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Functional test/diagnosis is used when struc-
tural approaches are not suitable due to the system 
complexity [1] and for assessing the correctness of 
the overall system after testing all the components 
(with structural techniques). Specifically, functional 
diagnosis identifies the cause of a failure of an 
electronic system by applying a set of input stimuli 
(tests), observing the system responses and com-
paring them with the expected ones, without any 
knowledge of the system internal structure. Figure 1 
sketches a typical scenario where functional diagno-
sis is used to identify the cause of a problem, either 
detected during the postmanufacturing testing, or 
occurred during the lifetime of the system.

Because of the complexity of modern electronic 
boards, often the effectiveness of diagnosis is more 
affected by the experience and the skills of the  
test/diagnosis team than by the used CAD tools; 

therefore, a strong con-tribution from the user 
is usually necessary to drive the 
diagnosis process. To tackle this problem, a 
number of “intelligent” techniques have 
been proposed in the last years.

Research proposals related to board-level func-
tional diagnosis fall into two main classes: design-
time and runtime techniques. The former, such 
as the ones presented in [2], [4], and [5], aim at 
extracting a model of the board under analysis start-
ing from previously executed diagnoses. They focus 
on extracting the most accurate model from the 
smallest amount of historical data. Such a model is 
then used at runtime to determine the faulty compo-
nent in a “traditional” way. When a faulty system is 
found, all available tests are executed and their out-
come (i.e., the syndrome) is interpreted with respect 
to the available model (either extracted by means 
of the previously mentioned approaches or provided 
by the engineers) to identify the faulty component. 
The work in [6] tries to further optimize the model 
by identifying redundant tests.

Runtime solutions focus on reducing the number 
of executed tests required for the final diagnosis. 
In [7], Amati et al. introduce the concept of adaptive 
incremental diagnosis, i.e., the approach that incre-
mentally executes (groups of) tests and, based on 
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their actual outcomes (referred to as a partial syn-
drome), adapts the execution order of the remaining 
tests, and interrupts the diagnosis process as soon as 
the faulty component can be identified.

This quest for enabling adaptability in test/ 
diagnosis to reduce costs and increase yield 
has also been highlighted by the International 
Technology Roadmap for Semiconductors. 
Moreover, since there can be constraints on the 
effort to be devoted to the diagnosis (related to 
tests/components’ costs) we deem it interesting to 
enable the user to configure the diagnosis process 
to be interrupted when a reasonable result has 
been achieved in terms of a restricted subset of 
potentially faulty components.

To pursue such goal, we propose an automated 
and configurable cost-aware framework for adap-
tive incremental board-level functional diagnosis, 
exploiting machine learning (ML) techniques to 
drive the diagnosis process. The innovative contribu-
tion is the integration of the tests and components’ 
cost information and its adaptable exploitation, so 
that the user may accept a lower accuracy in con-
sidering possibly healthy components as faulty, 
provided their overall cost is acceptable, and the 
savings in terms of nonexecuted tests is relevant. 
The framework has a twofold role: on the one hand 
to automatically drive the diagnosis process by 
adaptively executing tests based on the incremen-
tal collected outcomes and by determining whether 
the process can be interrupted because the faulty 
component(s) is identified (dynamic analysis) also 
leveraging accuracy for costs; on the other hand, to 
provide feedback on the discriminating power of 
the available test set and on the isolation capability 
of the components (static analysis), thus allowing 
designers to modify the test suite to increase the 
diagnostic resolution.

Functional diagnosis of complex 
electronic boards

After the assembling of all the components, an 
electronic board has to go through a number of test-
ing/diagnosis activities to determine if the system is 
fault-free. The board is first analyzed by automated 
X-ray/optical inspection, and then by in-circuit struc-
tural test. These two tests rely on the knowledge of
the internal structure of the components and allow
one to detect a variety of defects, such as open/short
circuits, or thinning of the solder. Finally, functional
testing is performed to detect faults not targeted by
structural tests, using patterns that verify whether the
input/output behavior is as expected.

If functional test highlights a problem, functional 
diagnosis is performed to identify the cause, that 
is, the faulty component. This activity is driven by 
multiple goals: 1) identify the faulty component with 
the highest accuracy in case of expensive boards for 
which a rework is economically viable; 2) identify 
fault-free expensive components to be extracted and 
reused, in boards where a rework is not economi-
cally sustainable but components are expensive and 
it would be anti-economical to throw them away; 
and 3) keep track of the components’ failure rates 
from various vendors.

