
90 minutes to prove on an 8-port network of 1-bit switches.
This is due to the length of the pre-condition sequence it
uses, which in many cases does not reach completion before
some other correct behaviour (such as a routing conflict)
takes place. To overcome this, one can rely on the switch-
level properties combined with checking of the connectivity,
which is a static property, to achieve the same guarantee.
Alternatively, properties defining specific routing schedules
could be defined, for example constrained to a particular
application definition, in order to provide a smaller search
space to the prover.

In summary, our performance evaluation demonstrates that
formal proof of the MCENoC design that is at a scale practical
for realisation in hardware, is tractable and timely using
current tools. Potential performance issues have been exposed,
and mitigation methods recommended.

VIII. CONCLUSIONS

A novel NoC implementation has been presented for multi-
core MCE systems that addresses the problem of predictability
in systems of growing scale and complexity. In answer to
the requirements we define for such systems, this work uses
Benes̆-type network structures to achieve equidistant commu-
nication between nodes that remains scalable, providing an
implementation that can be in-band controlled and has clearly
defined route creation priorities. The network structure and
switch behaviour can be combined with static scheduling and
time division multiplexing to provide predictable low-latency
communication that guarantees deadlines will not be missed
and that critical communications are not interfered with, aiding
software-level timing analysis and system certification.

The design is formally verified, providing exhaustive proof
that specified behaviours hold, ensuring both that the specifi-
cation is well defined and that the implementation is correct.
Current proof tools can verify designs of sizes that are
practical for synthesis to FPGA, whereupon current synthesis
results indicate a typical 364MHz operation and a bisection
bandwidth of 11.6Gbit/s for an 32× 32 size network.

Future work

Network nodes, in the form of memories, processing and
peripherals, may be integrated with the design to demonstrate
it at the system level. This can include synthesis to FPGA
as well as fully-simulated, potentially relying on the proofs
made to simplify the network simulation process. The data-
path of the design can also be expanded from 1-bit in order
to explore the trade-off between bandwidth and resource
utilisation, including FPGA slices and I/O.

Proof of properties at the system level, where node and
software behaviour must be considered, is an important next
step in exploiting the predictable nature of the MCENoC.

This may extend beyond the SystemVerilog of the MCENoC,
however, requiring innovative proof techniques.

At the software and tool-chain levels, the implementation of
routing algorithms for required communication patterns is the
subject of ongoing work. Routing must be reconciled with task
priorities and network utilisation through time division mul-
tiplexing as discussed in Section VI, which can be evaluated
through MCE application case studies.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agreement
number 621429 (project EMC2).

REFERENCES

[1] A. B. Kahng, “The ITRS design technology and system drivers
roadmap,” in Proceedings of the 50th Annual Design Automation Con-
ference on - DAC ’13. New York, New York, USA: ACM Press, 2013.

[2] J. Nowotsch and M. Paulitsch, “Leveraging Multi-core Computing
Architectures in Avionics,” in 2012 Ninth European Dependable Com-
puting Conference. IEEE, may 2012, pp. 132–143.

[3] H. Kopetz, “The Rationale for Time-Triggered Ethernet,” in 2008 Real-
Time Systems Symposium. IEEE, nov 2008, pp. 3–11.

[4] M. M. K. Martin, M. D. Hill et al., “Why on-chip cache coherence is
here to stay,” Communications of the ACM, vol. 55, p. 78, jul 2012.

[5] S. Baruah, H. Li et al., “Towards the Design of Certifiable Mixed-
criticality Systems,” in 2010 16th IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, apr 2010, pp. 13–22.

[6] R. Wilhelm, J. Engblom et al., “The worst-case execution-time problem
- overview of methods and survey of tools,” ACM Trans. Embedded
Comput. Syst., vol. 7, 2008.

[7] Intel Corporation, “Intel Xeon Phi Coprocessor,” Intel Corporation,
Tech. Rep., 2013.

[8] M. M. Sabry Aly, M. Gao et al., “Energy-Efficient Abundant-Data
Computing: The N3XT 1,000x,” Computer, vol. 48, pp. 24–33, dec 2015.

[9] S. Bell, B. Edwards et al., “TILE64 processor: A 64-core SoC with
mesh interconnect,” in Digest of Technical Papers - IEEE International
Solid-State Circuits Conference, vol. 51, 2008.

[10] Adapteva, “E64G401 EPIPHANY 64-core microprocessor datasheet.”
[11] A. Duller, G. Panesar et al., “Parallel Processing the picoChip way,”

Communicating Processing Architectures, pp. 299–312, 2003.
[12] R. Abdel-khalek and V. Bertacco, “Correct Runtime Operation for NoCs

through Adaptive-Region Protection,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2016, 2016.

[13] M. Ebrahimi, M. Daneshtalab et al., “Fault-tolerant method with dis-
tributed monitoring and management technique for 3D stacked meshes,”
in The 17th CSI International Symposium on Computer Architecture &
Digital Systems (CADS 2013). IEEE, oct 2013, pp. 93–98.

[14] C. Clos, “A Study of Non-Blocking Switching Networks,” Bell System
Technical Journal, pp. 406–424, 1952.

[15] V. E. Beneš, “On Rearrangeable Three-Stage Connecting Networks,”
Bell System Technical Journal, vol. 41, pp. 1481–1492, sep 1962.

[16] C. Scheideler, Universal Routing Strategies for Interconnection Net-
works, ser. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, vol. 1390.

[17] Y. Jiang and M. Yang, “On circuit design of on-chip non-blocking
interconnection networks,” in 2014 27th IEEE International System-on-
Chip Conference (SOCC), vol. 40, no. 8. IEEE, sep 2014, pp. 192–197.

[18] A. B. Mehta, SystemVerilog Assertions and Functional Coverage: Guide
to Language, Methodology and Applications. New York, NY: Springer
New York, 2014, ch. System Verilog Assertions, pp. 9–28.

[19] A. Waksman, “A Permutation Network,” Journal of the ACM, vol. 15,
pp. 159–163, jan 1968.

[20] A. Kostrzewa, S. Saidi et al., “Slack-Based Resource Arbitration for
Real-Time,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2016, 2016, pp. 1012–1017.

[21] E. Seligman, T. Schubert et al., Formal Verification: An Essential Toolkit
for Modern VLSI Design. Morgan Kaufmann, 2015.

	I Introduction
	II Related work
	II-A Multi-core MCE systems
	II-B Mixed criticality hardware and software
	II-C NoC architectures
	II-D Clos and Benes networks

	III Requirements
	IV MCENoC architecture
	IV-A Switching element
	IV-A1 Conflict identification and resolution
	IV-A2 Port states

	IV-B Network construction
	IV-C System implementation

	V Scaling and performance
	VI Routing and scheduling
	VI-A Network equivalence
	VI-B Scheduling

	VII Formal verification
	VII-A Specification
	VII-B Property definition
	VII-C Proof performance

	VIII Conclusions
	References

