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Abstract

We describe the emerging paradigm of self-aware computing and give
an overview of proposed architectures and applications with focus on SoC
solutions.

1 Introduction

In addition to its roots in psychology the notion of self-awareness has been used
in computing in a variety of different domains such as autonomic computing,
organic computing, adaptive systems, and self-organizing systems, often with
different, implicitly given definitions and objectives. Thus, a complete survey
with all relevant work is impossible in the limited space of this article and a
consistent treatment of this concept across all domains is a challenge. Conse-
quently, our survey is incomplete in that it does not cover all interesting work.
Rather it tries to

(a) explain the motivation of researchers and their interest in this topic,
(b) show its benefits,

(c) provide a paradigmatic reference frame, that relates to all key ingredients
of self-awareness,

(d) give a cursory historical account, and a representational and fair exposition
of the concepts of self-awareness in the various domains with systems on
chip as the main focus.

First, we briefly introduce self-awareness and provide a reference definition
of the term. Then, in section 1.2 we list benefits and motivate why researchers
have so extensively studied and used the concept. In section 2 we introduce a
paradigmatic architecture of a self-aware system (figure 2) which in our opinion
is complete in the sense that it contains all crucial elements of self-awareness.
Since in the literature the term self-awareness is often used to encompass only
parts, frequently different parts, of the elements in our paradigmatic architec-
ture, it serves as reference to which previous work can be easily related. In
section 3 we discuss the main domains where self-awareness has been more or
less extensively used, namely autonomic computing, self-adaptive systems, or-
ganic computing, and control theory. In a way, the first three sections 1, 2 and
3 can be considered as introduction to our main topic, self-awareness in SoCs.
This lengthy introduction is necessary because of the diverse use of the concept
in various domains, but we hope to provide a solid basis and understanding for
the discussion of work on on-chip self-awareness and to appreciate the use and
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Figure 1: The hierarchy of self-* properties, first proposed in 2001 but cited
here from Salehie and Tahvildari in 2009 [71].

utility of the involved concepts. Finally, in section 5 we list and briefly discuss
the most important challenges of further research in this field.

1.1 What is self-awareness?

When engineers contemplate a concept they instinctively ask how it can be
made useful and the desire to fully understand all the details and implications
seem to be less important than to find a way to utilize it for a practical end.
This has been the fate of self-awareness as a subject of study in the context
of computing during the last 20 years. The pyramid of self-* properties (fig-
ure 1), originally proposed in the IBM initiative on autonomic computing in
2003 [48,71], illustrates this point. Motivated by the objective to make soft-
ware systems more flexible and truly self-adaptive researchers have identified
self-configuration, self-healing and other self-* features as essential properties
with self-awareness and context-awareness located at the primitive level.

Although adaptive systems with no self-awareness exist, it has been argued
that a sophisticated self-model is a prerequisite for sensible adaptive behaviour
when the environment and the system itself are sufficiently complex and there
exists a causal relation between self-* properties and high quality in complex
software systems [70)].

As a consequence of this goal oriented approach in the study of self-awareness
in computing systems, the research agenda has been dominated by a quest
for utility. While this approach leads more directly to applicable results, it
also makes a deeper understanding of the concepts appear less desirable. As
an example we quote fully a definition of self-awareness offered by Kounev in
2011 [50] and in modified form also more recently in 2015 by Kounev et al. [51]:

Self-awareness, in this context, is defined by the combination of three
properties that IT systems and services should possess:

1. Self-reflective: 1) aware of their software architecture, execution
environment and the hardware infrastructure on which they are
running, ii) aware of their operational goals in terms of QoS
requirements, service-level agreements (SLAs) and cost- and



energy-efficiency targets, iii) aware of dynamic changes in the
above during operation,

2. Self-predictive: able to predict the effect of dynamic changes
(e.g., changing service workloads or QoS requirements) as well
as predict the effect of possible adaptation actions (e.g., chang-
ing service deployment and/or resource allocations),

3. Self-adaptive: proactively adapting as the environment evolves
in order to ensure that their QoS requirements and respective
SLAs are continuously satisfied while at the same time operat-
ing costs and energy-efficiency are optimized.

It is an excellent definition, which we will use as reference in this survey.
However, there are two interesting observations to note. First, self-awareness
has moved up in prominence. It has been at the bottom of the self-* pyramid in
2001 (figure 1) as a supporting feature for more advanced adaptive behaviour.
In the 2011 definition the term is used to encompass all relevant self-* proper-
ties including self-adaptiveness. In a way the pyramid has been turned upside
down because the community has realized that self-awareness is not a simple
collection of state variables that describe the state of the system (item (1) in
above definition), but it has also to include the operational goals of the system
and it has to properly reflect the effects of its own actions and of environmental
changes on these state variables. Essentially, it has to include a complete, even
though abstracted, model of the static and dynamic system properties. Once
the dynamic properties are also properly represented, a prediction, perhaps by
simulation, of the system and its interaction with the environment becomes
possible and it is self-predictive according to item (2) in Kounev’s definition.
Based on this capacity of prediction it can proactively adapt its own actions
earlier than it would otherwise be possible (item (3)). Hence, rather than being
a simple elementary property to be used by a self-adapting system controller,
self-awareness, once fully accomplished, makes proactive, adaptive behaviour
almost straight forward.