Several techniques have been proposed [2], 
[3], [4], [9] for generating an accurate model of the 
board under analysis, starting from a limited and 
possibly incomplete log of syndromes and associ-
ated faulty components, using decision trees (DTs) 
in [2] and the Dempster–Shafer theory in [3]. In [4], 
three different techniques are presented, exploiting 
artificial neural networks, support vector machines 
(SVMs) and weighted majority voting between these 
two techniques. An approach based on SVMs for an 
incremental learning of the component–test relation 
is presented in [9].

Once the accurate model is built, “traditional” 
runtime diagnosis processes execute all the avail-
able tests and analyze the complete syndrome to 
identify the faulty component.

Adaptive incremental diagnosis has been intro-
duced in [7]; it executes the available tests incre-
mentally, adapting the behavior of the diagnosis 
engine to the outcomes it collects. At each step, 
only a subset of the available tests is used, and 
based on their outcome and of all the previously 
executed ones, the process may be interrupted (by 
means of a so-called stop condition) identifying the 

Figure 1. Scenario where functional 
diagnosis is exploited.



faulty component, if enough information has been 
collected. The technique proposed in [7] relies on 
the Bayesian belief networks to build a model rep-
resenting the probabilistic relation between failing 
tests and faulty components. Given a partial syn-
drome the technique determines the probability of 
each component to be the faulty one and based on 
such information, the engine empirically decides to 
interrupt the process or selects the next test to be 
executed. The process required the diagnosis engi-
neer’s experience. To overcome such limitations, 
an engine based on data mining has been proposed 
in [10], and one on statistical data in [12] while a 
comparative analysis of different ML-based engines 
is presented in [11].

In the context of an incremental diagnosis 
approach, where not all available tests are executed, 
to save time/effort, it is worth noting that, while the 
goal of all the previously proposed adaptive incre-
mental approaches is achieving a complete accu-
racy, the framework here presented aims at enabling 
the user to tune the diagnosis process to meet cost 
constraints while keeping the desired level of accu-
racy. The difference between the approaches pre-
sented in [2]–[4] and  [9] and the present work is 
that here we focus on driving the runtime diagnosis 
process and minimize the number of executed tests, 
while the other approaches focus on the generation 
of an accurate and efficient system model at design 
time.

Proposed diagnosis approach
The structure of the proposed framework is 

shown in Figure 2. It takes as input a model of the 
board, which considers the components and the 
tests designed for them and it expresses the prob-
abilistic relationships between faulty components 
and failing tests. The framework is composed of a 
static analyzer and a runtime analyzer.

The static analyzer is used at design time, as soon 
as a model of the board is defined. The goal is to 
provide feedback to designers about the diagnostic 
resolution that the set of tests can provide, about the 
components that could not be isolated and about 
the tests that would rarely be applied. With this infor-
mation the designers can improve the model to be 
exploited at runtime.

The runtime analyzer is applied when the actual 
diagnosis process has to be performed on a real 

board after a misbehavior has been observed. It 
drives the actual diagnosis process by identifying a 
test execution order and by determining when to 
stop the process because the faulty component(s) 
can be identified while also determining compo-
nents that are surely fault-free. Details about the two 
engines upon which the runtime analyzer relies can 
be found in [10] and  [12].

Once the user configures goals and constraints, 
the framework acts autonomously, not requiring any 
further knowledge/information.

The system model
Electronic boards are generally composed of 

several components and for each component a 
number of tests have been typically defined at 
design time, to be applied directly to the inputs 
of the component and are designed to fail when 
the associated component is faulty, and to pass 
otherwise. Nevertheless, given the complexity of 
modern electronic boards, when tests are applied 
to the inputs of the board, it is possible that a test 
designed for a given component does not even 
fail when the component is faulty or that a test 
designed for a given component fails when a differ-
ent component is faulty because of controllability/
observability issues in the board. In this context, 
test engineers can only qualitatively estimate the 
probability that given a component being faulty, 
a test will fail. Based on these considerations, we 
adopt the model presented in [7] (similar to that 
used in [8]) where electronic boards are repre-
sented as a components–tests matrix (CTM), where 
each entry ctm​​​​ i,j​​​ represents the probability that  

Figure 2. The proposed framework.



test ​​T​ j​​​   fails when component ​​C​ i​​​ is faulty (taking into 
account the fact that masking effects may occur, 
for instance, because of interactions with other 
components).

