
The University of Manchester Research

IPRDF: An Isolated Partial Reconfiguration Design Flow for
Xilinx FPGAs
DOI:
10.1109/MCSoC2018.2018.00018

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Pham, K., Horta, E., Koch, D., Vaishnav, A., & Kuhn, T. (2018). IPRDF: An Isolated Partial Reconfiguration Design
Flow for Xilinx FPGAs. In IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-
Chip (MCSoC-2018) https://doi.org/10.1109/MCSoC2018.2018.00018

Published in:
IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC-2018)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:29. Mar. 2024

https://doi.org/10.1109/MCSoC2018.2018.00018
https://research.manchester.ac.uk/en/publications/8d81e390-2ec1-4b93-b4fd-4b725dde5cac
https://doi.org/10.1109/MCSoC2018.2018.00018

IPRDF: An Isolated Partial Reconfiguration Design
Flow for Xilinx FPGAs

Abstract—FPGA devices have been used widely in many
industrial domains, but only limitedly in secure and safety-critical
applications, which have special requirements for the physical
implementation, such as module isolation. This is partly due to
limited functionality available with current FPGA vendors’ tools
and flows. To extend FPGA’s appearance in secure and safety-
critical applications, we propose an alternative flow for isolation
design called the Isolated Partial Reconfiguration Design Flow
(IPRDF) in this paper. Systems designed by the proposed IPRDF
are not only fully isolated but also support partial reconfiguration
of insulated modules. This allows building secure and dependable
systems that can use partial reconfiguration to mitigate from
single-event upsets (SEUs) and that are more tolerant to aging
and device imperfections. Further, this also allows information
assurance applications to benefit from hardware module isolation
and run-time reconfigurability. Case studies on isolated Triple
Modular Redundancy (TMR) and single-chip cryptographic
(SCC) designs are presented to demonstrate capabilities and
advantages of the proposed IPRDF methodology.

I. INTRODUCTION

Field Programmable Gate Array (FPGA) devices can be
used not only to substantially accelerate applications, but also
are able to achieve these performance advantages with fairly
low power overhead [1]. Moreover, with the reconfigurable
capability and short time-to-market, FPGAs are replacing
ASICs as promising solutions in many industrial domains.

Furthermore, there are strong needs to use FPGAs in
other application domains such as in automotive, aerospace,
defense, cyber-security and in hazardous environments (e.g.,
in space [2] or high-energy physics [3]) which often require
secure and safety-critical system implementations. However,
these applications are challenging to implement with FPGAs.
For instance, when FPGAs are working in space, an ionized
particle hit can cause a single-event upset (SEU), resulting in a
bit-flip in one or more configuration cells or a communication
signal and consequently in catastrophic behavior [4]. More-
over, in information assurance applications, hardware modules
must be independently and solitarily implemented in a single
chip to satisfy isolation, reliability and security concerns [5].

Finally, with the trend of using FPGAs as accelerators
in cloud environments [6], [7], physical insulation of re-
configurable modules may become important for granting
multiple users simultaneous access to the same FPGA device.
For example, recent researches [8], [9] have demonstrated
how side channel attacks using delays on long wires can
allow leaking information from FPGA cryptographic modules
without physical access. However, a physical isolation fence
between wires of different modules can reduce side-channel
effects significantly [8], and therefore can eliminate the risk
of data leakage through this sort of attack.

Xilinx, a major FPGA vendor, addresses these concerns
by providing an Isolation Design Flow (IDF) [5], which
comprises the following requirements:

• Each hardware module has to be isolated and must be in
its own level of hierarchy.

• A fence must be used to separate isolated hardware
modules within a single chip. Further, it is not allowed
to use any primitive or routing resources in any directly
adjacent tile (e.g., a CLB or BRAM). Therefore, a fence
is at least one tile wide.

• Input/output buffers (IOBs) must be instantiated inside
isolated modules for proper isolation of the IOBs. Thus,
having full control over the routing of the signals from
IOBs to the module is essential to establish off-chip
trusted communications.

• On-chip communication between isolated hardware mod-
ules is achieved through the use of Trusted Routing,
which has to follow restrictions:
– There is no entry or exit point in the fence between

isolated regions.
– There is one source and one destination for each

routing path (only joint-to-joint routing).
– The entry and the exit points must stay in the source

and destination regions, respectively.
– Its entirety stays contained in the source/destination

regions
– It does not touch a fence tile from another isolation

region.
Xilinx IDF supports the implementation of isolated modules
which satisfy all mentioned requirements as well as an auto-
matic mechanism to verify module isolation using the Xilinx
Vivado Isolation Verifier (VIV). However, even the latest
Vivado tool suite (version 2018.1) does not provide any partial
reconfiguration (PR) capability together with IDF.

