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mVLSI Biochips

Seetal Potluri, Paul Pop, Jan Madsen
Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Email:paupo@dtu.dk

Abstract—To enable mVLSI biochips for point-of-care appli-
cations, recent work has focused on reducing the number of
off-chip pressure sources, using on-chip pneumatic control logic
circuits fabricated using three-layer monolithic membrane valve
technology. Since these on-chip pneumatic control logic circuits
in turn control the fluidic operations, it is very important that
they are fault-free, in order to avoid the failure of biochemical
applications. For the first time, this paper proposes a design-for-
testability (DFT) scheme to test for faults inside on-chip pneu-
matic control logic circuits, by adding observation pneumatic
latches into the circuit.

Keywords: mVLSI biochips, On-Chip Control, Manufac-
turing defects, Design-For-Testability ;

I. INTRODUCTION

The microfluidic Very Large Scale Integration (mVLSI)
biochips allow miniaturization of biochemical processes, thus
offering several advantages, similar to traditional VLSI [1],
and thus being increasingly used in point-of-care applica-
tions. Physical defects can be introduced while manufacturing
mVLSI biochips [2], which if used, results in failure of the
biochemical application. This is a roadblock to their market
penetration and researchers have started to propose automated
testing of mVLSI biochips by converting their structure to
a logic circuit model composed of Boolean gates, using
air pressure as test signals, and using standard test pattern
generation techniques, for post-fabrication testing [2].

The device size can be as small as 6umx6um, and the
mVLSI fabrication density as high as 1 million valves/cm? [3].
The fault count will be proportional to the device density,
similar to VLSI [4]. This way, although the soft lithography
technology used for fabricating mVLSI biochips has advanced
similar to Moore’s law [5], the off-chip pressure actuators and
pumps are bulky, thereby limiting them to laboratory environ-
ments. To address this issue, recent work [6], [7] focused on
reducing the number of off-chip pressure sources, using on-
chip pneumatic control logic circuits fabricated using three-
layer monolithic membrane valve technology. Since these on-
chip pneumatic control logic circuits in turn control the fluidic
operations, it is very important that they are fault-free, in order
to avoid the failure of the biochemical application.

For the first time in literature, this paper proposes a design-
for-testability (DFT) scheme to test for faults inside on-chip
pneumatic control logic, to ensure high fault coverage, while
keeping the cost overheads to a minimum. Our DFT scheme
is novel compared to existing DFT schemes for VLSI [4]
because mVLSI biochips have two parts (flow and control)

(a) (b)
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Figure 1. Microfluidic valve, where In, Out and Con refer to Input, Output
and Control ports/signals respectively

and we need to test for faults in both the parts. The unique
and novel feature of the proposed DFT scheme is that, apart
from testing the on-chip control logic, the inserted pneumatic
latches at the test points can be reused for testing the flow
processor [2]. In this paper, we validate the proposed scheme
on general-purpose on-chip control as an example. However,
since the testing problem is orthogonal to the type of on-chip
control, the proposed scheme is applicable to any kind of on-
chip control.

II. BIOCHIP ARCHITECTURE

Physically, the biochip can have multiple layers, but logically
divided into two parts: flow processor and the control circuit.
The basic building block of a biochip is a micro-mechanical
valve, which restricts/permits the fluid flow, and hence used
to manipulate the fluid in the flow processor. The microvalve
is controlled using an external air pressure source, through a
control pin.

Broadly speaking, there are two types of microvalves
proposed in prior literature: normally open valves [8] and
normally closed valves [9]. This paper considers normally
closed valves, because they have been shown to exhibit good
noise margins to implement pneumatic digital logic [7], [9].
However, the approach proposed in the paper can be ex-
tended to consider other valve technologies which implement
pneumatic digital logic, e.g., normally-open valves [10]. A
normally-closed valve is shown as a switch-like structure, in
Figure 1(a), which has three layers.

The top and bottom layers are made of glass or polymethyl
methacrylate (PMMA), and the middle layer is an elastic mem-
brane made out of an elastomer such as polydimethylsiloxane
(PDMS). The valve is normally closed, when vacuum is not
applied to the control pin, named “Con”. When vacuum (Py)
is applied to ”Con”, the PDMS membrane is pulled into a
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Table I Figure 3. Pneumatic NOT gate built using pneumatic N-switch and resistor

ACTUATION TABLE FOR THE OMNIDIRECTIONAL SWITCH.

