Reconciling Time Predictability and Performance
in Future Computing Systems

Francisco J. Cazorla*$, Jaume Abella*, Enrico Mezzetti*,

Carles Hernandez*, Tullio VardanegaT, Guillem Bernat?

* Barcelona Supercomputing Center, Barcelona, Spain
 Universita Degli Studi di Padova, Italy
1 Rapita Systems Ltd., United Kingdom
§ IIIA-CSIC, Spain

Abstract—The demand for guaranteed, hence predictable, per-
formance in the real-time systems domain is projected to increase
by several orders of magnitude in the next few years, while
its weight in the mainstream market is on the rise. Satisfying
this need in a cost-effective manner compels system architects
to use high-performance hardware units, which however have
disruptive effects on current timing verification practice. This
paper presents low-overhead solutions for hardware design and
timing analysis to help attain the desired level of predictable per-
formance in all application domains with assurance needs, also
contributing to the universal pursuit of performance guarantees.

Keywords: C.3.d Real-time and embedded systems; C.0.d
Modeling of computer architecture

I. INTRODUCTION

The ’90s witnessed convergence between the high-
performance processor market and low-power (embedded)
systems, resulting in high-performance low-power design so-
lutions, extensively used in mobile devices. The present era
shows similar signs of convergence between high-performance
low-power mainstream products and the real-time embedded
market [7] in the quest for high guaranteed performance. On
the one hand, mainstream devices increasingly incorporate
software functionalities that take part in critical systems (e.g.
health monitoring), and consequently inherit the sustained
performance needs of the latter. On the other hand, modern
real-time systems include critical and complex functions (e.g.
decision-making in robotic applications, autonomous vehicle
operation in automotive, railway and aerospace) that have
steadily increasing high-performance needs.

The level of guaranteed (hence predictable) performance
required to sustain the execution of those critical functions
is therefore projected to rise to unprecedented highs. For
example, ARM forecasts for the automotive domain' maintain
that advanced driver assistance features will require a 100-fold
increase in computing performance by 2024. Getting there
at competitive costs will necessarily yield very aggressive,
parallel and heterogeneous computer designs such as, e.g.,
NVIDIA’s 1S026262-compliant Xavier processor. However,
the more stateful resources are deeply embedded in high-
performance processors, the more complex the problem of

Uhttps://www.arm.com/about/newsroom/arm- expects- vehicle-compute-
performance-to-increase- 100x-in-next-decade.php

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other wuses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

asserting performance guarantees that also hold in the worst
case, the bigger the risk of incomplete or restricted informa-
tion, and the more pessimistic the results. Complexity grows
to reflect the inordinate increase in the state space, and impairs
certification. Pessimism grows, with worthless results, owing
to the need to treat missing information conservatively.

This trend challenges the ability of measurement-based
timing analysis (MBTA) — the most common and accessible
technique for industrial use — to deliver the sought assurance
of performance predictability in the form of Worst-Case Exe-
cution Time (WCET) bounds. In particular, creating test sce-
narios in which the application runs under extreme execution
conditions that upper-bound those that can occur at operation
is a hard challenge. The low-level hardware resources that are
highly contended in high-performance processors (e.g., buses,
request queues and caches) make it inordinately difficult for
the user to ascertain whether the execution conditions (e.g.,
contention load) observed during testing correspond to what
can occur during operation. Hence, the question whether the
execution-time observations made in the analysis are repre-
sentative of the extreme situations that can arise at operation
is very difficult to answer. This quandary severely undermines
the reliability of the proffered results and withholds users from
convincedly transitioning to high-performance hardware when
assurance of predictable performance is required.

This paper lifts some of the impediments that prevent the
more widespread adoption of high-performance processors
in critical real-time systems and, symmetrically, of timing
analysis methods in domains where performance predictability
is becoming a first-order requirement. To this end, we present
two complementary approaches to achieve low-cost high-
confidence and tight performance predictions with MBTA, for
real-time systems running on high-performance hardware.

