
A Fully Automated and
Configurable Cost-Aware
Framework for Adaptive
Functional Diagnosis
Cristiana Bolchini and Luca Cassano
Politecnico di Milano

Functional test/diagnosis is used when struc-
tural approaches are not suitable due to the system
complexity [1] and for assessing the correctness of
the overall system after testing all the components
(with structural techniques). Specifically, functional
diagnosis identifies the cause of a failure of an
electronic system by applying a set of input stimuli
(tests), observing the system responses and com-
paring them with the expected ones, without any
knowledge of the system internal structure. Figure 1
sketches a typical scenario where functional diagno-
sis is used to identify the cause of a problem, either
detected during the postmanufacturing testing, or
occurred during the lifetime of the system.

Because of the complexity of modern electronic
boards, often the effectiveness of diagnosis is more
affected by the experience and the skills of the
test/diagnosis team than by the used CAD tools;

therefore, a strong con-tribution from the user
is usually necessary to drive the
diagnosis process. To tackle this problem, a
number of “intelligent” techniques have
been proposed in the last years.

Research proposals related to board-level func-
tional diagnosis fall into two main classes: design-
time and runtime techniques. The former, such
as the ones presented in [2], [4], and [5], aim at
extracting a model of the board under analysis start-
ing from previously executed diagnoses. They focus
on extracting the most accurate model from the
smallest amount of historical data. Such a model is
then used at runtime to determine the faulty compo-
nent in a “traditional” way. When a faulty system is
found, all available tests are executed and their out-
come (i.e., the syndrome) is interpreted with respect
to the available model (either extracted by means
of the previously mentioned approaches or provided
by the engineers) to identify the faulty component.
The work in [6] tries to further optimize the model
by identifying redundant tests.

Runtime solutions focus on reducing the number
of executed tests required for the final diagnosis.
In [7], Amati et al. introduce the concept of adaptive
incremental diagnosis, i.e., the approach that incre-
mentally executes (groups of) tests and, based on

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. To access the final
edited and published work see: http://dx.doi.org/10.1109%2FMDAT.2016.2550584

their actual outcomes (referred to as a partial syn-
drome), adapts the execution order of the remaining
tests, and interrupts the diagnosis process as soon as
the faulty component can be identified.

This quest for enabling adaptability in test/
diagnosis to reduce costs and increase yield
has also been highlighted by the International
Technology Roadmap for Semiconductors.
Moreover, since there can be constraints on the
effort to be devoted to the diagnosis (related to
tests/components’ costs) we deem it interesting to
enable the user to configure the diagnosis process
to be interrupted when a reasonable result has
been achieved in terms of a restricted subset of
potentially faulty components.

To pursue such goal, we propose an automated
and configurable cost-aware framework for adap-
tive incremental board-level functional diagnosis,
exploiting machine learning (ML) techniques to
drive the diagnosis process. The innovative contribu-
tion is the integration of the tests and components’
cost information and its adaptable exploitation, so
that the user may accept a lower accuracy in con-
sidering possibly healthy components as faulty,
provided their overall cost is acceptable, and the
savings in terms of nonexecuted tests is relevant.
The framework has a twofold role: on the one hand
to automatically drive the diagnosis process by
adaptively executing tests based on the incremen-
tal collected outcomes and by determining whether
the process can be interrupted because the faulty
component(s) is identified (dynamic analysis) also
leveraging accuracy for costs; on the other hand, to
provide feedback on the discriminating power of
the available test set and on the isolation capability
of the components (static analysis), thus allowing
designers to modify the test suite to increase the
diagnostic resolution.

Functional diagnosis of complex
electronic boards

After the assembling of all the components, an
electronic board has to go through a number of test-
ing/diagnosis activities to determine if the system is
fault-free. The board is first analyzed by automated
X-ray/optical inspection, and then by in-circuit struc-
tural test. These two tests rely on the knowledge of
the internal structure of the components and allow
one to detect a variety of defects, such as open/short
circuits, or thinning of the solder. Finally, functional
testing is performed to detect faults not targeted by
structural tests, using patterns that verify whether the
input/output behavior is as expected.