Phase Z1 72 73 74
Cl-C2 1 1 0 0
Cl-C3 1 0 1 0
Cl-C4 1 0 0 1
C2-C3 0 1 1 0
C2-C4 0 1 0 1
C3-C4 0 0 1 1

displacement chamber, allowing the fluid to flow between “In”
and ”Out”, as shown in Figure 1(b)).

A. Flow processor

Using valves and etched channels, more complex flow com-
ponents can be built, such as switches, pumps, filters, heaters,
storage units, detectors and separators [9]. Figure 2 shows the
omni-directional switch, designed using 4 microfluidic valves
Z1-Z4 and 4 microfluidic channels C1-C4. An actuation table
shows the combination in which valves need to be actuated
to make the fluid flow in a predetermined path. The actuation
table of this omnidirectional switch, is shown in Table I. For
example, if state of valves Z1 and Z2 are both 1, it indicates
that corresponding valves are open and fluid flows freely
between channels C1 and C2. This actuation table covers all
the possible fluid flow scenarios of this omnidirectional switch.

B. Control circuit

Similarly, on-chip control logic circuits can be built using
valves and etched channels. The on-chip control circuit can
accept few primary inputs and can drive many more valves, es-
sentially acting like an on-chip decompressor. Figure 3 shows
a structure built using an etched channel and a normally closed
valve. From figure 1, we know that when P; = Py, the valve
opens, hence Py = P4. Also, when P; # Py, valve remains
closed, hence Py = Py. Clearly, this structure represents a
pneumatic NOT gate, as shown in the truth table in figure 3.
It can also be noticed that the logical behavior of this valve
resembles that of an nMOS transistor, where Py is equivalent
to supply voltage and P4 is equivalent to ground voltage.
Hence, more complex pneumatic logic circuits can be built
using normally closed valves (similar to nMOS-resistor logic).
The reason to have on-chip control is to limit the number
of external control pins. Control valve sharing [11] can also
reduce the pin count, which is orthogonal to our problem.

Table IT
TRUTH TABLE FOR THE LOGICAL CIRCUIT NEEDED TO CONTROL AN
OMNIDIRECTIONAL SWITCH

Input Output

O3 O O |21 72 73 74
0 0 0 1 1 0 0
0 0 1 1 0 1 0
0 1 0 1 0 0 1
0 1 1 0 1 1 0
1 0 0 0 1 0 1
1 0 1 0 0 1 1
1 1 0 X X X X
1 1 1 X X X X

We do not perform valve sharing during synthesis of on-chip
control circuits.

III. ON-CHIP CONTROL SYNTHESIS

We start from a given biochip architecture, which is specified
as a netlist for the flow processor. The control synthesis
should ensure that the synthesized on-chip pneumatic control
logic circuit is able to produce all the actuation signals
necessary for the proper functioning of all the components
in the flow processor for any biochemical application, i.e., the
control is general purpose, given the particular architecture, not
application-specific. In this context, general-purpose does not
refer to the flow processor, rather it describes the capability
of the on-chip control circuit. For example, an application-
specific control will only use one route (path) on the flow
processor for transport, and that too in only one direction.
A general-purpose control will allow to control the transport
such that all routes (paths) on the flow processor can be used
in any direction.

This increases the control logic complexity, and hence the
possibility of false positives in failure detection. However, the
general-purpose property, means that we are not restricted to a
single application (the biochip can run different applications)
and results in versatile designs which can accommodate fault
tolerance mechanisms and interactive testing based on reaction
results [3].