Although isolation design is not possible with the Xilinx
Partial Reconfiguration (PR) flow as clocks and IOBs must
remain in the static logic part [10] when using 7-Series
and earlier devices, the redundancy needed for safety-critical
systems and the requirements in the physical implementa-
tion of these systems would strongly benefit from partial
reconfiguration (PR). For example, the fences around modules
or the redundant instances of modules for TMR put more
pressure on resource utilization which can be in some cases
mitigated with the help of PR. Furthermore, cryptographic
military systems often use multiple different cyphers (e.g.,
DES, AES, Blowfish) in a round-robin fashion which can
be implemented in a resource efficient manner using PR.
Moreover, PR is an effective countermeasure against single-
event upsets (SEUs) by writing correct configuration to the
memory swiftly. Therefore, by integrating PR flow into IDF,
we are able not only to mask a SEU, but also to recover the
malfunctioned area at run-time.

To implement this, we propose an alternative flow, named

TABLE I: Isolation Design Flows’ features and supports.

Features Xilinx IDF [10] Altera SDF [11] Academic Customized IDF [12], [13] IPRDF

FPGA families Xilinx Altera Xilinx Xilinx
Isolated modules 3 3 3 3

Fences between modules 3 3 3 3

IOB assignments automatic automatic ? manual
Secured communication 3 3 3 3

Partial reconfiguration 7 7 3 3

Support for module relocation, multiple module instantiation 7 7 3 3

Direct communication between PR modules 7 7 7 3

Off-chip trusted communications in PR regions 7 7 7 3

Isolated Partial Reconfiguration Design Flow (IPRDF), which
applies partial reconfiguration (PR) design practices into the
isolation design flow (IDF). Moreover, we provide a design
rule check to ensure that our approach fulfills all requirements
for a standard isolation design flow as specified in [5]. In
addition to Xilinx IDF, systems designed by our flow are
partially reconfigurable. This enables to design self-aware
and fault-tolerant mechanisms, which gives systems higher
probability to detect and mask errors by moving relocatable
modules to other regions for alleviating defects in the FPGA
fabric. Thus, systems designed by the proposed IPRDF use
less resources (i.e. are cheaper), are potentially less vulnerable,
more reliable, and more suitable in secure and safety-critical
applications than static counterparts.

IPRDF includes several phases, which are realized by a
combination of commercial Xilinx Vivado [14], open source
tools such as GoAhead [15] and BitMan [16] as well as
our own tools and scripts adding the isolation capability to
reconfigurable systems. In detail, placement and routing for
static and partial designs are constrained by GoAhead, and are
physically implemented by Vivado. Moreover, full bitstreams
are generated by Vivado, but are later manipulated by BitMan
to compose relocatable partial bitstreams.

Additionally, we present two case studies: 1) an isolated
Triple Modular Redundancy (TMR) system and 2) a single-
chip cryptographic (SCC) design both on a ZedBoard using
a Xilinx XC7Z020 FPGA to demonstrate capabilities of the
proposed IPRDF tool flow.

The contributions of this work include:
• A design flow which guarantees isolated modules, trusted

communication channels and separated IOBs for partial
reconfigurable modules (Section III).

• Trusted regions which are partially reconfigurable and
able to host multiple relocatable modules in time and
space manners (Section III).

• Error detection and recovering techniques with consider-
ing isolation as required for TMR (Section IV).

• Two case studies on IPRDF (Section IV and Section V).
Further sections include an overview on related work in

Section II and a conclusion in Section VI.

II. RELATED WORK

A. Isolation Design Flows
The major FPGA vendors have introduced proprietary iso-

lation flows such as Xilinx Isolation Design Flow (IDF) [5],
and Altera Separation Design Flow (SDF) [11]. However,

as mentioned in Section I, they lack partial reconfiguration
capability.

Related research papers [12], [13] used the Xilinx IDF
to design relocatable modules. Those works, however, are
not targeting design isolation as needed to implement secure
or reliable systems. Instead, some IDF mechanisms were
used to prevent static system routing to cross partial regions.
This property allowed those approaches to relocate modules.
However, none of those related approaches could support off-
chip trusted communications for partial regions.

Comparisons of the proposed IPRDF and other state-of-the-
art tool flows are presented in Table I. As we can realize, the
limitation of IPRDF is that IOB assignment has to be carried
out manually1.