If functional test highlights a problem, functional
diagnosis is performed to identify the cause, that
is, the faulty component. This activity is driven by
multiple goals: 1) identify the faulty component with
the highest accuracy in case of expensive boards for
which a rework is economically viable; 2) identify
fault-free expensive components to be extracted and
reused, in boards where a rework is not economi-
cally sustainable but components are expensive and
it would be anti-economical to throw them away;
and 3) keep track of the components’ failure rates
from various vendors.

Several techniques have been proposed [2],
[3], [4], [9] for generating an accurate model of the
board under analysis, starting from a limited and
possibly incomplete log of syndromes and associ-
ated faulty components, using decision trees (DTs)
in [2] and the Dempster–Shafer theory in [3]. In [4],
three different techniques are presented, exploiting
artificial neural networks, support vector machines
(SVMs) and weighted majority voting between these
two techniques. An approach based on SVMs for an
incremental learning of the component–test relation
is presented in [9].

Once the accurate model is built, “traditional”
runtime diagnosis processes execute all the avail-
able tests and analyze the complete syndrome to
identify the faulty component.

Adaptive incremental diagnosis has been intro-
duced in [7]; it executes the available tests incre-
mentally, adapting the behavior of the diagnosis
engine to the outcomes it collects. At each step,
only a subset of the available tests is used, and
based on their outcome and of all the previously
executed ones, the process may be interrupted (by
means of a so-called stop condition) identifying the

Figure 1. Scenario where functional
diagnosis is exploited.

faulty component, if enough information has been
collected. The technique proposed in [7] relies on
the Bayesian belief networks to build a model rep-
resenting the probabilistic relation between failing
tests and faulty components. Given a partial syn-
drome the technique determines the probability of
each component to be the faulty one and based on
such information, the engine empirically decides to
interrupt the process or selects the next test to be
executed. The process required the diagnosis engi-
neer’s experience. To overcome such limitations,
an engine based on data mining has been proposed
in [10], and one on statistical data in [12] while a
comparative analysis of different ML-based engines
is presented in [11].

In the context of an incremental diagnosis
approach, where not all available tests are executed,
to save time/effort, it is worth noting that, while the
goal of all the previously proposed adaptive incre-
mental approaches is achieving a complete accu-
racy, the framework here presented aims at enabling
the user to tune the diagnosis process to meet cost
constraints while keeping the desired level of accu-
racy. The difference between the approaches pre-
sented in [2]–[4] and [9] and the present work is
that here we focus on driving the runtime diagnosis
process and minimize the number of executed tests,
while the other approaches focus on the generation
of an accurate and efficient system model at design
time.

Proposed diagnosis approach
The structure of the proposed framework is

shown in Figure 2. It takes as input a model of the
board, which considers the components and the
tests designed for them and it expresses the prob-
abilistic relationships between faulty components
and failing tests. The framework is composed of a
static analyzer and a runtime analyzer.

The static analyzer is used at design time, as soon
as a model of the board is defined. The goal is to
provide feedback to designers about the diagnostic
resolution that the set of tests can provide, about the
components that could not be isolated and about
the tests that would rarely be applied. With this infor-
mation the designers can improve the model to be
exploited at runtime.

The runtime analyzer is applied when the actual
diagnosis process has to be performed on a real

board after a misbehavior has been observed. It
drives the actual diagnosis process by identifying a
test execution order and by determining when to
stop the process because the faulty component(s)
can be identified while also determining compo-
nents that are surely fault-free. Details about the two
engines upon which the runtime analyzer relies can
be found in [10] and [12].

Once the user configures goals and constraints,
the framework acts autonomously, not requiring any
further knowledge/information.

The system model
Electronic boards are generally composed of

several components and for each component a
number of tests have been typically defined at
design time, to be applied directly to the inputs
of the component and are designed to fail when
the associated component is faulty, and to pass
otherwise. Nevertheless, given the complexity of
modern electronic boards, when tests are applied
to the inputs of the board, it is possible that a test
designed for a given component does not even
fail when the component is faulty or that a test
designed for a given component fails when a differ-
ent component is faulty because of controllability/
observability issues in the board. In this context,
test engineers can only qualitatively estimate the
probability that given a component being faulty,
a test will fail. Based on these considerations, we
adopt the model presented in [7] (similar to that
used in [8]) where electronic boards are repre-
sented as a components–tests matrix (CTM), where
each entry ctm​​​​ i,j​​​ represents the probability that

Figure 2. The proposed framework.

test ​​T​ j​​​   fails when component ​​C​ i​​​ is faulty (taking into
account the fact that masking effects may occur,
for instance, because of interactions with other
components).