[A] Hardware Designs that Provide Increased Observ-
ability. This approach augments the processor hardware with
the capability of producing Performance Monitoring Counters
(PMC) data to expose key indicators of the internal timing
behavior of selected hardware resources. This wealth of infor-
mation allows determining whether the execution conditions
experienced during the test campaign represent the worst-case
situation. The increased observability yielded by Performance
Monitoring Units (PMUs) expressly designed to expose hard-
to-predict variable timing behavior, combined with big-data

analysis methods to treat the PMC read-outs, increases the
quality of MBTA results dramatically.

[B] Hardware Designs that Expose Execution-Time Vari-
ability. This approach allows the user to rest assured that the
execution-time measurements taken during analysis do capture
the full span of variability that can occur during operation.
This assurance is obtained with hardware support that enables
the user to control the time variability of key performance
contributors (e.g. caches), at negligible costs for space and
performance. This solution is complemented with a timing
analysis method that uses probabilistic reasoning to predict
the extreme variability of the program’s WCET.

Solution [A] increases the observation power offered by
the processor hardware, and lowers the effort intensity of
discerning the spectrum of variability observed during timing
analysis. Solution [B] changes the processor hardware to cause
the critical sources of variability to span their full extent in
manners that can be more easily and conclusively captured
during analysis. Their combination enables the achievement
of considerably higher levels of guaranteed performance in
advanced processor platforms.

II. COMMON PRINCIPLES

MBTA studies the system’s timing in analysis scenarios,
to determine upper-bounds to the worst-case execution-time
behavior that may occur at operation. MBTA’s challenge is to
construct analysis-time scenarios that help compute WCET
estimates that upper-bound operation-time behaviour. This
evidently requires ensuring that all factors with bearing on
the execution conditions that the program may incur during
operation are duly considered in the analysis. In fact, the
factors that originate from low-level hardware resources are
far more difficult to get at for the user than those that proceed
from the software. This paper addresses the former challenge,
with solutions that entail simple changes to hardware design
and MBTA methods, which achieve quality results without
sacrificing performance. On those grounds, we maintain that
the adoption of the following design principles yields an
effective application of MBTA to high-performance systems.

Performance predictability as a design requirement.
Factoring predictability as a first-class citizen in the hardware
design up front strikes a much better cost/benefit ratio than ad-
dressing it later, when predictability-geared modifications may
not prove practical, affordable or — worse even — sufficient.
Having failed to consider predictability early in the design
of some of its processors, ARM tried to reduce contention
interference by allowing second-level (L2) cache space to be
partitioned across cores, yet continuing to share the queues that
stored the pending L2 cache misses. This design decision was
flawed [11], as it let any single core clog and starve the others
by hoarding those queues. Other architectures were conceived
with predictability in mind from the outset (e.g., PRET [1], T-
CREST [2]), yet at the cost of radical differences from COTS
designs, thus hitting a most formidable obstacle to adoption
by chip manufacturers.

Performance-preserving predictability solutions. Evi-
dence suggests that hardware vendors would not trade high
average performance for time predictability, as sacrificing the
former hinders market penetration. Conceivably therefore, sup-
port for predictability can make it in hardware design only as
long as it incurs affordable overhead for chip area, power bud-
get, validation complexity, and harms neither programmability
nor software portability. Accordingly, we advocate the use of
predictability features, e.g. for cache placement/replacement
and arbitration, that are configurable at will (e.g., by sim-
ple enabling/disabling) on account of specific traits of the
application. This vision contrasts with approaches that seek
lesser resource sharing and more task isolation by way of ad-
hoc hardware designs, such as scratchpads, special caches, or
NoC modifications that extend beyond arbitration and require
additional signals and protocols in the router [2].

For the management and arbitration of shared resources,
for example, we vouch for solutions that narrow the gap
between worst-case and average performance, specifically
without sacrificing the latter. Static XY-routing for NoCs
and round-robin or random arbitrations combined with smart
virtual channel allocation are good instances of that notion, as
they ease capturing worst-case scenarios while also assuring
a worst-case behavior not too far apart from the average
one. Conversely, adaptive routing and dynamic virtual channel
allocation solutions increase that gap, often earning only
marginal improvement to the average case [10].

Renounce the absolute WCET. Blindly accounting for
theoretical worst-case scenarios in complex heterogeneous
platforms is likely to lead to exceedingly pessimistic esti-
mates. For example, contending shared hardware resources
to saturation may cause massive degradation of performance,
and therefore lead to insanely high WCET values. A more
sensible concept seeks to keep a high overall utilization, which
yields good average performance, while avoiding saturation
situations by design, thereby improving the worst case.