B. Partial Reconfiguration Tools
There are several partial reconfiguration (PR) design flows,

available both from industry such as Xilinx [10], Altera [17]
and from academia, for instance, Torc [18], RapidSmith [19],
OpenPR [20], and GoAhead [15]. OpenPR and GoAhead can
generate blocker macros that allow to prohibit the Xilinx
vendor router to use a defined set of wires only (e.g., this
allows it to implement an IDF conform fence around a mod-
ule). When physically implementing a module, blocker macros
will occupy all possible connections to and from modules.
However, we include tunnels into these blockers to carry out
the top-level routing. The here presented IPRDF is a frontend
for the GoAhead tool because it is the only academic PR tool
that is currently supporting latest FPGAs from Xilinx.

C. Designing for Reliability
Wirthlin in [4] summarized common design practices for

high reliable FPGA systems including hardware redundancy,
configuration scrubbing, error-correction coding, flip-flop mit-
igation, and system-level mitigation of FPGA single-event
effects (SEEs). That work highlights the importance of com-
binations of hardware redundancy, especially Triple-Modular
Redundancy (TMR), and configuration scrubbing as a re-
covering mechanism in systems being used in satellites [2].
Moreover, Abramovici et al. proposed the idea of rotating
functional units via PR for testing and repairing in [21]. In
Section IV, we will demonstrate a combination of TMR,
isolation design and partial reconfiguration that can act as a
recovering scheme for highly available and secure systems.

1However, this process is relatively easy to carry out and is normally done
before the PCB design (which implies that designing secure systems include
aspects beyond the actual FPGA design).

Frontend Design

Logic synthesis

Floorplanning

Physical
Implementation

Configuration
Bitstream

Generation

Isolation
Floorplanning

Isolation
Constraint
Generation

Isolated System
Full & Partial
Bitstreams

FPGA Development Flow
(Vivado)

IPRDF Extras

Final
Design
Check
Point

VIV on Final
Design

Fig. 1: Isolated Partial Reconfiguration Design Flow (IPRDF).

III. THE IPRDF FLOW

In this section, IPRDF is presented step-by-step. The flow
is described in Subsection III-A. Static and Partial designs are
presented in Subsection III-B and Subsection III-C.

A. Overview

We are using standard Xilinx Vivado for our front-end
design and logic synthesis. This allows us to take advantages
from all input specification methods that are available in
Vivado including RTL, schematic entry, or even High Level
Synthesis (HLS). IPRDF requires to carry out more steps
in the floorplanning stage which will consecutively affect
physical implementation as well as bitstream generation. The
flow in comparison with the default Xilinx Vivado flow is
presented as in Figure 1 from a developer’s point of view.

IPRDF’s steps are described as follows:
• Isolation Floorplanning: based on the resource utilization

retrieved from synthesis reports, we define regions on
the FPGA, either to host reconfigurable modules (in the
static system) or to implement reconfigurable modules
(partial modules). In module floorplanning, an automatic
placement exploration [22] starts finding all possible
positions. Bounding boxes according to all those positions
are generated without user’s operation. Static system’s
floorplanning is done manually but assisted by our tool
flow by an automatic check that ensures that those regions
provide the necessary number of resources, even if some
resources are not allowed to be used due to module
isolation.

• Isolation Constraint Generation: position and bounding
box information is then used for static and partial designs.
Physical constraints for placement and routing are gener-
ated by the GoAhead tool. These constraints are written
into some TCL files, which are then used by Vivado to
guide the physical implementation stage. IPRDF adds
rules to this process to match the IDF requirements (see

(a) (b)

Fig. 2: An example of 16-bit bus for system communication with
Physical Constraint Generation on GoAhead in (a) and after routing
by Vivado in (b).

Partial
module

Blocker
macros

Communication
primitives

Tunnel

(a)

(b)

Fig. 3: Module placement, communication tunnels and blockers for
the selected partial module, on GoAhead in (a) and after routing by
Vivado in (b).

Section I). This is implemented through scripts that are
written for GoAhead.

• Final Design Check Point: Design Check Points from
previous steps will be ran through the Xilinx Vivado
Isolation Verifier (VIV) to ensure that our designs comply
with the isolation design rules.

• Configuration Bitstream Generation: IPRDF results in
full bitstreams of static and module designs. To com-
pose partial bitstreams for modules, we use the tool
BitMan [16].

B. Static Design

The implementation of the static design starts with a
floorplanning step where we define the placement of the
static system components, communication infrastructure and
reserved areas for the partial modules. With these parameters,
we instruct GoAhead to create top-level routing and placement
constraints as TCL scripts for Vivado.