With binary encoding, the number of control inputs needed
reduces from E, to [loga(E,)], where E, is the number of
entries in the actuation table. After binary encoding of all the
entries, the actuation table shown in Table I transforms to the
control truth table shown in Table II, where Q;, Q> and QO3
are the binary-encoded (or Boolean) variables. Since Table I
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Figure 4.  On-chip pneumatic control logic netlist synthesized for omni-

directional switch shown in Figure 2 after logic minimization and gate-sharing

consists of only six entries, the last two entries among the
eight entries in Table I, are shown as don’t cares. Based on
this control truth table, truth table, the following Boolean
functions can be derived:

Z1 = 030,01+ 030201 + 030,01
72 = 030,01 + 030,01 + 030,01
73 = 030,01+ 030,01 + 030,01
Z4 = 030201+ 030201 + 030,01

Prior to logic minimization, this circuit needed 24 2-input
AND gates and 8 2-input OR gates. After X-filling, logic
minimization and subsequent gate-sharing, the final circuit
needed 4 NOT gates, 5 2-input AND gates, 1 3-input AND,
and 4 2-input OR gates, as shown in Figure 4.

Finally, the logic minimized circuit is subject to library
mapping to obtain a logic-level netlist in the target technology
standard cell library (of monolithic membrane valve based
logic gates). We use existing algorithms to solve these steps.
Our proposed Test Insertion Algorithm is called after the
Library Mapping step, and is presented in Sect. VII. The final
two steps perform the physical synthesis of the control circuit.
The details of the physical synthesis, for both the control and
the flow parts, are available in [3].

6]

IV. DEFECTS AND FAULT MODELLING

The fault models proposed in the past [2] address the defects
for flow processor design with normally open valves. The
types of defects that manifest in on-chip control circuits using
normally closed valves are different, hence the fault models
proposed for the flow processor [2] are inadequate.

Figure 5 shows the possible open and bridge defects in a
normally closed valve and the corresponding faulty behavior
of a NOT gate designed with such a defective valve. From
figures 5(a), (b) and (d), we can notice that the correspond-
ing faults manifest output stuck-1 fault behavior. However,
figure 5(c) shows that the corresponding open defect does
not manifest output stuck fault behavior. Thus, not all faults
manifest gate stuck fault behavior. Nevertheless, if we carefully
analyze, we realize that if we test for both stuck-1 and stuck-0

Pneumatic N-switct p, Pneumatic N-switct

Faulty Truth Table Faulty Truth Table

P [Po P [Po

Py()[Pa(1) Py()[Pa (1)

PA(0)| Py (1) PA(0)| Py (1)
PA PA

(a) Bridge type-1 (b) Bridge type-2
Py Py

\I |

Pneumatic resistor Pneumatic resistor

ic N-switct P, P ic N-switct

l Faulty Truth Table

P P

Faulty Truth Table

P [Po P [Po

Py(D[Pa(1) Py()[PA(1)

Pa(0)| Py(0) PA(0)| Py (1)
PA PA

(c) Open type-1 (d) Open type-2

Figure 5. Types of bridge and open faults in pneumatic NOT gate and their
faulty truth tables

faults at the output of NOT gate, automatically it will test the
open defect shown in figure 5(c).

The 2-input NOR and 2-input NAND gates also exhibit
similar faulty behaviors. Due to lack of space, we skip the
detailed faulty truth tables for all the possible internal defects
for these complex gates, instead we summarize the faulty
behaviors in Table III. Table III shows that if we test for

Table III
FAULT BEHAVIORS AND FAULT DETECTION CAPABILITY OF STUCK-AT
PATTERNS FOR DIFFERENT PNEUMATIC LOGIC GATES

Gate type | Defect type Gate-level Candidate stuck-at fault list for
Defect detection

NOT Bridge-1 O s-a-1 {0 s-a-1}
Bridge-2 O s-a-1 {0 s-a-1}
Open-1 I (buffer w.r.t input) {0 s-a-0, O s-a-1}
Open-2 O s-a-1 {O s-a-1}

NOR Bridge-1 - {0 s-a-0, O s-a-1}
Bridge-2 - {0 s-a-0, O s-a-1}
Open-1 - {0 s-a-0, O s-a-1}
Open-2 0 s-a-0 {0 s-a-0}

