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Abstract—Testing analog, mixed-signal and RF circuits rep-
resents the main cost component for testing complex SoCs. A
promising solution to alleviate this cost is the Alternate Test
strategy. Alternate test is an indirect test approach that replaces
costly specification measurements by simpler signatures. Machine
learning techniques are then used to map circuit signatures and
circuit specifications. One key point that still remains as an
open problem is the conception of adequate simple measurement
candidates. This work presents efficient algorithms for selecting
information rich signatures, and for designing new ones that will
improve the prediction accuracy.

Index Terms—Alternate Test, machine learning, feature selec-
tion, feature design.

I. INTRODUCTION

OWADAYS, commercial trends of IC industry have

forced the integration of complex SoCs consisting of
tightly integrated analog, mixed-signal, RF and digital circuitry
onto a single IC substrate. This high integration level provides
a significant reduction in production cost, but increases the cost
of testing these devices.

Cost-effective methods for testing the digital parts of these
SoCs, based on standardized fault models, are already avail-
able. However, testing Analog, Mixed-Signal and RF circuits
(AMS-RF circuits) still relies on costly functional characteri-
zation. The main reason for this difference is the mathematical
complexity of the problem. Digital circuits can be studied
from a high level of abstraction, that allows to isolate parts of
the circuit from their surroundings. The problem of AMS-RF
circuits is by far more intricate. Firstly, all involved signals
and states are continuous variables affected by many sources
of variability, either static (like process variations) or dynamic
(like noise sources). Correctness can only be defined in terms
of intervals or regions. Moreover, the relation between signals
and states is usually non-linear and multidimensional. Even
possible defects should be considered as continuous variables,
which makes standardization of fault models a challenging
task.

Alternate Test, proposed by researchers at Georgia Tech [1],
is a promising strategy for overcoming these issues. It lever-
ages the power of machine-learning algorithms to interpret
simplified tests in the specification domain.

II. ALTERNATE TEST: BACKGROUND AND OPEN PROBLEMS

Alternate Test is an indirect testing framework. Conven-
tional production test measurements are replaced by a set of
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low-cost indirect signatures, and test results are inferred by
post-processing these signatures.

The usual approach to perform this replacement is based
on supervised machine learning algorithms. The test process
is developed in two stages: a learning stage and a testing
stage. During the learning stage both circuit specifications
and signatures are measured from a set of training devices. A
machine learning algorithm is then trained over the two sets of
measurements to build a mapping model. In the testing stage,
only signatures are measured for each Device Under Test
(DUT), and specifications are inferred by using the obtained
mapping model.

A key issue of Alternate Test is the definition of the
input space of signatures. On one hand, it is clear that we
need information-rich signatures sensitive to the performance
degradation mechanisms affecting the DUT. On the other hand,
due to the model oriented philosophy of Alternate Test, any
non-modeled errors may lead to unexpectedly bad results [2].
Hence, the input signature space must be designed to cover as
much relevant information as possible, and any source of non-
modeled errors should be screened from the training. A typical
example of the latter case corresponds to spot defects, that are
in essence different from process variations. This motivated
the introduction of defect filters [3] to identify outliers that do
not fit the expected distribution of the signatures.

The current approach for designing signatures heavily relies
on the expertise of the designer. Some generic approaches exist
for providing an initial set of signatures, such as DC probing,
Ippg test, V-transform coefficients [4], process monitoring
[5], etc. Work has been also presented on optimizing a
particular stimulus to define optimized signatures [1], [6].
However, despite the demonstrated feasibility of these tech-
niques, none of them guarantee a complete coverage of all
possible performance deviations. To our knowledge, there is
no generic method to guide the design of new signatures to
systematically cover all the relevant circuit information.

In this work we propose a method to infer new signatures
to enrich the information in the feature input space. The
proposed methodology is a combination of feature selection
and guided feature design. These two points, together with
their application to a case study, are presented in the following
sections.

III. FEATURE SELECTION
A. Proposed approach

Feature selection can be defined as the process of selecting a
subset of relevant features for building an accurate regression



model. It is a recurrent problem in machine learning, and has
been addressed by numerous researchers. It is out of the scope
of this paper to produce a full review, but interested readers
can refer to [7] for an excellent introduction.