Video
Background
Generator

Majority
Voter

Channel 1

Channel 2

Channel 3

Video
Background
Generator

Video
Background
Generator

Configuration
Controller

Quality
Assurance Unit

Reconfiguration
Request

Module
1

Module
2

Module
n

...

Module
1

Module
2

Module
n

...

Module
1

Module
2

Module
n

...

Fig. 4: Block diagram of the TMR system.

Fig. 5: Partial slots with various FPGA primitive slots such as MsM,
BsM and MsD. The left screenshot is from the Vivado and the right
screenshot is taken from the GoAhead’s floorplanning GUI.

The goal at this stage is to define a region which hosts partial
modules. In order to leave as many resources as possible for
the actual application, we aim at maximizing this area. In the
case of using IPRDF for TMR systems, we define 3 regions
of identical size (and to be more precise, regions where the
relative layout of primitive columns (e.g., CLBs, BRAMs) is
identical2). A blocker macro is then generated to prohibit any
routing or logic resource to be used by reconfigurable modules.

The blocker macro will prevent all FPGA primitives and
routing resources to be used in the selected partial region.
Therefore, we will leave holes in the blocker macro (called
tunnels) that are used to constrain module interface signals to
specific wire resources on the FPGA following isolation rules.
See Figure 2 for a 16-bit bus example.

C. Module Design

The implementation of the partial module design also starts
with a floorplanning step which includes placing communica-
tion primitives around the partial module. These macros act as
sink/source connection points and substitute the surrounding
static system. Blockers will be generated to prohibit all partial
module’s primitives being placed around the selected area
acting as a fence to implement strict module bounding boxes
as well as the isolation fence. Routing tunnels are included for
the communication to and from the primitives. The position
of these tunnels match exactly the tunnels as used in the static
design to implement the communication between static and
partial areas.

The result of this stage is shown in Figure 3. As we can
see, blockers are placed around the partial module to ensure
all primitives must be used inside the selected area.

2It is not mandatory that all TMR regions are identical because it is possible
to generate different module implementations for each region. However, by
using identical regions, we could even share the place and route result
including the final partial bitstream.

As a modules is implemented on a separated design from
the static system, the final results generated by Vivado is a full
configuration bitstream. This data is passed to BitMan that cuts
out the configuration data that corresponds to the module only.
We repeat these steps for all modules to build a partial module
library.

At run-time, BitMan manipulates those partial bitstreams to
a desired position inside a partial region of the static system.

IV. CASE STUDY I: TRIPLE MODULAR REDUNDANCY

In this example, a TMR system, as in Figure 4, will be de-
signed on a ZedBoard to demonstrate our IPRDF’s capability.
This system includes 3 video background generators, 3 video
streaming channels, and a Quality Assurance Unit, which
contains a Majority Voter and a Configuration Controller. All
these components are implemented isolated from each other
by physical fences.

Partial regions are tiled into multiple adjacent slots that are
two resource columns (CLB, BRAM, or DSP) wide. Modules
are one or more slots wide. Implemented modules include
a video overlay generator, a DES encryption, and a SHA1
hash function. A module could have multiple alternatives as it
might be placed on different primitives (e.g., one alternative
providing a RAM column in the left and another providing
RAM in the right half of the module). For TMR operation,
all channels must host the same modules in the same order to
guarantee fully redundant execution over all channels.

Outputs from video streaming channels will be routed to
the Majority Voter inside the Quality Assurance Unit. This
Majority Voter will guarantee that any SEU in any channel
would not impact the final system’s output. Moreover, a single
difference in a channel’s output will trigger the Configuration
Controller to dynamically partially reconfigure this specific
channel to mitigate any SEU effect with a low guaranteed
latency. The Configuration Controller can stay either on-chip
by utilizing reconfigurable ports such as ICAP and PCAP, or
off-chip in a host machine and using JTAG port to reconfigure
the FPGA fabric3. This redundant system with repair mitigates
against multiple upsets which may occur and potentially
impact the TMR outputs.

Specific information of this example’s implementation is
provided in Subsection IV-A. Subsection IV-B describes how
the error detection and recovering schemes work. In Subsec-
tion IV-C, the fully implemented system is presented, and
achieved goals for this isolated design are discussed.