The second point to note about the definition is, that it is purely utilitarian
in that it does not try to capture the essence of the rich concept of self-awareness.
It assumes that self-awareness as defined, i.e. self-reflective + self-predictive +
self-adaptive, is useful for accomplishing the QoS requirements and the service-
level agreements of the system, and thus, it should be implemented. It does
not address the question, why it deserves to be a separate concept and what
it adds to self-reflective, self-predictive and self-adaptive. Although we have
no definite answer to these questions it may well worth to ponder them in
order to identify additional aspects that are essential for self-awareness but
not yet fully accounted for in the state of the art. There is some indication
that learning, keeping track of history and dynamic goal management are such
essential aspects. For instance, Chandra et al. [12] argue that a system has to
acquire a substantial part of the self-model during operation by some kind of
learning process to be considered self-aware. Externally built and implanted
knowledge does not suffice. However, their argument is not of principal nature
but claims that it will be very difficult to develop a sufficiently accurate self-
model without a dynamic tuning and optimization process. While this may be
debatable it illustrates the complexity of the concept even if the only concern
is its usefulness in an engineering endeavor.



As we discuss in section 3, autonomic computing is not the only branch of
research that has struggled with the concept of self-awareness. Organic comput-
ing, bio-inspired computing and self-organization are other prominent lines of
research that have approached the topic from different angles and contributed
with specific insights and solutions. Before we discuss them in section 3, we
summarize the potential benefits (section 1.2) and sketch a self-aware comput-
ing paradigm in section 2, that serves as a reference and reflects to some degree
all major proposals for self-aware systems and architectures.

1.2 Benefits in Systems on Chip

Researchers of self-awareness generally argue that it allows a system to deal bet-
ter with complexity. The complexity comes from the system itself (its structure
and its state space), from the environment, and from the exceedingly diverse
goals and objectives it has to meet.

Hardware state assessment and management: Self-awareness in hard-
ware systems often facilitates the management of temperature [80], power /energy
[29, 36, 80] and real-time performance [20, 36, 55]. Also, ageing effects are ad-
dressed with increasingly complex models to assess the progress of ageing and
select counter measures [25].

Resource allocation: Given the often high number of processor, memory
and interconnect resources available, resource allocation is a common target of
self-aware enabled management schemes in both hardware and software. Task
allocation and MPSoC configuration with higher energy efficiency based on
cross-layer self-awareness on chip is proposed by Sarma et al. [78]. Because the
approach extends across individual components (cores, routers) and layers (HW,
NoC, OS middleware, application), local assessments have to be integrated into
a comprehensive system level assessment. Based on a large number of sensors
and comprehensive self-assessment of the system load balancing, task allocation,
scheduling and migration for MPSoCs result in significant improvements [79,82].
In the SElf-awarE Computing (SEEC) framework dynamic adaptation through
a smart interface between platform and application is achieved [36,73]. The
application registers its performance goals and the platform is responsible for
meeting those goals by continuously monitoring the system’s performance and
appropriately adjusting the resource allocation.

An appropriate self-model allows to allocate scarce communication resources
efficiently. Happe and Trammel-Keller use flexible protocol stacks [35] to allow
for dynamic rearrangements and optimization of the communication protocols
based on needs, requirements and constraints.

In general IT systems meeting Quality of service requirements and service-
level agreements under energy-cost constraints is a tremendously complex task [50].
This challenge has driven the field of autonomic computing during the last two
decades and with the growing size and complexity of the applications and the
IT systems, the self-models and the self-awareness concepts have grown in com-
plexity and sophistication as well [48,51].



Reaction to changes in the environment: Many systems that interact
with the physical environment by means of sensors and actuators have to adapt
to changing conditions. Adaptive systems, as for example surveyed by Krupitzer
and Becker [54] and further elaborated in section 3.2, have been studied in
various applications. By providing a comprehensive assessment of the state
of the system and its environment self-awareness offers a solid foundation for
adaptation decisions and consequently can increase the quality of adaption.
Indeed, we expect a direct dependence of the quality of adaption on the quality
of self-assessment.

In summary we conclude that self-awareness leads to more sensible behaviour
based on more detailed and often more explicit representation of the system’s
goals, its own state (available resources, faults, etc.), and the environment.
Moreover, it leads to more efficiency due to better and adequate usage of re-
sources. It can be used to detect aberrations of the system’s behavior (faults,
aging, malicious attacks, design errors, etc.), and of the environment. However,
many of these potential benefits are only superficially studied and it remains to
be seen what solutions can be found and how effective they are.

2 Self-Awareness Paradigm

Figure 2 shows a paradigmatic architecture of a self-aware system that allows
to cover and relate most of the systems proposed in the literature. However,
this is not the only or the best way to illustrate the structure of self-awareness.
Being a loosely defined umbrella concept there are many options regarding what
to include and what to exclude, what to highlight and what to deemphasize,
what to make explicit and what to make implicit. Other researchers have made
different choices, e.g. Lewis et al. [56], presumably due to different preferences
in their research. For us attention, goal management and a central desirability
scale are key elements not found in other architectures of self-awareness. Hence,
we use figure 2 as a basis of discussion in this article but in the absence of either
theoretical arguments or empirical evidence that clearly favors one architecture
over another, we suggest to pragmatically use whatever is more suitable in a
given context.

Kounev’s definition cited above in section 1.1 [50] is represented in this figure
as follows. The self-reflective part is located in the static self model (i), the goal
management and goal hierarchy (ii), and the dynamic self model (iii). The self-
predictive part is located in the dynamic self model, and the self-adaptive part
is located in the decision making, the goal management and the goal hierarchy.
More recently Kounev et al. [51] have revised this notion and have formulated
the following definition.