Statistics almost always address feature selection from the
viewpoint of overfitting reduction. In the particular application
case of IC testing, though, there is a specific additional
concern: the feature cost. Any additional signature is a mea-
surement that has to be performed in production.

A direct approach to feature selection consists in pre-
selecting a subset of features, based on some statistical obser-
vations, before training any regression models. This approach,
widely used when the number of initial features is high, is
known as filtering.

The most common filtering approach is the Principal Com-
ponent Analysis (PCA). PCA considers a linear input space
and performs an eigenvalue decomposition of the features
covariance matrix to identify the principal directions, or com-
ponents, of the variability in the space of signatures.

One of the main drawbacks of PCA is the fact that it is a
linear method, while the relation between signatures may be
non-linear. PCA is also an unsupervised method, that is, it does
not make use of the performance information for signature
selection. In this work we propose a methodology that takes
into account the intrinsic non-linearity of the space of signa-
tures and the non-linear mapping to the performance space by
incorporating model training to the selection algorithm. This
methodology is known as a wrapper approach [8].

The wrapper approach consists in using the machine-
learning prediction model as a black box within an opti-
mization loop. The model is used to evaluate the prediction
error (also called generalization error) for a given signature
subset, and the optimization loop tries to minimize this error
by adding or removing signatures to this subset (more complex
cost functions that consider the cost of each signature are
also possible). The interested reader is referred to [7], [8]
for a comprehensive description of the wrapper technique.
In practice, a wrapper consists of three elements: a search
algorithm to explore the space of features, a machine learning
algorithm to evaluate the prediction error for each subset of
features, and a stopping criterion.

Regarding the search algorithm, we opted for a stepwise
search with compound operators, as described in [8]. This
approach is based on a combination of stepwise forward
addition and backward elimination operators. Starting from an
initial subset of signatures, we explore all the possible children
obtained by removing one existing signature or adding a new
one. Up to this point, this is very similar to what was proposed
in [9], but at the end of this one-change exploration, we also
explore the combinations of the four children that give best
results. This can significantly speed-up the exploration.

Concerning the machine learning model in the wrapper, we
use a perceptron neural-network from the ENTOOL MATLAB
toolbox [10]. An ensemble model is created in a classical
cross-validation fashion by splitting the available data into ran-
dom subsets. A detailed description of the ensemble learning
algorithm and the cross-validation strategy can be found in
[10], [11]. Apart from the total prediction error, we get access
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Fig. 1. Schematic view of the LNA with envelope detector

to the individual errors of the random partitions. The standard
deviation of these errors gives an estimate of the confidence
in the obtained prediction error.

As an arbitrary stopping criterion for the search, we con-
sider that the generalization error improvement for a new
iteration should be higher than 25% of the standard deviation
estimate. An important remark in this strategy is that it is
important to set aside a verification set that is not involved
in the optimization loop. If not, the optimization process will
optimize for this particular set. At some point, due to the finite
sample size of the set, it would be possible to fit the data
with random variables. We need an out-of-the-loop criterion
to verify that we are not overfitting. We implemented a sanity
check consisting in monitoring the model performance on an
out-of-the loop verification set, to confirm that the prediction
error for this set also improves.

B. Case study: RF Low Noise Amplifier

In order to exemplify the application of the proposed feature
selection technique, we have applied it to an Alternate Test
strategy for predicting the gain of an RF LNA. LNAs are
simple circuits with very few components, but that are quite
sensitive to process variability. The variability is important to
make the prediction more challenging. On the other hand, lim-
iting the discussion to the prediction of a single performance
—the LNA’s gain in this case— facilitates the interpretation of
the results, although the method is easily applicable to any
number of target performances.

Figure 1 shows the schematic of the LNA, which has been
designed in a 90nm CMOS technology. The envelope detector
at the output of the LNA has been included as a built-in test
instrument [12].

Our initial set of signatures in this case study contains 42
signatures, consisting in the DC voltages in all the nodes of
the LNA, the output of the envelope detector, and all the
previous signatures measured under power supply stress. A
population of 2000 instances of the LNA was generated using
Monte Carlo simulation. We set aside 10% of the data for the
verification set, which represents 200 samples, and we use the
remaining 1800 samples for training. 15 random partitions of
the training samples are used for cross-validation.