The static analyzer
The structure of the static analyzer is depicted 

in Figure 3: it consists of the syndromes analyzer 
and the tests analyzer. The former determines what 
components are never isolated, i.e., components that 
can never be individually identified as faulty, and 
what components are difficult to diagnose, e.g., iden-
tified by a combination of fail/pass that have a low 
probability of occurrence, based on the given CTM. 
Furthermore, the tests analyzer determines what tests 
would rarely be executed at runtime in the incremen-
tal approach, because they provide relatively low 
discriminating power. By exploiting this information, 
the designers could add tests to increase the diagnos-
tic power of the test set itself or remove tests without 
compromising the diagnosis accuracy.

Syndromes analyzer
The syndromes analyzer generates the list of 

all the legal syndromes for the CTM under analy-
sis (not legal syndromes are those that can occur 
only if more than one component is faulty or if no 
test fails). For each legal syndrome, the associated 
faulty candidate component(s) are identified. At this 
point, it is possible to identify the not isolated com-
ponents (NICs) (i.e., those components that never 
appear as the only faulty component associated with 
a syndrome).

Another piece of information that is gathered 
from the system model is the occurrence probabil-
ity of each one of the legal syndromes. Given the 

combination of tests that may pass/fail when a com-
ponent is faulty, each combination (i.e., syndrome) 
has a given probability to occur computed on the  
​ct ​m​ i,j​​​ values specified in the CTM. Such information 
is used to lead the automatic engine toward the most 
probable situations, without compromising the pos-
sibility of less frequent cases.

The static analyzer identifies the rare syndromes, 
i.e., those syndromes having occurrence proba-
bility lower than a configurable value ​​p​ rare​​​. The 
components appearing as faulty candidates in rare
syndromes only are identified as rarely isolated com-
ponents (RICs).

Tests analyzer
It relies on a DT representing the information 

putting into relation failing/passing tests with the 
faulty components as a binary tree. In more detail, 
each internal node of the tree represents a test, while 
leaves represent faulty candidate components; 
branches between nodes represent test outcomes, 
i.e., PASS or FAIL: thus each path from the root node
to a leaf represents a syndrome with the associated
faulty candidate. The DT can be built exploiting
either a log of previously performed testing activ-
ities, containing ​<​syndrome, faulty candidate(s)​>​ 
pairs, or the CTM model itself. Once the tree has
been built, each path of the tree is traversed starting
from the root, while the ratio between the number of
visited nodes and the total number of available tests
is lower than a configurable percentage ​​n​ maxt

​​​. All 
visited tests will be considered as essential tests, i.e.,
tests that cannot be discarded from the CTM, while
all the other tests will be considered as rarely used
tests (RUTs).

Runtime analyzer
The runtime analyzer drives the diagnosis pro-

cess by performing the following steps: 1) select a 
test to be executed; 2) interact with either the test 
engineer or the automatic test equipment to execute 
the selected test and collect its outcome; 3) based 
on the current partial syndrome, i.e., the outcome of 
all the already executed tests, identify the surely not 
faulty components and refine the set of the possibly 
faulty components; and 4) based on the specified 
stop policy, determine whether the diagnosis pro-
cess should be halted or if it is necessary to repeat 
and continue from step 1.Figure 3. Architecture of the static analyzer.



The structure of the runtime analyzer is 
depicted in Figure 4: it takes as input the CTM 
model and other options, among which are the 
ML-based engine the designer wants to exploit and
the desired stop policy. The tool is mainly com-
posed of two subengines: the test selection engine
and the test outcome exploitation engine. Their
behavior is related to the adopted ML engine/pol-
icy; here we provide an overview of the framework, 
without delving in the specific characteristics, that
have been comparatively investigated in [11].

The test selection engine determines the next 
test to be executed, according to the current partial 
syndrome. The test outcome exploitation engine is 
in charge of exploiting the current partial syndrome 
to determine: 1) which components can be consid-
ered as surely not faulty; 2) which components can 
be considered as faulty candidates; and 3) when to 
stop the diagnosis process according to the adopted 
stop policy. At present, the detailed information of 
a priori components’ failure rates is not exploited in 
the framework. Thus, all components are considered 
to have an equal probability of 
being faulty. Varying probabili-
ties will be considered in future 
work.