NAND Bridge-1 O s-a-1 {0 s-a-1}
Bridge-2 O s-a-1 {0 s-a-1}
Bridge-3 0 s-a-1 {0 s-a-1}
Bridge-4 O s-a-1 {0 s-a-1}
Open-1 I, (buffer w.r.t input-1) {0 s-a-0, O s-a-1}
Open-2 O s-a-1 {0 s-a-1}
Open-3 - {0 s-a-0, O s-a-1}
Open-4 O s-a-1 {0 s-a-1}

both stuck-1 and stuck-0 faults at the output of the pneumatic
gate, it is possible to detect all the possible bridges and opens
for NOT, 2-input NOR and 2-input NAND gates. Thus, we
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(a) The Proposed LFSR based BIST scheme and Cumulative detected fault
lists on all channel in the on-chip control circuit for S1 synthetic biochip
benchmark, after application of 5 clock cycles (5 random vectors)
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(b) Pneumatic latches insertion at primary outputs (POs) of the on-chip
control circuit, Fault coverage=94%. This can be verified by taking
union of the lists at primary outputs (lists are available in Figure 6(a))

Scan-in
a
b our,
b i A
s P :
A

out, |
9 9 T

Scan-out Enable

(c) Pneumatic latches insertion at selected test points in the on-chip
control circuit, Fault coverage=100%. This can be verified by taking
union of the lists at the test points (lists are available in Figure 6(a))

Figure 6. On-chip control for S1 biochip

have verified that all open and bridge defects in an on-chip
pneumatic control circuit composed of NOT, 2-input NAND
and 2-input NOR gates can be detected with application of
stuck fault patterns alone. Thus, by testing all the stuck faults
in the gate-level on-chip control logic circuit, all the internal
defects will automatically be tested.

V. MOTIVATIONAL EXAMPLE

Figure 6(a) shows the pneumatic control logic circuit for S1
biochip [3], and the set of faults detected on each channel
(shown in red), using 5 randomly generated test vectors for
this circuit using the Built-In-Self-Test (BIST) scheme. Since
mVLSI biochips are not prevalently used today, maintaining
the very expensive automatic test equipment (ATE) is not
feasible, hence we propose to use BIST to generate and apply
the pseudo-random test vectors. We propose to implement

the BIST using a linear-feedback-shift-register (LFSR) [4], as
shown in Figure 6(a), constructed using pneumatic flip-flops.

The sets (shown in red) in Figure 6(a) essentially quantify
the set of faults detected at respective channels, after the
application of all 5 random test vectors. In Figure 6(a), fault
universe U = {0,1,2,3,4,5,6,7,8,9,10,11,12,13...33}, thus
|U| = 34. The outputs of on-chip pneumatic control logic
circuit directly control the microvalves on the biochip. So,
in order to test for faults inside the on-chip pneumatic control
logic circuit, a straight-forward method is to insert pneumatic
latches at the primary outputs. When pneumatic latches [7] are
inserted only at primary outputs, as shown in Figure 6(b), U =
{0,1...11,12,13,14,16,17,18,19,20,21,23,24...33}, where
each candidate fault is assigned an integer, thus making
|U /| = 31, which translates to 94% fault coverage.

We go a step further to investigate if adding more pneumatic
latches internal to the circuit, can improve the fault coverage.
In this way, when pneumatic latches are inserted at primary
outputs and some internal channels, as shown in Figure 6(c),
U =u, indicating 100% fault coverage. This motivates the
need to improve fault coverage, by inserting pneumatic latches
at primary outputs and subset of channels inside the circuit.
Now, the pneumatic latches added at primary outputs can be
reused to apply pressure signals and test for faults inside the
flow processor using the technique proposed in [2]. This is
the unique and novel feature of the proposed DFT scheme
that allows us to test both the control and flow parts.

VI. PROBLEM FORMULATION

Let C(LG,W) represent a pneumatic control logic circuit,
where LG is the list of logic gates and W is the list of
microfluidic channels inside C. Let the fault universe (list
of faults to be covered) be U. Let S; C U be the list of
faults detected on channel w;, after the application of all the
test vectors to the circuit, and let S = {S1,S2,...Sx}, where
N = |W|, the total wire count in the circuit. For any W cw,
let U(W') be the set of faults detected on W'

Given C, set of test vectors and S, we are interested in
choosing a subset of channels, W c W, for pneumatic latch
insertion, such that the fault coverage |U(W')/|U]| x 100%
is maximized with minimum number of pneumatic latches.
Since U(W') = U,cw’Si» which is a union of the elements
from the subset of S, this translates to picking a minimum-
sized collection of sets (subset) of S, such that the union of
the collection is maximized, which is an instance of the set
cover problem, which is NP-Hard. Since we are interested in
union of fault sets to compute coverage, and since the problem
under consideration is an instance of the NP-Hard set cover
optimization problem, we use greedy set cover to solve the
problem. We have not used ILP, since we are dealing with
sets and not integers. Since minimum set cover and minimum
hitting set are equivalent, we have decided to pursue only
minimum set cover.
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Algorithm 1: Proposed Algorithm for Test Point Insertion