As a first application of the feature selection method, we
consider four different scenarios to predict the gain of the
LNA:
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Fig. 2. Generalization error on the prediction of the LNA gain, for four
different training scenarios

« only DC signatures

o DC signatures and envelope detector

o DC signatures with power supply stress

o DC signatures and envelope detector with power supply
stress

Figure 2 displays the results obtained for the four scenarios.
The round marker shows the expected generalization error
from the ensemble model scheme while the square marker
stands for the error obtained on the verification set. In all
cases, we verify that this error is within the 30 confidence
interval.

It can be observed how the use of power supply stress
to augment the information fails to improve significantly the
model if only DC signatures are considered. However, this is
not true when the envelope detector is considered. In this case,
the gain error improves from 0.09dB to 0.04dB, approximately.

Figure 3 shows all the visited feature combinations for
the four scenarios, in a scatterplot of the generalization error
versus the number of features in the training set.

The optimum fronts for the different scenarios provide
interesting information. Thus, in the case of DC signatures
with supply stress, the model with the lowest error uses four
features, but a model with three features gives almost the same
prediction error, so the additional feature is probably not cost-
effective. Similarly, for the most complete scenario the best
model uses 11 features. However, the last steep improvement
occurs when going from 6 to 7 features. Is a slight error
improvement worth the introduction of 4 features? This is a
matter of cost optimization.

In the view of the obtained results after feature selection,
we can conclude that the DC signatures alone, even with the
addition of power supply stress, are missing some important
information to perform a good prediction of the LNA gain.
When adding the envelope detector, a much better prediction is
obtained but we can still wonder if the information is complete.
This is the question we pretend to answer in the next section.
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Fig. 3. Generalization error versus number of features, for all of the visited
cases of the four different training scenarios

IV. GUIDED FEATURE DESIGN

A. Proposed approach

A guided feature design strategy has the objectives of
identifying relevant information missing from a given set of
signatures and proposing new signatures for covering that
information.

The cornerstone of Alternate Test is that circuit signatures
and specifications are tightly correlated through a non-linear
mapping function. The justification for this affirmation is that
there is a unique underlying stochastic process —the fabrication
process— that affects the signatures and causes performance
fluctuation. Then, if process variations are the root cause
of both signature and performance variations, they are the
perfect candidates for diagnosis. However, in a real fabrication
process, we hardly have access to all the physical parameters.
On the other hand, the real fabrication process is already
modeled in most design kits and we do have access to the
process parameters at simulation level: this is the base of
Monte Carlo process simulation. The Monte Carlo variables
can then be traced back to actual physical components in the
DUT thanks to the models of transistors and passive elements.

We propose to explore the set of Monte Carlo variables as
if they were additional signatures that we could add to our
initial set of signatures for training regression models. Since
the process parameters are independent random variables, we
can simply perform stepwise addition. Starting from the best
available signature subset, we train a regression model and
evaluate the model performance adding one process parameter
at a time, include the best candidate in the test list, and iterate.
In that case, we would be able to identify which Monte Carlo
variables bring significant additional information with respect
to the already available signatures.

This methodology can be easily extended to complex SoCs.
We can perform a system-level diagnosis search including
higher-level parameters for each building block in the system.
For instance, if the circuit contains an amplifier, we could per-
form Monte Carlo simulations to retrieve its gain, bandwidth,
slew-rate, etc. at a small computational cost. These high-level
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Fig. 4. Generalization error versus number of process variables, for all of the
visited cases during the optimization search

parameters can be also included in the search list to guide the
design of new features.

The final step of the procedure consists in designing simple
tests that target the selected parameters in the DUT, in order
to add the identified missing information to the regression.
Obviously, this final step still depends on the expertise of
the designer but the diagnosis of the most important variation
causes does bring significant information: identified signatures
are those that bring relevant additional information.

As commented in the introduction, different strategies for
test generation have been proposed. The value of the proposed
procedure for guided feature design is to help the designer to
go beyond an available set of initial features selected among
these tests by proposing new ones.

B. Case study: RF Low Noise Amplifier

Going back to our LNA case study, after feature selection
we were able to obtain good predictions for its gain, while
reducing the number of necessary measurements. But the
question of completeness still remains: could we add new
signatures in order to improve the predictions even more?
Is there non-modeled information? In order to explore these
questions, this section revisits our LNA case study from the
point of view of the proposed strategy for guided feature
design.