Two stop policies have been 
defined: the accuracy-aware and 
the innovative cost-aware pol-
icy. The former has the unique 
goal of minimizing the number 

of faulty candidates by excluding 
as many false positives as possible. 
The latter aims at finding a tradeoff 
between the achieved accuracy and 
the diagnosis cost, both in terms of 
test cost and board fixing cost (rework 
cost plus components cost). In more 
detail, when using the new cost-aware 
policy, the test/diagnosis engineer has 
to specify two parameters, namely ​​
C​ maxt

​​​ and ​​C​ maxf
​​​, as well as a cost value 

for all the tests and components in the 
CTM and the board rework cost. ​​C​ maxt

​​​ 
represents the maximum affordable 
test cost; similarly, ​​C​ maxf

​​​ represents 
the maximum affordable fixing cost. 
The engine keeps track of the sum of 
the costs of the already executed tests  
(​​C​ t​​​), as well as of the current fixing 
cost (​​C​ f​​​), i.e., the sum of the costs of 

the current faulty candidates and the board rework 
cost. When ​​C​ t​​ > ​C​ maxt

​​​ or ​​C​ f​​ < ​C​ maxf
​​​, the diagnosis pro-

cess ends. This may occur before one or more faulty 
candidates have been identified; in such a case, all 
components not classified as fault-free are consid-
ered as faulty candidates. The rationale behind the 
cost-aware stop policy is twofold: it reduces the num-
ber of executed tests, and thus the tests cost (con-
straints on the test cost), and it allows one to avoid 
to excessively refining the set of faulty candidates 
when cost-wise there are no benefits (constraints on 
the components cost).

Benefits
Here, we report some results from the applica-

tion of the proposed framework to three industrial 
boards, whose characteristics (e.g., number of com-
ponents ​​n​ C​​​, tests ​​n​ T​​​, and legal syndromes ​​n​ LS​​​) are 
shown in the left-hand part of Table 1.

We first applied the static analyzer; the num-
ber of not isolated components (#NICs), of rarely 

Figure 4. Architecture of the runtime analyzer.

Table 1 Industrial boards: Characteristics and static analyzer results.



isolated components (#RICs) and of rarely used 
tests (#RUTs) are reported in the right-hand part 
of Table  1. It is worth noting that the difficult-to-
diagnose components (#NICs plus #RICs) represent 
a high percentage of the total number of com-
ponents (about 69% on average). Similarly, the 

percentage of rarely used tests is high (about 59% 
on average).

The runtime analyzer has then been used to 
evaluate the benefits of the incremental approach, 
with and without cost constraints, with respect to 
the “traditional diagnosis solution” based on the 

Figure 5. Accuracy and executed tests achieved by the traditional diagnosis and by the proposed 
framework.



execution of the complete test suite. We evaluated 
and reported the average accuracy of the diagno-
sis and the number of executed tests to identify the 
faulty candidate(s). We used the DT-based diagno-
sis engine because, as shown in [11], it seems to be 
the most scalable and robust engine, given the size 
of the analyzed boards. For each board, three cam-
paigns have been executed

1) accuracy-aware policy: minimization of the num-
ber of tests, provided a complete accuracy is
achieved;

2) test cost-aware policy, with a constraint on the
test cost, such that the diagnosis is interrupted
when the cost of the executed tests reaches a
fixed percentage of the cost of the complete test
suite;

3) component cost-aware policy, with a constraint
on the components cost, such that the diagnosis
is interrupted when the cost of the components
identified as faulty decreases below a fixed
threshold.

For cost-aware policies, when test costs are
adopted as the main constraint, we ran two experi-
ments using a 30% and 50% threshold, interrupting the 
diagnosis when 30% and 50% of tests remain, respec-
tively. In this case, the configurable framework allows 
one to decide how much effort to use, in relation also 
with the use of the test machinery and time.

When component costs are used to constrain the 
diagnosis, the adopted thresholds are 20% and 30%, 
so that the diagnosis is interrupted when the cost of 
the presumably faulty components is 20% and 30% 
of the board total components’ cost, respectively. 
In this case, there are always several false positives, 
thus lowering the level of accuracy; however, since 
the total cost of the faulty components errone-
ously considered as faulty is acceptable, this is not 
an issue. This solution is preferable when the user 
deems as not interesting to exactly know whether 
a component is faulty or fault-free if its substitution 
incurs a limited cost/rework effort.

Figure 5 reports the comparison of the accuracy 
and the number of executed tests achieved by the 
traditional diagnosis procedure and by the proposed 
framework with the different policies. The proposed 
framework always achieves a high accuracy (about 
96% on average) and largely reduces the percentage 
of executed tests (about 55% on average). In general, 

although compromising accuracy, the approach 
minimizes diagnosis costs, while meeting the user’s 
constraints.

the proposed cost-aware diagnosis framework 
implements a fully automated incremental adaptive 
approach to identify faulty components, allowing the 
diagnosis engineer to configure the process to 
meet his/her constraints and priorities that may 
differ in different contexts. Therefore, a unique 
characteristic of this framework is the possibility of 
configuring it to leverage accuracy for tests/
components cost-related benefits. 
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