A. System Implementation
FPGA resources on the XC7Z020 device are aligned

column-wise. We represent the relative layout of primitive
columns by a Resources String which is simply a string of
symbols which are denoting the particular column type. For
example, starting from the bottom left corner, we can model
the FPGA with the device resource string M M M M B M M
D M..., as shown in Figure 5, with:

• L: a CLB column providing SLICE L primitives (supports
only logic and arithmetic).

3In this case study, we are using the PCAP port that is controlled by the
available ARM core only. For full fault tolerant operation, it would need
another port (e.g., JTAG) to remove a single point of failure or a watchdog
mechanism.

TABLE II: Available primitives on various resource slots and
required elements for different modules.

Resource Slot
Region Size Available Resources

Columns Rows LUTs BRAMs DSPs
MsM 2 46 736 0 0
BsM 2 46 368 8 0
MsD 2 46 368 0 16

Module
Module Size Required Resources

Columns Rows LUTs BRAMs DSPs
Video Overlay
Generator

2 46 207 0 0

2-round DES in
CRC mode

2 46 226 0 0

2-Stage SHA1 2 46 235 0 0
3-Stage SHA1 2 46 295 0 0

• M: a CLB column providing SLICE M primitives (sup-
ports logic, arithmetic and distributed memory).

• B: a column providing BRAM primitives.
• D: a columns providing DSP48 primitives.
• s: two switch matrices between primitives (any L M B or

D type).
A resource slot (our smallest atomically reconfigurable unit)

is defined by a primitive column followed by two switch
matrices and another primitive column. To incorporate this
in our string matching abstraction, we model our resource
slots with symbols like MsM or BsM or MsD to indicate
the different combinations of primitives that may exist for a
resource slot, as illustrated in Figure 5. A partial module with
the type MsM can only be loaded in MsM-slots. Therefore
a logical module may need different implementations (e.g.,
MsM, BsM, or MsD-compatible versions) if relocation is used.
In this case study, each channel provides 6 resource slots.

To establish horizontal fences, we have reserved one CLB
row at the top and another at the bottom of a resource slot. This
action results in less available primitives within each resource
slot to host a module, and this is an expected overhead when
using module insulation.

Numbers of FPGA primitives in various slots and the
required resources for different functional modules are listed
in Table II.

As long as sufficient resources are found in the bounding
box, horizontally physical fences at the top and bottom of
the module can be established without much effort. However,
routing of communication tunnels must be carefully analyzed
and strictly constrained to a predefined set of wires that will
carry out the top-level module communication through the
fence. A physical fence following IDF rules [5] must leave
all logical and routing primitives unused.

This means that at least one resource column must be left
totally empty at each side of the module’s borders. Therefore,
when creating the communication infrastructure, we will use
double-wires, which span a distance of 2 resource columns, or
quad-wires, which jump from the current column to another
one that is 4 columns away.

This ensures that we can bypass the switch matrices of
the fence while still implementing all top-level signals. When
using double-wires, this allows us to route up to four bit signals
per CLB row and respectively 3× 4 bit signals in the case of

Output
Mismatch?

Scrubbing
Defect Region

Scrubbing
Counter for

Defect Region
+1

Scrubbing ≤

Threshold2
Mismatch

Counter Reset

Y

Y
Counters

Reset

N

N
Self-

Testing
Scheme

Mismatch ≤

Threshold1

Mismatch
Counter +1

NY

Start

(a)

Background
Majority

Voter

Channel 1

Background

Background

M1

1

M2

2

M3

3

=

4

Channel 2

M1

1

M2

2

M3

3

=

4

Channel 3

M1

1

M2

2

M3

3

=

4

=

1

M1

2

M2

3

M3

4

M1

1

=

2

M2

3

M3

4

M1

1

M2

2

=

3

M3

4

/

Result

Errors

Reconfiguration Sequence

Output Mismatch?

Remapping
Modules

Self-Testing
Scheme

N

Y

End

(b)

Fig. 6: Two different error detection and recovering schemes. (a)
is to prevent impacts from single-event upsets (SEUs), and (b) is to
reduce impacts from permanently physical damages such as ageing
or device imperfections.

quad-wires. Considering the usable 50 − 2 CLB rows, this
allows wide interfaces of up to (50− 2)× (4 + 3× 4) = 768
bits in total per signal direction for a module that is one clock
region in height on a Xilinx Zynq FPGA.

B. Error Detection and Recovering Schemes

At run-time, errors can be caused by SEUs, or physical
ageing and are mitigated differently. Therefore, we have devel-
oped two schemes to mask them, as shown in Figure 6. In this
work, we used the Majority Voter as an error detection unit. It
will detect any mismatch happening over all channels’ outputs,
specify the malfunctioning channel, and send requests to the
Configuration Controller for reconfiguration actions. These
recovering schemes are implemented as a software application
on the embedded ARM CPU, and PCAP is used for FPGA
reconfiguration.