Self-aware computing systems are computing systems that:

1. learn models capturing knowledge about themselves and their
environment (such as their structure, design, state, possible
actions, and run-time behavior) on an ongoing basis and

2. reason using the models (for example predict, analyze, con-
sider, plan) enabling them to act based on their knowledge and
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Figure 2: Paradigmatic architecture of a self-aware system. “S” nodes are
sensors, “A” nodes are actuators. A proper assessment of the Self and the
environment (Self-monitoring and Environmental-monitoring) are the basis for
active goal management and effective decision making. The desirability scale is
the currency of assessment. All assessments that are considered ”good” or ”bad”
are mapped onto this scale. This allows the comparison of otherwise unrelated
properties, e.g. the quality of a signal and the load-level of the battery. Machine
learning algorithms are useful for all activities. Both monitoring functions can
continuously improve to identify the normality and categorize aberrations. Goal
management can learn to dynamically prioritize sub-goals in a way to optimize
the accomplishments for high level goals. The decision making can optimize its
algorithm based on the effect of its decisions on the system’s performance. The
execution engine can learn to generate control commands for the best possible
effect. Note, that many connections are not drawn for the sake of clarity.
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Figure 3: Reference architecture for self-aware computing systems proposed by
Lewis et al. [56].

reasoning (for example explore, explain, report, suggest, self-
adapt, or impact their environment)

in accordance with higher-level goals, which may also be subject to
change.

Item 1 can be found in the green learning boxes of figure 2 and item 2 in the
boxes dynamic self model, goal management and decision making.

A self-awareness reference architecture has been proposed by Lewis et al.
[56] as shown in figure 3. All its important elements can be mapped to the
paradigmatic architecture of figure 2 but a few points are worth noting.

Meta self-awareness refers to the ability to be aware of and reason about
its own self-awareness. It allows to control and dynamically change the level of
self-awareness and thus the resources expended on the self-awareness processes
themselves. In some situations, or perhaps most of the time, it is unnecessary to
keep these processes active because other tasks have higher priority. In figure 2
this is not made explicit but can be considered part of the goal management
strategy and decision procedure. We have chosen to keep it implicit because
meta self-awareness is a rather specialized feature and expected to be present
in only few, high-end self-aware systems.

Similarly, time awareness is made explicit in figure 3 and refers to the ca-
pability to explicitly reason about the state changes of the system and its en-
vironment over time. In the paradigmatic sketch of figure 2 this is not explicit
but the means for it are provided by keeping track of the history, by represent-
ing dynamic changes and by the goals and decision routines. In the same way,
stimulus awareness, interaction awareness and goal awareness refer to abilities
to reason about specific aspects of the system. They are not made explicit in
figure 2, but may be included as part of specific goals, decision procedures and



the dynamic internal models.

Figure 3 distinguishes between private and public self-awareness. Public
aspects can be inspected from the outside like physical size, battery load level,
and initiated actions. Private aspects are not directly visible outside and may
refer to internal sensors, counters and registers. Both are part of the static self
model in figure 2 but not distinguished.

On the other hand, figure 3 does not make explicit history mechanisms, the
distinction between self model and environment models, attention, desirability,
goal management and the various places where learning contributes to continu-
ous tuning and optimization.

In figure 2 the processes of self-monitoring and environment-monitoring are
fairly separated and only their results are only combined for decision making. In
contrast, figure 3 treats both as one integrated process. We consider awareness
to be the result of a hierarchical process where in the first level data from indi-
vidual sensors are preprocessed and filtered individually after which more and
more sensory information is gradually fused to establish increasingly abstract
concepts. The integration of information from internal and external sensors oc-
curs in most cases rather late in the hierarchy. Thus, it is justified to represent
the processes responsible for self- and environment-monitoring as separate ac-
tivities. However, they may exchange information at every step and for some
systems a more integrated solution may be preferable as depicted in figure 3. In
fact, complete isolation and complete integration of these two processes should
be considered as extreme points in a continuous design space with practical
solutions will almost always fall somewhere in between.

Dutt et al. [16,17,46] have listed relevant features in self-aware systems and
have defined them as follows [16]:

e Semantic Interpretation includes an appropriate abstraction of the pri-
mary input data and a disambiguation of possible interpretations.

e Desirability Scale provides a uniform goodness-scale for the assessment
of all observed properties.

e Semantic Attribution maps properties into the desirability scale sug-
gesting how good or bad an observation is for the system.

e History of a Property: Awareness of a property implies awareness of
its change over time.

e Goals provide the context in which interpretation and semantic attribu-
tion is meaningful.

e The Purpose of a smart embedded systems is to achieve all its goals.

e Expectation on Environment: The system expects a specific environ-
ment and detects if the environment deviates significantly from expecta-
tions.

e Expectation on Subject: Similarly, the system’s own state and condi-
tion are continuously assessed to detect deviations, degradation, perfor-
mance and malfunctions.
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Figure 4: MAPE-K Loop illustrating a Monitor-Analyze-Plan-Execute cycle
based on Knowledge [43].

e Inspection Engine: Continuously monitoring and assessing the situation
requires a specific machinery that integrates all observations into a single,
consistent world.

All these processes can be identified in figure 2. Semantic interpretation and
attribution are not shown in the figure and are performed in the monitoring
blocks and influenced by the goals and their priorities. A dynamically changing
goal hierarchy will also modify the semantic attribution and attention. The
inspection engine is not explicit in figure 2, but is part of the self-monitoring
block with the help of several other blocks. An interesting point in this list of
features is the emphasis on data abstraction and the semantic interpretation
in the context of goals and an application. The importance of these processes
have been elaborated by Taherinejad et al. [86] and they are part of the self and
environmental monitoring tasks in figure 2.