Input: Circuit C(LG,W), Test Set T, Target fault
coverage 1M
Output: Ser of Test Points returned by GreedySetCover

—

Let S; be the set of faults detected on wire w; € W over
the entire test set T;

2 Perform deductive fault simulation [4] of C for all test
vectors and compute S; for each w; € W;

3 Let U be the set of all possible faults inside C;
4 Let S={51,5,,...Sn}, where N = |W|;
5 Solve GreedySetCover(U,S,n);

Algorithm 2: GreedySetCover(U,S,m)
Input: Fault universe U, Fault simulation collection of

sets S, Target fault coverage m
Output: TP

1 Let TP=0;
2 while [TP| < n*|U| do

3 Let max_set € S be an unvisited set that contains the
largest number of uncovered faults from U;

4 TP =TPUmax_set;

5 Mark all uncovered faults in U, that are present in
max_set as covered;

VII. THE PROPOSED TEST POINT INSERTION ALGORITHM

Algorithm 1 shows the proposed test point insertion, that
uses a greedy set cover approach to maximize fault coverage
and to minimize the number of test points. The input Test
Set contains the test vectors generated by the automatic test
pattern generation algorithm [4]. Algorithm 1 uses Algorithm 2
internally. Algorithm 2 takes the fault universe U and fault
coverage collection of sets S as inputs and outputs a set of test
points TP inside the circuit, which achieves the desired fault
coverage 1. This algorithm begins with a null set 7P in line
1, when all sets in S as unvisited. Lines 4-6 greedily pick the
largest sized unvisited set in S, and marks it as visited, and
appends all of its elements to 7P (union operation). When the
number of faults in 7P achieves the desired fault coverage m,
the while loop shown in step 2 terminates and after this point
TP is returned by GreedySetCover algorithm.

VIII. EXPERIMENTAL RESULTS

For all our experiments, we have used an Intel Core i7 8-
core CPU, running at 2.67 GHz with 5.8 GB of memory. The
implementation has two phases:

« list generation through deductive fault simulation; and

« solving the greedy set cover algorithm.
The list generation phase was implemented as a C program
and the greedy set cover is implemented using the python3.4

language. The implementation was tested on five benchmarks
obtained from [3]: S1, PCR1, PCR2, PCR3 and EA. In-
formation about the benchmark complexity in terms of the
number of flow components, flow connections, control pins,
and control connections is available in [3]. Optimal test point
insertion in the on-chip control circuit for S1 benchmark is
already discussed in Sect. V, and shown in Figure 6(c) in the
same section. The experimental results obtained for the PCR1,
PCR2, PCR3 and EA are shown in Tables V, VI, VII and VIII
respectively.

In these four tables, a “— entry indicates that the cor-
responding fault coverage is not achievable. The following
important observations can be made from these tables:

o the “—” entries indicate that even if we are allowed to
insert as many test points as possible, it is not possible to
achieve a fault coverage >60% and >90% with I random
vector and 2 random vectors respectively;

« the absence of “— entries in >60% rows for more than 1
random vector and in >90% rows for more than 2 random
vectors, indicates that some of the faults get detected only
when more random vectors are applied; and

« Given a target fault coverage, there is a trade-off between
the number of random vectors applied and the number
of test points necessary to achieve the coverage. This
is evident from the tables, as the number of test points
for a given target coverage, monotonically decrease with
increasing the number of random vectors;

Additionally, for a given number of random vectors, fault
coverage improves by increasing the number of test points. In
Figure 6(c) of Sect. V, we have noted that the fault coverage
at test points is 6% higher than the fault coverage at primary
outputs alone. Table IV performs this analysis for all the
remaining benchmarks. From this table, it can be noted that
across all benchmarks, there is consistent improvement in
maximum fault coverage (MFC) at test points as compared
to MFC at primary outputs of the on-chip control circuit.
Additionally, from this table, it can be noted that close to
95% fault coverage is achieved for all benchmarks. About 15-
20% of the device area is required for adding the pneumatic
latches and routing them. For all the benchmarks, the free
space available was found to be actually sufficient for this
purpose [3]. Thus, the proposed DFT scheme improves fault
coverage with no area overheads.