1) SEU Recovering Scheme: In the first flow, as shown in
Figure 6a, any difference in a channel’s output is detected
by the Majority Voter, and the error causing channel is
recognized. A Mismatch counter will be incremented. This
allows distinguishing between SEUs on the datapath (transient
errors) from SEUs hitting configuration SRAM cells. Former
issues can be mitigated by the majority result from the Voter
while later ones must be repaired by reconfiguring the modules
of the impacted channel.

However, permanent FPGA defects cannot be recovered by
configuration scrubbing regardless of reconfiguration efforts.
Consequently, the Scrubbing counter for the defect channel

will be incremented until it reaches a threshold and triggers
the second flow, called Self-Testing Scheme.

2) Self-Testing Scheme: The example in Figure 6b shows
three channels for TMR each hosting three modules that are
one slot wide. Each channel provides one spare slot that is
bypassed (symbolized with ‘=’). For Self-Testing, we generated
a reconfiguration sequence such that the first configuration
bypasses the first slot, the second configuration bypasses the
second slot, etc., until we find a working sequence that is
eventually recovering the defective slot.

Self-Testing is carried out for a single channel (e.g., chan-
nel 3 in Figure 6b) while using the other channels as a ref-
erence for testing correct operation. The actual configurations
are composed by BitMan from relocatable modules which in
some cases may involve implementation alternatives to deal
with the heterogeneous layout of resource columns. Note that
in this case study, each channel has 6 slots, and Self-Testing
is being conducted in parallel to the operation of the system.

In general, the modules in the channels may have an internal
state that would be out of synchronization after partial recon-
figuration and it needs somehow a mechanism to resynchronize
all TMR instances. In this case study working on a video
stream, after each row of pixels (in our case, 1024 pixels), all
modules start with the same initial state. We therefore wait
after reconfiguration for at least this time before evaluating
the Majority Voter output.

C. Result
Details of an implemented module designed by IPRDF are

shown as in Figure 7. The generated blocker macros ensure
that all module’s primitives are placed inside the bounding
box. Ultimately, no routing violation was found by the Vivado
Isolation Verifier (VIV) when using our design methodology.

Moreover, with our design methodology, a module can
be implemented in different resource slots. Thus, it is more
flexible to place and relocate modules across the FPGA fabric
in order to mitigate physical vulnerabilities that may happen
during its lifetime. Figure 7 shows implemented alternatives of
the Video Overlay Generator in three resource slots providing
different resource footprints. These three implemented alter-
natives are sufficient to place this two column-wide module to
any slot inside any reconfigurable region of the system.

The whole demonstration system is designed with IPRDF
as shown in Figure 8. The static parts include the Video
Background Generator and the Quality Assurance Unit which
are physically isolated from other partial regions and from
each other. In addition, partial channels are also separated by
horizontal and vertical fences between system elements.

For recovering schemes, we tested the correctness of tran-
sient fault masking by injecting errors into channels’ inputs via
push buttons. Moreover, the mitigation technique from SEU in
configuration data was verified by flipping random bits from
a LUT table through partial reconfiguration.

Finally, to generate permanent errors, we used a feature
from BitMan that prohibits a defined resource (a LUT for our
experiments) from reconfiguration. Considering modules that
are one-slot wide and a channel which has s slots hosting m
modules, the worst case time for the Self-Testing procedure is:(

s

m

)
× (tconfig × s+ ttest),

(a) (b)

(c)

Fig. 7: Various FPGA primitive columns on the XC7Z020 FPGA
device in (a), and implemented options of a Video Overlay Generator
module, with the MsM-compatible option in (b), and the MsD-
compatible option in (c).

Keccak (ISO_K0)

Compare
(ISO_COMP)

Keccak (ISO_K1)

Control
(ISO_CTLR)

Configuration
Controller

External I/Os

External I/Os

External
I/Os

Fig. 9: The single-chip cryptographic (SCC) system’s block diagram.

with tconfig being the time to reconfigure one slot and ttest
be the time for testing one configuration of the test sequence.

In this case study, reconfiguration overhead per slot was 0.4
ms on average, and the testing scheme took about 0.02 ms per
configuration. The worst case was 14.5 ms, where resource
verification needed to be conducted for 6 slots per channel.

The whole error mitigation is running in bare-metal on the
ARM using PCAP partial reconfiguration.