3 Related Research Directions

3.1 Autonomic Computing

After the formulation of its vision in 2003 [48] the field has quickly grown and
flourished. In a keynote at the International Conference on Autonomic Com-
puting [47] Jeff Kephart counted overall 8000 papers published, 200 patents
issued, and 200 conferences soliciting papers on the topic of autonomic com-
puting. Since then the field has continued to be active but has diversified and
overlapped with control, machine learning, cloud computing and web services.
A main feature in much of the work on autonomic computing is a variation of the
MAPE-K control loop [43], that illustrates the Monitor-Analyse-Plan-Execute
cycle and is based on Knowledge which often means some kind of model. Inter-
estingly, the generality of this model has not increased but in many approaches
the models have been customized for a more specific purpose like resource man-
agement or maintaining a specific QoS level. An example of work against this
trend is the approach of Sans et al. [74], which proposes a secondary control
loop on top of the inner control loop resembling an explicit self-model. This
outer loop is derived from the design time model but used during operation.



However, most of the work in the field has adopted less general and more
specialized self-models. Even today, central themes are still self-adaptation,
self-optimization, self-configuration and self-healing [24, 66], but in industrial
practice its original vision has not fully materialized. There, trigger based ap-
proaches are still dominant [1,60], which means that triggering rules fire when a
metric such as resource utilization or load imbalance exceeds a threshold value.
In academia a number of systems with model based performance and resource
management have been developed to assure Quality of Service levels, for in-
stance DiVA [61], MADAM [22], MUSIC [33] and SASSY [59]. They typically
use formalisms like Petri nets [49], queuing networks [59], stochastic process
algebras [26], statistical regression [19], or kriging models [21] for performance
modelling. However, from our perspective their self-models are limited because
they all do not take the software architecture and the execution environment
of the system into detailed account. A survey from Becker et al. [4] confirms
this impression. Hence, these systems have limited self-awareness. On the other
hand, approaches that do take the software system and execution environment
into account are mostly used at design time and not part of the system during
operation [52].

It seems that the more sophisticated aspects of the autonomic computing
vision has had limited impact and practical solutions based on traditional per-
formance models and heuristic rule based approaches have so far been sufficient
to address the industry’s need. This can on one hand be attributed to the con-
servative instinct of managers that prefer practically well proven and understood
solutions and, on the other hand, to the availability of inexpensive computing,
memory and communication resources that provide little incentives to find the
most optimal or efficient solution. We have still limited understanding of the
implications at the system level when advanced techniques from the machine
learning, the control theory and optimization domains are integrated with com-
plex models. This has also been concluded by Kounev et al. at a 2015 Dagstuhl
Seminar [51]:

Another finding was that much work remains to be done at the sys-
tem level. In particular, while there has been considerable success
in using machine learning and feedback control techniques to create
adaptive autonomic elements, few authors have successfully built
autonomic computing systems containing a variety of interacting
adaptive elements. Several authors have observed that interactions
among multiple machine learners or feedback loops can produce in-
teresting unanticipated and sometimes destructive emergent behav-
iors; such phenomena are well known in the multi-agent systems
realm as well, but insufficiently understood from a theoretical and
practical perspective.

3.2 Self-Adaptive Systems

Work on self-adaptive systems naturally emphasize the task of adaptation and
considers self-awareness properties only so far as they help to accomplish adapta-
tion. It turns out that for more sophisticated adaptation models of the system
and its environment become crucial, leading to model-based approaches [54].
Typically, three types of models are distinguished: system models to repre-
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sent the system state, goal models to represent policies and rules, and en-
vironmental models to capture the context [42,54]. Most work on model-
based self-adaptation has been reported for general software systems. Based
on the Software Engineering Institute’s notion of Software Product Lines [85]
a number of approaches model different system features as a basis for select-
ing dynamically the most appropriate configuration in a particular situation
(e.g. [22,23,27,33,34,62]; more examples are discussed in the surveys by Hueb-
scher et al. [42] and by Krupitzer et al. [54]). However, it should be noted that
a model of different software configurations does not constitute self-awareness.
Self-awareness, as we understand the term in this survey, is based on a process of
dynamically, if not continuously, acquiring data about the system itself and its
environment to infer the current state and condition. Thus, most work on self-
adaptive software systems do not cover self-awareness as defined in sections 1.1
and 2 above, even when using various models of the system extensively.

Work on self-adaptive resource constrained cyber-physical systems is more
limited but comes closer to our notion of self-awareness. For the domain of
smart cities and buildings Giirgen et al [32] propose a self-aware cyber-physical
architecture that manages the data collection from sensors, the analysis, the
planning and the adaptation of the controlled object (e.g. a building). Smart
camera networks have to deal with quickly changing, diverse and complex envi-
ronments. Esterle et al. [20] argue that fixed configurations are infeasible and
the benefits of self-awareness are due to its coordinating effect on a distributed
assessment and decision making, flexible rearrangements of the network under
performance, cost and real-time constraints. In both examples important fea-
tures of self-awareness are included but aspects like learning, goal management,
attention and a central desirability scale are only rudimentary present or not at
all.