A. Eliminating Area Overhead through Imaging

We have found for benchmark circuits, that pneumatic flip-flop
insertion does not add any area-overhead, due to the available
free space around the flow processor. While this was true for
the specific benchmarks considered, this cannot be guaranteed
in theory. An alternative to overcome this limitation, is to use
imaging to detect the faulty behavior of the logic gates. Since
these logic gates are fabricated with transparent material and
their response times are typically in seconds [7], it is possible
to imaging techniques to detect them. The imaging and video
processing techniques were shown to be very successful for
online detection and correction of faults in digital microfluidic
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Table IV
MAXIMUM FAULT COVERAGE (MFC) AFTER SOLVING greedy set cover

Number of Random vectors MEC at primary outputs MEFC at test points
PCR1 PCR2 PCR3 EA PCR1 PCR2 PCR3 EA
1 29.69%  27.19% 24.20% 19.54% | 48.44% 46.93% 48.02% 47.80%
2 46.87%  45.18% 39.29%  30.77% | 7031% 71.93% 71.43%  68.08%
5 79.69% 75.0% 63.10% 51.69% | 9531% 91.67% 83.73% 86.0%
10 92.19%  82.46% 8571% 68.46% | 96.88% 92.98% 94.84% 91.23%
20 92.19%  82.46% 93.25% 84.69% | 96.88% 92.98% 95.64% 94.77%
Table V .. . .
NUMBER OF TEST POINTS FOR PCR1 BENCHMARK (64 CANDIDATE area-overhead. Similarly, as more test points are intro-
FAULTS), FOR A GIVEN FAULT COVERAGE duced, a finer camera resolution will be required for the
Fault Coverage | 1 Random | 2 Random [[ 5 Random | 10 Random imaging, thus increasing the price.
vector vectors vectors vectors IX. CONCLUSIONS
>30% 6 2 2 1
>60% — 6 3 3 For the first time in literature, we have developed a DFT
>90% — - 8 5 scheme for testing of on-chip pneumatic control circuits for
- mVLSI biochips. We have shown that the problem of attaining
able VI

NUMBER OF TEST POINTS FOR PCR2 BENCHMARK (228 CANDIDATE
FAULTS), FOR A GIVEN FAULT COVERAGE

Fault Coverage | 1 Random | 2 Random || 5 Random | 10 Random
vector vectors vectors vectors
>30% 12 3 2 1
>60% — 31 10 3
>90% — — 31 22
Table VII

NUMBER OF TEST POINTS FOR PCR3 BENCHMARK (252 CANDIDATE
FAULTS), FOR A GIVEN FAULT COVERAGE

Fault Coverage | 1 Random | 2 Random || 5 Random | 10 Random
vector vectors vectors vectors
>30% 19 6 3 1
>60% — 40 12 5
>90% — — — 18
Table VIII

NUMBER OF TEST POINTS FOR EA BENCHMARK (1300 CANDIDATE
FAULTS), FOR A GIVEN FAULT COVERAGE

Fault Coverage | 1 Random | 2 Random 10 Random | 20 Random
vector vectors vectors vectors
>30% 48 15 3 2
>60% — 143 14 6
>90% — — 147 38

biochips [12]. We propose to use the same in the context
of testing faults within on-chip control circuits for mVLSI
biochips. The quality/cost of camera required depends on the
desired fault coverage level. This can be better understood as
follows:

« We have seen earlier that increasing test points, increases
fault coverage. Similarly, the more the number of test
points observed using imaging, the more will be achieved
level of fault coverage.

« We have seen earlier that increasing test points increases

high fault coverage through test point insertion is an instance
of the set cover problem, which is NP-hard and used a greedy
heuristic to solve the problem. The unique and novel feature of
the proposed DFT scheme is that it allows us to test both the
control and flow parts of a biochip, with no area overheads.
The efficacy of the proposed algorithms were demonstrated on
biochip benchmarks.
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