The static analyzer
The structure of the static analyzer is depicted

in Figure 3: it consists of the syndromes analyzer
and the tests analyzer. The former determines what
components are never isolated, i.e., components that
can never be individually identified as faulty, and
what components are difficult to diagnose, e.g., iden-
tified by a combination of fail/pass that have a low
probability of occurrence, based on the given CTM.
Furthermore, the tests analyzer determines what tests
would rarely be executed at runtime in the incremen-
tal approach, because they provide relatively low
discriminating power. By exploiting this information,
the designers could add tests to increase the diagnos-
tic power of the test set itself or remove tests without
compromising the diagnosis accuracy.

Syndromes analyzer
The syndromes analyzer generates the list of

all the legal syndromes for the CTM under analy-
sis (not legal syndromes are those that can occur
only if more than one component is faulty or if no
test fails). For each legal syndrome, the associated
faulty candidate component(s) are identified. At this
point, it is possible to identify the not isolated com-
ponents (NICs) (i.e., those components that never
appear as the only faulty component associated with
a syndrome).

Another piece of information that is gathered
from the system model is the occurrence probabil-
ity of each one of the legal syndromes. Given the

combination of tests that may pass/fail when a com-
ponent is faulty, each combination (i.e., syndrome)
has a given probability to occur computed on the
​ct ​m​ i,j​​​ values specified in the CTM. Such information
is used to lead the automatic engine toward the most
probable situations, without compromising the pos-
sibility of less frequent cases.

The static analyzer identifies the rare syndromes,
i.e., those syndromes having occurrence proba-
bility lower than a configurable value ​​p​ rare​​​. The
components appearing as faulty candidates in rare
syndromes only are identified as rarely isolated com-
ponents (RICs).

Tests analyzer
It relies on a DT representing the information

putting into relation failing/passing tests with the
faulty components as a binary tree. In more detail,
each internal node of the tree represents a test, while
leaves represent faulty candidate components;
branches between nodes represent test outcomes,
i.e., PASS or FAIL: thus each path from the root node
to a leaf represents a syndrome with the associated
faulty candidate. The DT can be built exploiting
either a log of previously performed testing activ-
ities, containing ​<​syndrome, faulty candidate(s)​>​
pairs, or the CTM model itself. Once the tree has
been built, each path of the tree is traversed starting
from the root, while the ratio between the number of
visited nodes and the total number of available tests
is lower than a configurable percentage ​​n​ maxt

​​​. All
visited tests will be considered as essential tests, i.e.,
tests that cannot be discarded from the CTM, while
all the other tests will be considered as rarely used
tests (RUTs).

Runtime analyzer
The runtime analyzer drives the diagnosis pro-

cess by performing the following steps: 1) select a
test to be executed; 2) interact with either the test
engineer or the automatic test equipment to execute
the selected test and collect its outcome; 3) based
on the current partial syndrome, i.e., the outcome of
all the already executed tests, identify the surely not
faulty components and refine the set of the possibly
faulty components; and 4) based on the specified
stop policy, determine whether the diagnosis pro-
cess should be halted or if it is necessary to repeat
and continue from step 1.Figure 3. Architecture of the static analyzer.

The structure of the runtime analyzer is
depicted in Figure 4: it takes as input the CTM
model and other options, among which are the
ML-based engine the designer wants to exploit and
the desired stop policy. The tool is mainly com-
posed of two subengines: the test selection engine
and the test outcome exploitation engine. Their
behavior is related to the adopted ML engine/pol-
icy; here we provide an overview of the framework,
without delving in the specific characteristics, that
have been comparatively investigated in [11].

The test selection engine determines the next
test to be executed, according to the current partial
syndrome. The test outcome exploitation engine is
in charge of exploiting the current partial syndrome
to determine: 1) which components can be consid-
ered as surely not faulty; 2) which components can
be considered as faulty candidates; and 3) when to
stop the diagnosis process according to the adopted
stop policy. At present, the detailed information of
a priori components’ failure rates is not exploited in
the framework. Thus, all components are considered
to have an equal probability of
being faulty. Varying probabili-
ties will be considered in future
work.