3.3 Organic Computing

In the early 2000s, the increasing complexity of computing systems led people
to conclude that unexpected emergent behavior is unavoidable once a certain
complexity has been reached. Consequently, the design of desired and the con-
trol of undesired emergent behaviour were identified as main challenges. In
2005, Schmeck formulated the vision of Organic Computing as a response to the
threatening view of being surrounded by interacting and self-organizing systems
which may become unmanageable, showing undesired emergent behaviour [83].
In the following years the paradigm of Organic Computing was explored in
a series of research projects, and in 2011 this work has been nicely summa-
rized in the book Organic Computing, edited by Miiller-Schloer, Schmeck and
Ungerer [63]. Kramer et al. proposed a two level monitoring approach to self-
awareness [53]. The Low-Level Monitoring is based on counting events such
as cache misses, fault occurrences, or performance counters. In principle, any
event that can be counted can be subject to this mechanism. The monitor can
be programmed during operation to associate any type of event with event-IDs
allowing for flexibility with respect to the kind of events under observation.
High-Level Monitoring uses the event counts for state classification to reflect
relevant information about the systems performance and state. Since event
grouping and limited event abstraction is possible, the resulting system can be
considered rudimentarily self-aware. In a similar spirit, Learning Classifier Sys-
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tems (LCS) [41] and eXtended Classifier Systems (XCS) [11] have been used to
assess a systems state as a base for decision making such as load management
and task allocation [6]. The decisions are coded in rules. A rule consists of a
condition, an action and a predicted reward value. If the condition of a rule
matches, i.e. if the system is in the state described by the classifier, and the
expected reward is sufficiently high, the action part of the rule is triggered. The
rules are optimized by heuristics such as genetic algorithms and reinforcement
learning. In the DodOrg project these and other ideas have been integrated
to provide self-awareness in a many-core architecture, which in turn is used for
power and thermal management [18].

In summary, the organic computing community has developed a number of
innovative approaches to monitoring, adaptation, self-organization, distributed
control and particularly contributed to a better understanding of phenomena
of emergent behaviours such as emergent control [69]. However, similar to the
autonomic computing endeavours, it has focused more on the decide and act
parts of the observe-decide-act cycle. For instance, Kramer et al. have observed
that in order to enable required self-organization capabilities, a monitoring in-
frastructure has to provide self-awareness [53], but have not well defined what
is meant with self-awareness and have used a rather limited and static scope
of the concept. Interesting aspects of awareness such as abstraction, attention,
awareness of the historic changes in its own behaviour and in the environment
have been hardly touched upon.

3.4 Control Theory

All the problems mentioned in section 1.2 have been successfully addressed
without the explicit label of self-awareness. Numerous algorithms for schedul-
ing and task allocation have been developed and deployed in real, demanding
large scale systems and temperature and power managers are routinely built
into each and every chip on the market. For instance, on-chip dynamic power
management [5,69] has been accomplished by control loops like more or less
complex PID (Proportional, Differential, Integral) controllers where measured
or estimated temperature, current flows, energy levels in batteries are used
to tune voltage, frequency, and application load in order to meet given con-
straints and optimization objectives. Power management is a case in point how
exceedingly complex internal models have been used as the problems become
increasingly challenging and sophisticated over time. In simple processors of
the 1980’s and 1990’s hardcoded and simple algorithmic solutions have domi-
nated [5], while recent many-core SoCs operating at the edge of thermal stability
require advanced power management based on detailed information reflecting
the state and objectives of the hardware and the applications [69]. In many core
heterogeneous SoCs with several applications concurrently sharing the platform
the application behavior regarding the computational load, memory access and
communication can vary over orders of magnitude in short time periods and
are often highly unpredictable. P. Bogdan and colleagues have shown how ac-
curate, statistical modeling of workload can significantly improve the efficacy
power management [7,8,14].

There have been also efforts to hierarchically manage complex many-core
systems by leveraging different structures of feedback control loops. For in-
stance, in [64], a number of nested feedback control loops with different knobs
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and actuation epochs have been hierarchically deployed for power management
with the objective of maximizing the performance while respecting the thermal
design power budget. A centralized power management approach with the same
objective is presented in [68] which considers both communication and com-
putation characteristics of many-core systems in the power management policy.
In a similar fashion, in [67], a coordinated power management approach with
multiple scopes of actuation (virtual machine, cluster, server, core) is presented
to cap the power consumption of the system and balance the utilization of the
blades. Even though these approaches have proved to be effective to manage
complexity, they focus on a single objective which is the main reason why they
use several simple single-input single-output (SISO) PID controllers to form a
larger manager for the respective problem at hand, which is often mazimizing
performance under a power cap [88].

There has been recently some contributions to leverage more advanced con-
trol theory approaches such as Linear Quadratic Gaussian (LQG) controller [84]
to implement Multiple Input, Multiple Output (MIMO) formal control for max-
imizing resource efficiency. For instance, in [65], the authors utilize a MIMO
controller to track throughput (billion of instructions committed per second)
and power consumption for an out-of-order single-core processor in a coordi-
nated manner. Even though MIMO controllers have the advantage of tracking
different references with different priorities, they cannot efficiently be applied
to complex systems as obtaining state-space models for complex systems is im-
practical, if not infeasible.

In general, tracking a single or multiple reference values, which is also called
regulatory control, is the main application of control theory. As can be observed
from the aforementioned examples, this property is essentially useful for prob-
lems where minimizing the tracking error of a parameter is the main goal. For
instance, providing a certain quality of service (e.g., frame rate) for a real-time
application, capping power consumption of a system, or controlling the thermal
behavior of the chip are among popular use-cases for control theory. However,
effects of actuations that cannot be modeled using difference functions (e.g,
task migration) or problems that need optimization (e.g., minimize an objective
function under constraints) cannot be properly addressed using classic control
theory. From another perspective, thanks to the feedback-based structure, con-
trol theory based approaches are the best fit for problems such as disturbance
rejection (e.g., disturbance due to workload variations when applying dynamic
voltage and frequency scaling to control power) or handling noise/uncertainty
in measurements (e.g., noisy sensors, virtual sensing), however it is ineffective
to adapt or react to anomalies (e.g., faults), surprises, or radical changes in
high-level goals.