WCET analysis should leverage resource utilization infor-
mation to renounce the one-and-only absolute upper-bound
and concentrate instead on the (least pessimistic) conditions
that do upper-bound those that can arise during operation.
This notion is often referred to as seeking partial time com-
posability, which aims to provide WCET estimates that relate
to specific utilization bounds for shared resources. To secure
the system as verified, those utilization bounds shall then be
enforced during operation, by hardware or software means, to
prevent applications from exceeding their assigned quota.

A promising approach to derive performance predic-
tions under a postulated contention load employs micro-
benchmarks [5], small user-level programs designed to cause
programmable contention on specific target resources (e.g.
caches and buses). Running the application against the micro-
benchmarks allows exploring the potential impact of different
levels of contention, and facilitates the derivation of perfor-
mance guarantees in those load scenarios.

Tracing and instrumentation support: Collecting hard-
ware events (e.g. execution time) as needed for WCET estima-

tion should be done without affecting program behavior owing,
e.g., to instrumentation instructions. While modern proces-
sors provide powerful tracing facilities, e.g. NXP’s Nexus or
ARM’s Coresight, high-speed tracing technology must evolve
to avert scalability issues as the core count increases.

ITII. INCREASED OBSERVABILITY

This approach extends PMUs with predictability-aware per-
formance monitoring counters (PMCs). With this approach,
sketched in Figure 2 with blue arrows, MBTA is fed with
(possibly large volumes of) PMC read-outs. In that manner,
not only MBTA can correlate PMC indicators with execution-
time measurements, but also ascertain whether the execution
conditions incurred at operation are indeed covered in the anal-
ysis scenarios, and thus better reason about representativeness.

A. Hardware Extensions: predictability-aware PMCs

Current processors embed sophisticated debug-and-
statistical PMUs (aka DSU) that support a very large number
of PMCs, hundreds in the IBM POWER7 or the NXP
P4080. PMCs are normally used for profiling the application,
improving average performance, or debugging. Hence, the
information that they provide tends to ignore event types that
are deemed not relevant to those purposes: this is often the
case of the events that are critical to WCET estimation. For
instance, typical PMCs report the number of requests sent
to the bus and the bus usage by a given core, but do not
report how long that core waits for the bus. Indeed, with
existing PMCs, one can for example determine whether high
bus contention may cause the load-store instructions to clog
the load-store unit. Yet, knowing for how many cycles a
program was stalled by clogging of the load-store unit is not
sufficient for predictability analysis. Instead, one would need
PMCs that break down the load-store unit stall time into the
fraction of it due to the program’s own memory activity and
the fraction due to contention in the bus, cache, memory, etc.
PMC:s for the latter do not generally exist.

While predictability-aware PMCs are scarce in current pro-
cessors, they are rather easy to implement as simple extensions
of existing counters. As changes in the PMCs are very unlikely
to affect average performance, it should not be difficult to per-
suade chip manufacturers of the importance of predictability-
aware PMCs for performance predictability, and eventually
favor their adoption.

B. Example: AMBA-Bus Delay Modelling (Side Column)

The Advanced Microcontroller Bus Architecture (AMBA)
is one of the most used bus interfaces. Under the AMBA
protocol, the arbitration process involves several hardware
blocks (the arbiter and one or more masters) and several
signals. Recently, a method has been devised to monitor
contention in shared AMBA buses [8]. The method monitors
existing signals of the AMBA bus, as shown in Figure 1:
HBUSREQ, which each master sets to request the bus; and
HGRANT, which the arbiter sets to identify the master that is
granted access to the bus in each cycle. If forwarded these

HGRANT

i i} 1 U
Master

Predictability-
aware
PMU

AMBA (AHB)
Arbiter

Master Master Master

HREQ

Fig. 1. PMU snooping of AMBA Signals (dotted lines) for contention delay
monitoring. Example with four masters.

signals, the PMU can tell the number of cycles that a master ¢
is held by master j, by simply counting how long HRUSREQ
equals ¢ and HGRANT equals j. The PMU can be equipped
with a matrix of N,,, X N,, counters, for /V,,, masters: entry
[i,7] then denotes the cycle count that master ¢ is waiting
for master j. This simple mechanism allows determining how
long one task is delayed by another task, which is key to
task consolidation, seeking assignments that cause the lowest
contention, which in turn allows deriving WCET estimates in
consolidated scenarios instead of pathological ones.