Firstly, in order to get an intuitive insight into the infor-
mation contained into the Monte Carlo variables, we perform
our feature selection search over the 33 process variables that
are defined in the design kit of the selected 90nm CMOS
technology. After 9 iterations, we end up with a reduced model
of 12 process variables and a generalization error of 0.024dB,
as can be seen in Figure 4.

This error value is significantly lower than that obtained
with DC signatures, and lower than that obtained including
the envelope detector with power supply stress. These feature
sets can thus be improved if we are able to design specific
tests that target the missing information.

In order to diagnose which parameters should be identified,
we perform a stepwise addition of the 33 process parameters.
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Fig. 5. Generalization error for stepwise addition of process parameters,

starting from the DC signatures with supply stress.

For this example, we consider as initial set of signatures the
best feature set from the DC signatures with supply stress
(corresponding to the second case in Figure 2).

Figure 5 shows the generalization errors obtained by adding
one process parameter, for four iterations. At the fourth
iteration, we see that the improvement is marginal. As a result
of this procedure, we can identify three Monte Carlo process
variables —labelled 1, 27, and 33 in Fig. 5- that bring sig-
nificant additional information. By tracing back these process
variables to the physical models of the devices in the design
kit, we found out that our algorithm pointed at metal-insulator-
metal capacitors, polysilicon resistors, and RF inductors as
non-modeled information. This result is coherent with an
electrical analysis of the DUT: our initial set of signatures was
composed by DC levels, so parametric variations of capacitors
and inductors would not have been detected, leading to non-
modeled information in our regression.

The next step to improve our regression is then to design
new tests to target these components. In this example we
rely on Process Monitors for this purpose. These structures
mimic selected parts of the DUT and are located in the close
proximity of the replicated sections, in such a way that process
variations affect both structures in a similar way [5].

Thus, we replicate capacitors C; and C (capacitor Cj is
equal to C9), and resistor R in the arrangement shown in Fig.
6a. An external low-frequency AC source is used at the input
of each monitor circuit for measuring its impedance.

This methodology, however, is not appropriate for charac-
terizing the effect of process variations across the inductors
in the LNA, given that replicating inductors Ly, L, and Lg
would result in an excessive area overhead. Instead of that, we
propose to use the arrangement depicted in Fig. 6b. In this test
set up the signal path in the LNA is broken by switching off
the cascode transistor M 2. An external AC source can then be
used to characterize the impedance seen from the Vpp node,
which is a function of the inductance value of L.

With these simple low-cost tests, we get four additional
signatures. Including these new signatures, we then re-run the
optimization process from scratch for the same four scenarios
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Fig. 6. a) R and C monitors; b) Test set-up for detecting inductance variations

as in figure 2. Table I shows a summary of the past and new
results.

In all scenarios, the introduction of passive signatures
greatly improves the obtained prediction error. In particular,
it is worth noticing that with the complete set of signatures a
precision of 0.025dB is achieved, which is similar to the limit
obtained by regressing directly from the process variables. The
best improvement is observed for the case of DC signatures
with supply stress, which lowers the prediction error from
0.18dB to 0.042dB. This precision is comparable to what was
obtained with the envelope detector and the supply stress, but
without the need of any BIST circuitry.

V. CONCLUSIONS

This work proposes simple generic methodologies for the
selection of information rich features and for guiding the
design of relevant new features. Both methodologies allow to
optimize Alternate Test programs at design level.

The proposed selection and design algorithms have been
validated in a RF LNA case study to demonstrate its feasibility.
Obtained results show a clear potential of the proposed tech-
niques to improve the quality of the input space of signatures
in an Alternate Test program.
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TABLE 1
SUMMARY OF THE BEST FEATURE SETS RESULTS

Feature space Prediction error OErr Verification set error M feqture  Reduction
(in dB) (in dB) (in dB) factor

DC 0.189 0.018 0.191 8 -
DC + vdd 0.180 0.014 0.187 4 -
DC + env. 0.092 0.009 0.090 9 -
DC + env. + vdd 0.040 0.011 0.039 11 -
Process Variables 0.024 0.017 0.019 12 -
DC + passive 0.065 0.011 0.066 12 2.9
DC + vdd + passive 0.042 0.014 0.036 9 4.3
DC + env. + passive 0.030 0.014 0.027 11 3.1
DC + env. + vdd + passive 0.025 0.014 0.022 13 1.6