In summary, control theory provides guarantees, has the ability to learn from
feedback, and has the luxury of formal reasoning and methodology. However,
restrictions such as the difficulty to obtain control theoretic models (e.g., transfer
functions) in the form of difference equation and lack of a straightforward process
to specify reference values limits its efficacy to be solely used for managing
complex computing systems. On the other hand, while this approach works
for a limited set of parameters and objectives, it does not scale well when the
complexity of modeling the system dynamics increases. Modeling complexity
escalates with the number of control inputs (i.e., knobs), measured outputs (i.e.,
sensors), and sub-systems (e.g., cores) in multi- and many-core systems. On
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Figure 5: ASoC has two layers: A functional layer consisting of cores and the
like, and an autonomic layer that controls the functional elements via a monitor-
evaluator-actuator loop [10].

top of that, heterogeneity of sub-systems (e.g., in big. LITTLE style processors)
makes the system modeling/identification even more complex. For instance,
when in addition to temperature limits and battery life-time also aging effects,
hard and soft real-time constraints, transient and permanent faults have to be
considered and tuning knobs are available at circuit, architecture, operating
system and application level, control loops become too complex to be used. It
should be noted that the first step to design a control-theoretic approach is to
have an accurate-enough model in hand.

Self-awareness offers the promise to be a scalable heuristic in that it can
integrate any number of parameters and still provide workable solutions in real
time and with sufficient quality. As in control theory, the set-points need to be
specified by a higher entity, the integration of self-awareness with control theory
can provide a layer of cognition for controllers to coordinate them towards the
current goal of the system. So far this claim is still largely a promise but recent
work and also the articles in this special issue show encouraging progress.

4 Self-Awareness on Chip

Features of self-awareness have found their way in many SoC resource man-
agement solutions. The vast majority follow a classic control loop approach,
opportunistically extending and customizing them in ad-hoc ways as needed.
In the following we discuss four examples that stand out in that they have
self-awareness built into their architectures from the very start.

ASoC The Autonomic SoC platform (ASoC) [9,10] is based on the organic
computing paradigm and aimed at many-core architectures. Functional pro-
cessing units, which are traditional cores, accelerators, memories, and other
functional hardware units, are monitored and controlled by units in a parallel
layer, called the autonomic layer. For each core or similar components in the
functional layer there is a corresponding element in the autonomic layer, named
the autonomic element, that consists of a monitor, an evaluator, an actuator and
a communicator, as illustrated in figure 4. For instance, the autonomic element
may monitor the load level in the functional element and update the frequency
accordingly. The communicators allow the autonomic elements to communicate
with each other. Since each functional element is shadowed by an autonomic
element, we have a distributed control system.
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The evaluators are rule based. Each rule consists of a matching pattern,
an action and a reward value. The patterns match the monitored values and
determine which rule can apply in a given situation. E.g. a pattern could
encode "too high load”. The action encodes the change of frequency and the
reward value estimates how much the action will improve the situation. This
reward value is then updated based on the actual improvement as observed by
the monitor.

ASoC exhibits some of the features of our paradigmatic architecture in fig-
ure 2. There are self-monitoring, decision making and execution components.
Learning is present in a limited form. The desirability scale and the goals are
implicitly coded in the rules. Attention, environmental monitoring, goal man-
agement and the more sophisticated elements of self-monitoring, such as the
assessment of the reliability of the measured data, are missing. However, it
is conceivable to extend the ASoC architecture to include those elements of
self-awareness as well.

SEEC Hoffmann and coworkers at MIT have developed SEEC [39], a general
framework for self-aware computing using an observe-decide-act paradigm. The
system cyclically monitors key features, applies a control and decision algorithm,
and deploys appropriate actions to adapt to changes in the environment and its
own state. It is based on the heartbeats API library [38], which defines a cyclic
event called a heartbeat. Through API functions the application can register
rate and latency performance goals in terms of the heartbeat period. Hence,
the heartbeats API is a standardized means to monitor the performance of an
application. The SEEC controller adapts and optimizes the system’s behavior,
for instance, by allocating and scheduling resources appropriately. The approach
has been evaluated in several applications for performance optimization [39],
power management [37,40], and managing multiple objectives [36]. Also, the
concept of knobs has been introduced [40] to expose steering facilities such
as processor speed or power modes. SEEC allows to adopt different decision
making strategies and algorithms, that have been studied extensively [58,72].

Relating the self-awareness features of SEEC to the paradigmatic architec-
ture of figure 2, we note that the monitoring-deciding-execution loop is thor-
oughly elaborated in SEEC while learning, history and attention mechanisms
are not emphasized or not used at all. An interesting aspect of SEEC is that
the goal formulation and management is assigned to the application. The SEEC
platform provides knobs, control algorithms and measurements to the applica-
tion, which in turn is responsible to formulate and adjust its goals. Similarly,
the desirability scale, as it is related to and dependent on goals, is not part of
the SEEC framework.

HAMSoC With HAMSoC (Hierarchical Agent Monitoring SoC) Guang et al.
have proposed a four-level hierarchical control structure [28-30], as illustrated
in figure 6. Each cell agent monitors and controls a core, an accelerator or
another functional hardware block, which is similar to the functional elements
and autonomic elements in ASoC. Cell agents have only local knowledge but are
in turn monitored and steered by cluster agents which pursue optimizations for
each respective local cluster. The platform agent is responsible for the entire
SoC platform and can pursue platform-global optimizations. It interacts with
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/

the application agent that provides application specific gals and requirements,
based on the heartbeat concept of SEEC [38]. In contrast to ASoC, which has
only one level of controllers communicating with each other, HAMSoC proposes
a hierarchy of controllers that each is host different objectives from the local
to the application level, as exemplified in a power and resource management
scenario [44].