C. MBTA Extensions: Big-data and Statistical Analysis

Predictability-aware PMUs allow MBTA to capture much
richer information for observation runs than mere execution
times. As MBTA usually requires numerous test runs, with
abundant quantities of PMC values being read per run from
the PMU, big volumes of (heterogeneous) data are likely to be
collected, which makes a very clear case for big-data analysis
extensions to MBTA.

Combining the predictability-preserving features outlined in
Section II with the increased-observability capabilities pre-
sented in this section allows atfenuating the jitter incurred by
real-time software programs instead of striving to eradicate it
with radical design changes (as pursued by other approaches).
The residual jitter is exposed via PMCs to the timing analysis
tool that can reason on the factors that cause it, and conse-
quently advise the system engineer on how to attenuate them.

Big-data analysis can be used to extract the most sensitive
information out of the observation measurements, telling what
are relevant in them. Regression methods, extreme value anal-
ysis, data decomposition, and other statistical techniques can
then be used to predict the incidence of individual factors of
influence on the program under analysis. That approach would
conceivably yield tight WCET estimates with quantifiable
levels of confidence.

D. Extension to Static Timing Analysis

Static Timing Analysis (STA) [12] is designed to seek the
assurance of a single-valued absolute WCET result, however
pessimistic. STA, which has critical dependence on accurate
and trustworthy knowledge on the processor internals, has
proven its potential with hardware designed with predictability
in mind [1], [2], and would certainly also benefit from the
inclusion of predictability-aware PMCs. Yet, the need for open,
documentary information is a serious vulnerability when the
processor parts are subject to IP restrictions. Moreover, such

Application Software]

Setup HW/SW to capture |
P P i System Software

i
i

Clommotn w | operation conditions (as

elements =/ | opposed to worst conditions) i
i

I Predictability-aware PMU |

Time Randomization and
= upper-boundingof hard-to- r

Common{ :-'I'-r;rqs-p-a;e-n-t-i] Predictability- |

' Tracing

1| _aware design !

elements

4 Hardware \

||| ET

measurement \
assive /
PMC data

Statistical and Big-
Data Analysis

}Increased Observability

. E Capturing Operation-
" —— - Time Variability

measuremen :
apturing operation
ime impact of jitter |
resources

Fig. 2. Schematic view of the increased-observability approach (blue arrows) and the variability-capturing approach (green dotted arrows) for increased
performance predictability. Common parts are shown in violet (dashed lines). ‘ET” stands for execution time.

features as multi-level caches, decoupling buffers, manycores,
NoCs and accelerators, which have been in use for years in
mainstream products, have such an intricate internal behavior
and tangled interactions with execution-time behavior that far
exceed the capacity of state-of-the-art abstract modelling. The
width of the state space to be comprehended and the quantity
of state variables in it, form a complexity wall that cannot be
overcome other than at the cost of massive loss of information,
and increase of pessimism.

STA will continue to be the reference timing analysis
solution for more restricted scenarios and lower-performance
systems in which accurate abstract modelling is still possible.
However, on the whole, STA can hardly be regarded as a
practicable solution for the quest of performance predictability
across all industrial domains. MBTA instead is bound to
remain the most viable option in that regard.

IV. CAPTURING OPERATION-TIME VARIABILITY

This approach strives to cause the full range of variation
in the execution-time behavior that the application can incur
at operation to occur, without the need for user intervention,
in the measurement observations taken at analysis. Whereas
the increased-observability solution enables measurement ob-
servations to capture the impact of jittery hardware resources,
it requires further effort on the timing analysis side to claim
that what was observed is fully representative of what can
happen during operation. This approach, instead, selectively
injects time randomization in jittery hardware resources to
allow quantifying the representativeness of operation-time
variations covered in measurement observations?. With those
hardware modifications, MBTA can be soundly augmented
with probabilistic reasoning, to allow quantifying the claim
of representativeness, while its application procedure remains
rather simple. This notion, which we further articulate in the
sequel, is captured in the green-colored elements of Figure 2.