V. CASE STUDY II: SINGLE-CHIP CRYPTOGRAPHIC
DESIGN

To directly compare our IPRDF against the Xilinx IDF,
we took the example of the Single-chip Cryptographic (SCC)
design from the Xilinx’s XAPP1256 application note for
IDF [23], and we implemented its modules not only iso-
lated but also partially reconfigurable by using our IPRDF
methodology. The isolation of cryptographic modules satisfies
information assurance requirements while the partial recon-
figuration enables hardware module replacement or operation
maintenance at run-time.

The example design consists of two redundant Keccak
cryptographic hash modules4 (ISO K0 and ISO K1), whose
outputs are sent to a comparator (ISO Compare) block, and a
processor control (ISO Controller) module is used to supply
clocks and resets, as shown in Figure 9. This case study is
utilizing Double Module Redundancy (DMR) technique to

4Keccak is the superset of the SHA-3 standard.

Video
Background
Generator

Quality
Assurance

Unit

Horizontal fence

Vertical fence

Trusted
route

Trusted
route

Trusted
route

Trusted
route

Trusted
route

Trusted
route

Trusted
route

Channel
1

Channel
2

Channel
3

Video
Background
Generator

Video
Background
Generator

Trusted
route

Trusted
route

Fig. 8: System layout of the TMR design implemented on a XC7Z020 FPGA. Each channel, which has 6 resource slots, can host the
modules from Table II, as long as their resource primitives match the targeted resources. There are no wires in the horizontal fence between
the isolated regions and only trusted routes are crossing the vertical fence.

guarantee system’s functional correctness. Moreover, as the
main difference to the Case Study I in Section IV, it requires
that module IOBs stay inside partially isolated partitions for
off-chip communication, which is officially not supported for
7-Series devices according to the latest Xilinx PR documen-
tation [10] at the time of writing this work.

In addition to XAPP1256, we have developed SHA-2 and
AES-based hash modules as alternative solutions in order to
demonstrate PR on this case study. These modules can be
loaded to change cryptographic algorithms without shutting
down the whole system.

A. System Implementation

We have revised the Floorplan for the Xilinx IDF reference
to reserve two partially reconfigurable regions for Keccak
cryptographic modules. One module, ISO K0, is placed in the
top-right of the chip layout whereas the other, ISO K1, is at
the bottom-left corner. The ISO Controller and ISO Compare
stay in the static part of the system as shown in Figure 10. All
IOBs for module off-chip communication are reserved inside
the isolation partitions, either static or partially reconfigurable,
and are connected directly to the modules for full control over
the routing of the signals from IOBs to the module.

B. Result

The final design is shown in Figure 10, and physical
fences are realized by our IPRDF methodology. Moreover,
trusted routing is used between isolated partitions for secured
communication.

Off-chip inputs and outputs for each Keccak hash mod-
ule are instantiated and assigned into its isolated partition

TABLE III: Available resources in ISO K0 and ISO K1 partial
regions and size of partial bitstream to reconfigure each region.

Partial
Region

Slice LUTs BRAMs DSPs IOBs Bitstream Size
(kBytes)

ISO K0 13600 30 60 50 1375
ISO K1 13248 31 42 50 1425

for trusted communication requirements. Moreover, they are
reconfigurable along with the partial modules, which is not
feasible with Xilinx IDF and PR flow. This partially recon-
figurable capability allows isolated partitions to host different
cryptographic algorithms at run-time. Table III shows available
resources of each partial region and sizes of their partial
bitstreams.

The outputs of modules in ISO K0 and ISO K1 are passed
to the ISO Compare module for quality assurance purpose.
Any difference in these outputs triggers an alarm.

This final design was verified successfully for isolation-
compatibility by the Xilinx Vivado Isolation Verifier (VIV).
In addition, the demonstration of this partially reconfigurable
SCC design could be seen on a YouTube video by following
this link: REMOVED FOR BLIND REVIEW!

VI. CONCLUSION

In this work, we have proposed an alternative design flow,
named IPRDF, to build fully isolated and reconfigurable
systems. Two case studies have been presented to demonstrate
details on how to use IPRDF for implementing fully isolated
designs. The first case study uses this to implement a safety-
critical TMR system that provides mitigation strategies for
transient faults, configuration SEUs as well as for permanent

ISO_K0

ISO_Compare

Horizontal fence

Vertical
fence

ISO_K1

IOBs

Trusted
route

Trusted
route

ISO_Controller

Fig. 10: System layout of the SCC design implemented on the XC7Z020 FPGA. There are 2 partially reconfigurable regions ISO K0 and
ISO K1 which could host Keccak hash modules, as in this example following the Xilinx’s XAPP1256 [23], or other cryptographic ones at
run-time.