Even though the HAMSoC framework of hierarchical control has the poten-
tial to accommodate most of the self-awareness properties of our paradigmatic
architecture of figure 2, it has not been fully elaborated and exploited. The
HAMSoC controller hierarchy would be an appealing match to a hierarchical
goal management system. However, neither goal management, nor attention,
history or learning mechanisms have been explored.

CPSoC CyberPhysical Systems-on-Chip (CPSoC) [76] is self-aware embedded
system paradigm that enhances traditional MPSoCs with a sensor-actuator-
rich platform deploying a closed loop paradigm emulating large-scale Cyber-
Physical Systems, enhanced with smartness through adaptivity and limited self-
awareness [15]. CPSoC was developed primarily in the context of managing
and exploiting hardware variability using the under-designed and opportunistic
(UNO) computing paradigm [31].

The high-level system architecture of CPSoC is shown in Figure 7. The
middle of this figure shows various levels of abstraction for the CPSoC plat-
form, from the lowest (device/circuit level) layering up to the highest (applica-
tion level). At each abstraction level, the CPSoC platform gathers information
(through sensor fusion) using virtual and physical sensors, and in turn actu-
ates (through actuator fusion) via virtual and physical actuators. The CPSoC
architecture supports two classes of feedback loops: adaptive control (Red box
in Figure 7) and self-aware supervisory management that generates supervisory
policies (Tan box in Figure 7). These feedback loops are embedded within the
adaptive, reflective middleware that orchestrates cross-layer sensing and actua-
tion.
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Figure 7: Cross-layer virtual sensing and actuation at different layers of CPSoC
[77].

Figure 8 shows a more detailed view of the CPSoC architecture. On the top
right of the figure is a template of an individual CPSoC computational Core,
comprised of the computational units, memories, interfaces, and the on-chip
sensing and actuations (OCSA) block that allows ubiquitous sensing and actua-
tion at the CPSoC-Core level. These CPSoC Cores are tiled into a (homogeneous
or heterogeneous) CPSoC computational fabric (lower right of Figure 8), using
a Network-on-Chip (NoC) interconnect. Note that each router box in the NoC
is also equipped with a sensing-and-actuation block (colored green) that enables
monitoring and actuation at each NoC router. The left side of Figure 8 expands
the abstraction layers of Figure 7, showing the CPSoC tiled hardware fabric at
the lowest layer, and the applications executing on this platform at the highest
layer. The adaptive, reflective middleware layer (yellow box on the left side of
Figure 8) orchestrates the distributed sensing and actuation approach, where
each component and core can make local decisions to manage the fabric.

The CPSoC architecture achieves self-awareness through three key ideas: 1)
Cross-Layer Virtual and Physical Sensing & Actuation: CPSoCs are
sensor-actuator-rich MPSoCs that include several on-chip physical sensors (e.g.
for aging, oxide breakdown, leakage, reliability, temperature) on the lower three
layers as shown by the on-chip-sensing-and-actuation block (OCSN) and the In-
trospective Sensing Units (ISUs) in Figures 8. Virtual sensing and actuation [81]
is accomplished across the abstraction stack. For instance virtual actuations
such as application duty cycling, and checkpointing are software/hardware inter-
ventions that can predictively influence system design objectives. Virtual actu-
ation can be combined with physical actuation mechanisms commonly adopted
in modern chips [75]. 2) Simple and Self-Aware Adaptations: Two key
attributes of the self-aware CPSoC are adaptation of each layer and multiple
cooperative Observe-Decide-Act (ODA) loops. As an example, the unification
of an adaptive computing platform (with combined dynamic voltage and fre-
quency scaling, adaptive body biasing, and other actuation means) along with
a bandwidth adaptive NoC offers extra dimensions of control and solutions in
comparison to traditional MPSoC architecture. 3) Predictive Models and
On-line Learning: Predictive modeling and on-line learning abilities enhance
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Figure 8: CPSoC architecture with adaptive Core, NoC, and the ODA Loop as
Middleware [77].

self-modeling abilities in the CPSoC paradigm. The system behavior and states
can be built using on-line or off-line linear or non-linear models in time or
frequency domains [57]. CPSoC’s predictive and learning abilities improve au-
tonomy for managing system resources and assisting proactive resource utiliza-
tion [76].

While CPSoC is a good initial exemplar for a self-aware SoC platform, it
handles to a limited extent the self-awareness shown in the paradigmatic archi-
tecture of Figure 2. The monitoring-deciding-execution loop is intrinsically part
of CPSoC, coupled with some limited learning and history mechanisms. Atten-
tion mechanisms have not been considered in CPSoC, and the goal hierarchy and
goal management is in a very primitive form. The desirability scale is implicitly
encoded within the goals, and has not been explicitly modeled within CPSoC.
Furthermore, the self-awareness models in CPSoC did not consider malicious
attacks, functional design errors and non-functional aberrations, and show a lot
of room for growth in its self-awareness capabilities. Thanks to its modular
cross-layer architecture, CPSoC has the potentials to cope with the discussed
limitation by providing access to a rich set of cross-layer virtual and physical
sensors and actuators, and the capacity to become self-aware in all respects.