2As discussed in Section IV-A, this form of predictability-geared random-
ization can be implemented with negligible impact on average performance.

A. Hardware Extensions: Randomization and Upperbounding

To increase representativeness, a family of hardware de-
signs has been recently proposed, which bases on two key
properties: time randomization and time upper-bounding [9].

Upper-bounding. Hardware resources that exhibit low jitter
(e.g. the floating-point unit) are modified so that they can be
forced to work at their highest latency during analysis, causing
measurement observations to upper-bound the operation-time
jitter effect of their use.

Time randomization is used, at both analysis and oper-
ation, for hardware resources with high jitter, since upper-
bounding their jitter, as done for resources with low jitter,
would incur excessive pessimism. Randomization injected in
those resources causes all extent of variability that they can
incur to equally occur during analysis and operation, which
in turn enables quantified claims of probabilistic coverage
(i.e., representativeness) to be made. As execution time ex-
hibits random variation, statistically sufficient measurement
observations made during analysis suffice to represent the
extreme timing behavior that may occur during operation, and
probabilistic reasoning can be applied to MBTA. This is better
illustrated in side column I'V-B.

The feasibility of these hardware modifications has been
demonstrated in an RTL-level FPGA prototype of a COTS
multicore that is now in commercial offering?.

B. Side Column: Handling Cache Jitter

The memory addresses at which the program code and data
are located (the memory mapping) determine the cache sets to
which they are assigned (the cache layout). Different memory
mappings result in distinct cache layouts, with varying effect
on the program’s execution time.

With applications integrated out of parts developed by mul-
tiple suppliers, timing analysis — which presides to software
dimensioning — must be performed as early as possible for
each part, well before the final mappings are known. Hence,

3http://www.gaisler.com/index.php/products/processors/leon3

the challenge that caches present to MBTA is to assure that
the program configurations used in the measurement observa-
tions do capture the cache layouts that may occur after final
integration (which are of course unknown). MBTA addresses
that challenge by seeking to single out the memory mappings
that yield cache layouts that lead to higher execution times.
If it manages to do so, then the cache impact is duly factored
in the analysis, else the results may be optimistic. However,
hoping to find the global worst-case cache layout before final
software integration experimentally is not an option. Hence,
no confidence can be had that the test campaigns performed at
unit and integration level serendipitously find the worst-case
cache layout for all software programs of interest. Moreover,
even minor changes to the program code, which may happen
across incremental development, (or rarer changes to link
directives) can effect the memory layout, yielding execution
times that may invalidate the prior findings of MBTA. These
difficulties may degrade the confidence in the WCET estimates
product of MBTA, below the thresholds of regulated domain
practices, and therefore compel the affected industrial users to
renounce caches altogether.

Cache randomization combines random replacement (which
many architectures use) and random placement [6]. The latter
breaks the dependence between memory location and cache
placement. A random input value — changed across program
runs at times that do not interfere with system operation —
determines the (random) placement function. In that manner,
the actual address in memory becomes irrelevant to cache
placement and so, to execution time variation. Every single run
yields a random cache mapping that corresponds to a random
sample in the whole population of possible cache layouts. As
randomization stays enabled during operation and therefore
prevents systematic pathologies, this strategy allows making
a sound probabilistic argument on the coverage of the cache-
layout problem space attained in measurement observations.
With cache placement, addresses are manipulated with a
random seed* provided prior to program run and changed after
it. A permutation network or hash logic (see the right picture
in Figure 3) places each address in a random and independent
set by changing the (random) seed across runs.

This approach frees MBTA users from the obligation to
model or control the whole space of execution-time variations,
and allows measurement observations to be collected in a
much more black-box manner.

C. MBTA Extension: Probabilistic Reasoning on Predictabil-
ity

Time randomization coupled with the application of prob-
abilistic reasoning to timing analysis changes the WCET
estimate concept from a single fully-assured limit value into a
probability distribution that represents the maximum residual
probability at which a WCET threshold can be exceeded.

4Pseudo random number generators exist that deliver repetition-free series
long enough to prevent potential correlation of events in statistically significant
spans. The produced numbers can be used to generate random placements and
replacements in caches or for random arbitration policies.