FPGA defects using partial reconfiguration. The second case
study enhances a single-chip cryptographic (SCC) system
from [23] with partial reconfiguration capabilities which would
allow changing ciphers at low resource cost.

It should be mentioned that module insulation is a require-
ment for implementing modules in certain security concerned
systems (e.g., military applications) and that our entire tool
flow is generating physical constraints for the Xilinx vendor
tools. As a consequence, no IP details (neither code nor netlist)
has to be presented to our tool flow, because our physical
implementation scripts can be generated independently, even
before the application. This means that the IPRDF is not
adding any security threat to the already established insulation
flow for static only systems.

In practice, the security may be even higher as different
modules are developed and physically implemented entirely
separated from each other. With this, we enabled partial
reconfiguration in secure and safety-critical systems.

REFERENCES

[1] S. Choi et al., “Energy-efficient Signal Processing Using FPGAs,” in
FPGA, 2003.

[2] H. Quinn et al., “The Cibola Flight Experiment,” TRETS, 2015.
[3] K. Red, “Single Event Upsets in SRAM FPGA based readout electronics

for the Time Projection Chamber in the ALICE experiment,” Ph.D.
dissertation, The University of Bergen, Bergen, Norway, 2009.

[4] M. Wirthlin, “High-Reliability FPGA-Based Systems: Space, High-
Energy Physics, and Beyond,” Proceedings of the IEEE, 2015.

[5] Xilinx, “XAPP1222 - Isolation Design Flow for Xilinx 7 Series FPGAs
or Zynq-7000 AP SoCs (Vivado Tools),” 2016.

[6] S. Byma et al., “FPGAs in the Cloud: Booting Virtualized Hardware
Accelerators with OpenStack,” in FCCM, 2014.

[7] Xilinx, “Reconfigurable Acceleration in the Cloud,” 2017.
[Online]. Available: https://www.xilinx.com/products/design-tools/
cloud-based-acceleration.html#alibaba

[8] I. Giechaskiel et al., “Leaky Wires: Information Leakage and Covert
Communication Between FPGA Long Wires,” in ASIACCS, 2018.

[9] C. Ramesh et al., “FPGA Side Channel Attacks without Physical
Access,” in FCCM, 2018.

[10] Xilinx, “UG909 - Vivado Design Suite User Guide Partial Reconfigura-
tion,” Apr. 2018.

[11] Altera, “AN 567: Quartus II Design Separation Flow,” 2009.
[12] L. Gantel et al., “Module relocation in Heterogeneous Reconfigurable

Systems-on-Chip using the Xilinx Isolation Design Flow,” in ReConFig,
2012.

[13] J. Rettkowski et al., “RePaBit: Automated Generation of Relocatable
Partial Bitstreams for Xilinx Zynq FPGAs,” in ReConFig, 2016.

[14] Xilinx, “UG908 - Vivado Design Suite User Guide: Programming and
Debugging,” 2017.

[15] C. Beckhoff et al., “GoAhead: A Partial Reconfiguration Framework,”
in FCCM, 2012.

[16] K. D. Pham et al., “BITMAN: A Tool and API for FPGA Bitstream
Manipulations,” in DATE, 2017.

[17] Altera, “Partial Reconfiguration,” 2017. [Online]. Avail-
able: https://www.altera.com/products/design-software/fpga-design/
quartus-prime/features/partial-reconfiguration.html

[18] N. Steiner et al., “Torc: Towards an Open-source Tool Flow,” in FPGA,
2011.

[19] C. Lavin et al., “RAPIDSMITH - A Library for Low-level Manipula-
tion of Partially Placed-and-Routed FPGA Designs,” Brigham Young
University, Tech. Rep., 2014.

[20] A. A. Sohanghpurwala et al., “OpenPR: An Open-Source Partial-
Reconfiguration Toolkit for Xilinx FPGAs,” in IPDPSW, 2011.

[21] M. Abramovici and C. E. Stroud, “BIST-Based Delay-Fault Testing in
FPGAs,” Journal of Electronic Testing, 2003.

[22] N. B. Grigore and D. Koch, “Placing Partially Reconfigurable Stream
Processing Applications on FPGAs,” in FPL, 2015.

[23] Xilinx, “XAPP1256 - Zynq-7000 AP SoCs or 7 Series FPGAs Isolation
Design Flow Lab (Vivado Design Suite),” 2016.