5 Challenges

The term self-awareness encompasses a host of concepts and techniques that
together offer great promises to tackle the design, maintenance and operation of
complex, heterogeneous systems that are supposed to be adaptive, autonomous,
highly efficient and always sensible. Even though a significant effort has already
been spent in exploring this promise, the more intricate challenges still lie ahead.
So far we have focused on picking low hanging fruits by incrementally extend-
ing existing architectures and methodologies. However, the research commu-
nity will make faster progress when we do not exclusively focus on incremental
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development where each additional feature has to be thoroughly and quantita-
tively justified by the added value it gives. As this survey shows, self-awareness
encompasses a host of concepts and techniques that together facilitate a com-
prehensive understanding of the system’s state and its situation in the world.
Picking out individual elements may only result in small gains or none at all.
Thus we recommend to take a step back, try to comprehensively understand
self-awareness, what it is, what it consists of, what it is good for, and, based on
this understanding, realize it as a whole in cyber-physical computing systems.
This approach would be inspired and informed by the widespread presence of
self-awareness in animals given that survival of an expensive feature under re-
lentless evolutionary pressure is a strong evidence for its benefit. A case in point
is the maintenance of a history. It has hardly been studied in self-aware comput-
ing systems and, consequently, there is no strong experimental evidence for its
benefits. We still believe it is indispensable for comprehensive self-assessment
based on its importance in psychology [2,3], and the intuitive argument that
a comprehensive understanding of the current situation includes the sequence
of events and states that historically led to the current situation. Moreover,
historical data is required for future learning that involves a re-assessment of
past situations. Thus, including it in research on self-aware computing systems
is justified by the expectation that it will turn out to be beneficial.

Apart from considerations of research strategy, we identify five urgent tech-
nical challenges, that have to be addressed in order to fully honor the promise of
self-awareness: learning, formulation of goals, scalability, ensuring correctness,
and an appropriate design methodology.

Learning For truly self-aware systems, continuous, dynamic learning is indis-
pensable. A major reason for the amazing feats of animals and plants is the
relentless learning that goes on on all levels from the sub-cellular organelles to
the individual and the community. As figure 2 indicates, learning is an integral
part of many components and functions. Hence, it must be integrated in the
sensor and monitoring nodes, in the attention mechanism, the decision making,
the goal management, the execution and actuation, and in virtually every part
of the system. Learning is only possible when feedback signals are available.
Thus, the system must be pervaded by information flows providing feedback to
all the learning elements. Many of our machine learning algorithms are not suf-
ficiently efficient and optimized for the requirements of on-chip learning. Hence,
we need both adapted machine learning algorithms and a system architecture
that lends itself to continuous, pervasive learning and optimization.

Formulation of goals We need to be able to formulate quantitative goals for
the design and the operation phases and we need to study the involved trade-offs.
The traditional metrics of performance, power, energy, cost and fault tolerance
are well understood. But quantitative metrics for adaptability, resilience, au-
tonomy, self-assessment and situation assessment do not exist, are controversial
or are limited in scope. However, we need to quantify these properties to explore
the trade-off space spanned by the traditional and the self-awareness metrics.
This has to be done for the design phase, but also and even more challeng-
ing, for the operation of the system since the system itself has to understand
and decide on these trade-offs in real-time. Research on goal formulation and
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management has been done in the context of artificial agents [13,45,87] which
mainly focus on providing the capability to nominate top-level goals, and man-
aging the nominated goals by prioritizing them. However, SoC’s requirements
and restrictions necessitate customized, light-weight, and minimally conflicting
approaches which consider the priority, significance, objectives and requirements
of each application, while holistically coupling the overlapping and/or contra-
dicting objectives of different applications to satisfy the system constraints.

Scalable self-awareness Most applications do not require and cannot afford
all features of a full blown self-aware system. To apply self-awareness to a
wide range of systems, from resource constrained sensor nodes to multiprocessor
platforms, designers should be able to easily select the level of capabilities. To
this end a design space exploration method has to provide the means to trade-off
functions and resources in a well defined self-awareness design space.

Ensuring correctness Validating a fixed, well defined functionality has been
proven difficult enough due to the vast state spaces involved. Validating an
adaptive system that, by definition, changes its behavior in ways unpredictable
at design time seems to be hopeless. Still, if we cannot guarantee that certain
bad behavior can never happen, the appeal of self-aware and autonomous sys-
tems will be limited to tiny application domains. Interestingly, self-awareness
may be part of the solution because it can comprise a safety monitor that checks
for and prohibits all unsafe and bad behavior. For this to work, the space of un-
safe and bad behavior has to be specifiable in unambiguous and efficient terms
leaving the system to freely explore the vast, unlimited space of safe and good
behavior.

Design methodology Traditional design methodologies rely on the assump-
tion that we can specify, validate and test the desired and acceptable behavior
of the system. When we allow the adaptive, autonomous system to explore
behavior that has not been specified at design time, this assumption breaks
down. Hence, we have to consider alternative methodologies. For instance, the
designers could use a general purpose, self-aware, autonomous machine, that
in principle can meet a broad range of goals in any environment. Then the
designers "fill” the system with a specific set of goals for a specific application
and leave it tot he system to find ways to accomplish these goals. Although this
vision seems remote, we will be forced to contemplate such options as the pain
of designing more and more adaptive systems with traditional methodologies
grows.

While these challenges seem formidable, researchers can draw from a range
of disciplines with long history and large knowledge. Hence, given the state of
the art, as summarized in this survey, we can certainly be confident that the
development of fully self-aware SoCs is within the reach of the community in
the coming years.
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