OO |

S 100

wv [~

bp 102 ‘\

2 ~ WCET

=104 observed N\ P DATA

3 10 Exec. times curve ARRAY

s

T= 108 e

‘s 10 :

8 100 PWCET@lO"S\i %
2 |

o 1' ; T COMPARATORS I—»| DATA OUTPUT |

3 4 5 6 7 i ¢

Execution Time hit/emiss Data

Fig. 3. Example of pWCET estimation (left) and a randomized cache (right)

Such mutation is not unspeakable for a twofold reason. First,
no current timing analysis technique can provide absolute
guarantees that the computed WCET bound will never be
exceeded, simply because all methods ultimately depend on
precarious inputs, whether worst-case scenarios for use with
MBTA, or precise hardware timing models for STA, or assured
flow facts for both. Second, the quality of those analysis inputs
(and their effect on reliability and tightness of results) cannot
be quantified in general, which resorts users to qualitative
judgment. Probabilistic reasoning instead allows quantifica-
tion, much like what it does to model the appearance of certain
types of hardware faults in electronic components.

Within a probabilistic mindset, MBTA can use measure-
ment observations to derive probabilistic WCET (pWCET)
estimates, so that any given (extreme) execution-time bound
is attached a probability of exceedance, which represents
the highest probability that it can be topped (see left part
of Figure 3). In practice, the probability of exceedance is
set so low that the risk of overrunning the pWCET can be
deemed irrelevant by the applicable safety regulations. The
Extreme Value Theory and other methods that predict the
tail of a probability distribution are fit for this use, and
only need appropriate tailoring to the pWCET problem case.
Interestingly, MBTA can use those methods in a black-box
manner as the hardware modifications described in this paper
ensure by construction that the measurement observations
taken at analysis are representative of the execution-time
distribution that can occur at operation. In fact, this approach
holds even in the face of IP restrictions on hardware details
as long as IP owners design their components following the
principles needed to attain representativeness, namely time
upper-bounding and randomization, as described in [9]. Still,
there is no practical way for IP users to verify whether those
principles hold, so the degree of confidence on the pWCET
estimates depends on whether IP owners effectively adhere to
those principles.

A measurement-based probabilistic timing analysis process
starts by collecting observations that implicitly factor in the
potential timing variability. Subsequently, specialized statis-
tical tests are applied to assure that probabilistic methods
(e.g., Extreme Value Theory) can be used for pWCET estima-
tion. Those tests may check independence and identical dis-

tribution across measurements, and the quality and sufficiency
of the data to deliver a prediction. At that point, a pWCET
estimation can be obtained. See [3] for more details.

D. Impact on Average Performance

Randomization is often perceived to negatively affect aver-
age performance. In actual fact, however, its penalty largely
depends on the granularity level at which randomization is
applied. Recent solutions have shown it to have marginal
impact on performance and negligible cost on hardware. Some
variants of random placement and replacement policies for
caches have been shown to stay within 1% of the performance
of deterministic caches [6] on multi-level cache hierarchies.
The key factor in those proposals stems from the observation
that randomization can be performed at relatively coarse
granularity. Earlier proposals operated on cache lines (i.e., for
a dozen bytes), which taxed average performance significantly.
More recent designs [6] operate on cache way boundaries
(i.e., for kilobytes), which preserves spatial and temporal
locality, and therefore prizes average performance, and still
suffices for probabilistic reasoning. For arbitration, instead,
experiments on the BlueGene Torus Interconnection [4] have
shown that randomization provides performance results very
close to the state of the art. Ad-hoc policies can of course
be developed specifically for given traffic profiles to achieve
slightly better results, but in the absence of specialization, the
average performance of randomized arbitration is competitive.

The evaluation of time-randomized multicores [6] with
avionics, space and railway case studies has shown that
pWCET estimates are typically within 20% of the actual per-
formance on time-deterministic counterparts. Hence, bounds
are lower than the usual practice on time-deterministic archi-
tectures of adding a 20% engineering margin on top of the
highest observed execution time. Moreover, time-randomized
architectures enable scientific reasoning and quantitative evi-
dence supporting pWCET estimates, thus facilitating certifica-
tion against safety-related standards.