Two stop policies have been
defined: the accuracy-aware and
the innovative cost-aware pol-
icy. The former has the unique
goal of minimizing the number

of faulty candidates by excluding
as many false positives as possible.
The latter aims at finding a tradeoff
between the achieved accuracy and
the diagnosis cost, both in terms of
test cost and board fixing cost (rework
cost plus components cost). In more
detail, when using the new cost-aware
policy, the test/diagnosis engineer has
to specify two parameters, namely ​​
C​ maxt

​​​ and ​​C​ maxf
​​​, as well as a cost value

for all the tests and components in the
CTM and the board rework cost. ​​C​ maxt

​​​
represents the maximum affordable
test cost; similarly, ​​C​ maxf

​​​ represents
the maximum affordable fixing cost.
The engine keeps track of the sum of
the costs of the already executed tests
(​​C​ t​​​), as well as of the current fixing
cost (​​C​ f​​​), i.e., the sum of the costs of

the current faulty candidates and the board rework
cost. When ​​C​ t​​ > ​C​ maxt

​​​ or ​​C​ f​​ < ​C​ maxf
​​​, the diagnosis pro-

cess ends. This may occur before one or more faulty
candidates have been identified; in such a case, all
components not classified as fault-free are consid-
ered as faulty candidates. The rationale behind the
cost-aware stop policy is twofold: it reduces the num-
ber of executed tests, and thus the tests cost (con-
straints on the test cost), and it allows one to avoid
to excessively refining the set of faulty candidates
when cost-wise there are no benefits (constraints on
the components cost).

Benefits
Here, we report some results from the applica-

tion of the proposed framework to three industrial
boards, whose characteristics (e.g., number of com-
ponents ​​n​ C​​​, tests ​​n​ T​​​, and legal syndromes ​​n​ LS​​​) are
shown in the left-hand part of Table 1.

We first applied the static analyzer; the num-
ber of not isolated components (#NICs), of rarely

Figure 4. Architecture of the runtime analyzer.

Table 1 Industrial boards: Characteristics and static analyzer results.

isolated components (#RICs) and of rarely used
tests (#RUTs) are reported in the right-hand part
of Table 1. It is worth noting that the difficult-to-
diagnose components (#NICs plus #RICs) represent
a high percentage of the total number of com-
ponents (about 69% on average). Similarly, the

percentage of rarely used tests is high (about 59%
on average).

The runtime analyzer has then been used to
evaluate the benefits of the incremental approach,
with and without cost constraints, with respect to
the “traditional diagnosis solution” based on the

Figure 5. Accuracy and executed tests achieved by the traditional diagnosis and by the proposed
framework.

execution of the complete test suite. We evaluated
and reported the average accuracy of the diagno-
sis and the number of executed tests to identify the
faulty candidate(s). We used the DT-based diagno-
sis engine because, as shown in [11], it seems to be
the most scalable and robust engine, given the size
of the analyzed boards. For each board, three cam-
paigns have been executed

1) accuracy-aware policy: minimization of the num-
ber of tests, provided a complete accuracy is
achieved;

2) test cost-aware policy, with a constraint on the
test cost, such that the diagnosis is interrupted
when the cost of the executed tests reaches a
fixed percentage of the cost of the complete test
suite;

3) component cost-aware policy, with a constraint
on the components cost, such that the diagnosis
is interrupted when the cost of the components
identified as faulty decreases below a fixed
threshold.

For cost-aware policies, when test costs are
adopted as the main constraint, we ran two experi-
ments using a 30% and 50% threshold, interrupting the
diagnosis when 30% and 50% of tests remain, respec-
tively. In this case, the configurable framework allows
one to decide how much effort to use, in relation also
with the use of the test machinery and time.

When component costs are used to constrain the
diagnosis, the adopted thresholds are 20% and 30%,
so that the diagnosis is interrupted when the cost of
the presumably faulty components is 20% and 30%
of the board total components’ cost, respectively.
In this case, there are always several false positives,
thus lowering the level of accuracy; however, since
the total cost of the faulty components errone-
ously considered as faulty is acceptable, this is not
an issue. This solution is preferable when the user
deems as not interesting to exactly know whether
a component is faulty or fault-free if its substitution
incurs a limited cost/rework effort.