V. CONCLUSIONS

The demand for unprecedented levels of predictable perfor-
mance compels a rising proportion of application domains that
exceed traditional real-time systems, to use high-performance
hardware. This trend confronts MBTA with hard challenges.
First, the absolute worst conditions for software and hardware
sought for classic WCET determination can become so patho-
logical that any upper bound on them is too high to be useful;
much more sensible and relevant is to define an estimate of
the WCET for the set of configuration states that the system
can really exhibit. Hardware and software design as outlined
in this paper can favour system configurations that lead to
measurable and reasonable, hence usable, estimates. Second,
accounting for the execution-time variability of hardware
resources with bearing on timing at operation is becoming
exceedingly difficult for the average user. This paper explores
two approaches to address this problem: (1) hardware designs

to provide control knobs that improve observability and al-
low MBTA to extend the representativeness of analysis-time
observations to operation-time situations; (2) design means to
cause the timing variability of jittery hardware that can occur
at operation to also arise during analysis without the need
for user control. The combination of those two approaches
spares the need for exceedingly detailed timing models of the
target hardware and therefore scales to complex processors
affordably. Both solutions offer a solid baseline to support the
quest for performance predictability across a wide range of
application domains.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish Min-
istry of Economy and Competitiveness (MINECO) under grant
TIN2015-65316-P and the HIPEAC Network of Excellence.
Carles Hernandez is jointly funded by the Spanish Ministry of
Economy and Competitiveness (MINECO) and FEDER funds
through grant TIN2014-60404-JIN. Jaume Abella has been
partially supported by the MINECO under Ramon y Cajal
postdoctoral fellowship number RYC-2013-14717.

REFERENCES

[1] Precision Timed Machines. http://chess.eecs.berkeley.edu/pret.

[2] Time-Predictable Multicore Architecture for Embedded Systems. http:
/Iwww .t-crest.org/.

[3] J. Abella, M. Padilla, J. Del Castillo, and F.J. Cazorla. Measurement-
based worst-case execution time estimation using the coefficient of
variation. ACM Trans. Des. Autom. Electron. Syst., 22(4):72:1-72:29,
June 2017.

[4] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Gi-
ampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken,
M. Tsao, and P. Vranas. Blue gene/l torus interconnection network. /BM
Journal of Research and Development, 49(2.3):265-276, March 2005.

[5] G. Fernandez, J. Jalle, J. Abella, E. Quifiones, T. Vardanega, and
FJ. Cazorla. Increasing confidence on measurement-based contention
bounds for real-time round-robin buses. In Proceedings of the 52Nd
Annual Design Automation Conference, DAC ’15, pages 125:1-125:6,
New York, NY, USA, 2015. ACM.

[6] C. Hernandez, J. Abella, A. Gianarro, J. Andersson, and F.J. Cazorla.
Random modulo: A new processor cache design for real-time critical
systems. In 2016 53nd ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), pages 1-6, June 2016.

[7]1 High-Performance Embedded Architecture and Compilation. HiPEAC
vision. 2011, 2013, 2015 and 2017.

[8] J. Jalle, J. Abella, E. Quifones, L. Fossati, M. Zulianello, and FJ. Ca-
zorla. AHRB: A high-performance time-composable AMBA AHB bus.
In 20th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS 2014, Berlin, Germany, April 15-17, 2014, 2014.

[9] L. Kosmidis, E. Quiones, J. Abella, T. Vardanega, C. Hernandez,

A. Gianarro, I. Broster, and F.J. Cazorla. Fitting processor architectures

for measurement-based probabilistic timing analysis. Microprocessors

and Microsystems, 47, Part B:287 — 302, 2016.

M. Panic, C. Hernandez, J. Abella, A. Roca, E. Quifiones, and F.J.

Cazorla. Improving performance guarantees in wormhole mesh noc

designs. In 2016 Design, Automation & Test in Europe Conference &

Exhibition, DATE 2016, Dresden, Germany, March 14-18, 2016, pages

1485-1488, 2016.

PK. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to

improve isolation in multicore real-time systems. In 2016 IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS),

Vienna, Austria, April 11-14, 2016, 2016.

R. Wilhelm et al. The worst-case execution-time problem: overview

of methods and survey of tools. ACM Transactions on Embedded

Computing Systems, 7:1-53, May 2008.

[10]

(11]

[12]