Figure 5 reports the comparison of the accuracy
and the number of executed tests achieved by the
traditional diagnosis procedure and by the proposed
framework with the different policies. The proposed
framework always achieves a high accuracy (about
96% on average) and largely reduces the percentage
of executed tests (about 55% on average). In general,

although compromising accuracy, the approach
minimizes diagnosis costs, while meeting the user’s
constraints.

the proposed cost-aware diagnosis framework
implements a fully automated incremental adaptive
approach to identify faulty components, allowing the
diagnosis engineer to configure the process to
meet his/her constraints and priorities that may
differ in different contexts. Therefore, a unique
characteristic of this framework is the possibility of
configuring it to leverage accuracy for tests/
components cost-related benefits.

Acknowledgements
This work was supported in part by the Cisco

University Research Program Fund—Gift
#2014-130689 (3696), an advised fund of Silicon
Valley Community Foundation.

References
[1] P. Maxwell, I. Hartanto, and L. Bentz, “Comparing

functional and structural tests,” in Proc. Int. Test Conf.,

2000, pp. 400–407.

[2] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu, “Adaptive

board-level functional fault diagnosis using decision

trees,” in Proc. Asian Test Symp., 2012, pp. 202–207.

[3] F. Hongxia, K. Chakrabarty, W. Zhiyuan and G. Xinli,

“Diagnosis of Board-Level Functional Failures Under

Uncertainty Using Dempster–Shafer Theory,” IEEE

Trans. CAD Integr. Circuits Syst., vol. 31, no. 10,

pp. 1586–1599, 2012.

[4] F. Hongxia, K. Chakrabarty, W. Zhiyuan and G. Xinli,

“Board-level functional fault diagnosis using artificial

neural networks, support-vector machines, and

weighted-majority voting,” IEEE Trans. CAD Integr.

Circuits Syst., vol. 32, no. 5, pp. 723–736, 2013.

[5] Z. Zhang, Z. Wang, X. Gu, and K. Chakrabarty, “Board-

level fault diagnosis using bayesian inference,” in Proc.

VLSI Test Symp., 2010, pp. 244–249.

[6] F. Ye, K. Chakrabarty, Z. Zhang, and X. Gu,

“Information-theoretic framework for evaluating and

guiding board-level functional-fault diagnosis,” IEEE

Design Test, vol. 31, no. 3, pp. 65–75, 2014.

[7] L. Amati et al., “An incremental approach to functional

diagnosis,” in Proc. Int. Symp. Defect Fault Tolerance

VLSI Syst., 2009, pp. 392–400.

[8] Fault Detective, 4.0, Agilent Technologies. [Online].

Available: www.agilent.com/find/fd

[9] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu, “Board-

level functional fault diagnosis using multikernel

support vector machines and incremental learning,”

IEEE Trans. CAD Integr. Circuits Syst., vol. 33, no. 2,

pp. 279–290, 2014.

	[10] C. Bolchini, L. Cassano, P. Garza, E. Quintarelli, and

F. Salice, “An expert cad flow for incremental functional

diagnosis of complex electronic boards,” IEEE Trans.

CAD Integr. Circuits Syst., vol. 34, no. 5, pp. 835–848,

2015.

	[11] C. Bolchini and L. Cassano, “Machine learning-based

techniques for board-level incremental functional

diagnosis: a comparative analysis,” in Proc. Int. Symp.

Defect Fault Tolerance VLSI Nanotechnol. Syst., 2014,

pp. 246–251.

	[12] C. Bolchini and L. Cassano, “A novel approach

to incremental functional diagnosis for complex

electronic boards,” IEEE Trans. Comput., vol. 65,

no. 1, pp. 42–52, 2016.

Cristiana Bolchini is a Professor at Politecnico
di Milano, Milan, Italy. Her research interests cover the
areas of design and analysis of digital system with
a specific focus on dependability and context-
aware data design and management. She has
authored more than 100 papers. Bolchini has a PhD in
automation and computing engineering from
Politecnico di Milano.

Luca Cassano is currently a Postdoctoral
Research Fellow at Politecnico di Milano, Milan, Italy.
His research focuses on the use of formal methods
and machine learning techniques for fault simulation,
test-ing, untestability analysis, diagnosis, and
verification of digital circuits/systems. Cassano has a
PhD in informa-tion engineering from the University of
Pisa, Pisa, Italy.

Direct questions and comments about this article
to Cristiana Bolchini, Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano,
Milan, Italy; cristiana.bolchini@polimi.it.

