Randomization for Safer, more Reliable and Secure,
High-Performance Automotive Processors

David Trillaf#, Carles Hernandez', Jaume Abella’, Francisco J. Cazorla*:t
 Barcelona Supercomputing Center (BSC). Barcelona, Spain
¥ Universitat Politécnica de Catalunya (UPC), Barcelona, Spain
* Spanish National Research Council (IITA-CSIC). Barcelona, Spain.

Abstract—The automotive domain is witnessing a relentless
transition to autonomous cars demanding high-performance
processors to timely execute complex, critical, decision-making
software. The other side of the coin is that high-performance
processors include hardware features like shared multilevel
caches and multiple cores that expose the system to significant
security threats, challenge time predictability, and jeopardize
reliable operation due to the use of advanced process technology.
In this paper, we discuss how introducing randomization in the
non-functional behavior of certain hardware components helps to
achieve a three-fold objective while preserving high-average per-
formance capabilities of high-performance processors: improving
the security of complex processors, favoring time predictability
via probabilistic analysis, and enhancing reliability against aging
and voltage noise.

Index Terms—Real-Time Embedded Systems, Security, Relia-
bility, Time-Predictability

I. INTRODUCTION

The design of processors for the automotive domain has
been traditionally driven by safety constraints. This is defined
in domain-specific standards, e.g. 1S026262, that specify for
each automotive safety integrity level (ASIL) the maximum
failure rate that is tolerated as well as the safety requirements.

The advent of autonomous driving cars is forcing automo-
tive industry to adopt massively-parallel processors delivering
much higher performance to timely execute complex data-
management and decision-making software, which already
comprises more than 100 million lines of code [12]. Recently,
some high-performance processor designs have been proposed
for the automotive domain such as those in the NVIDIA
DrivePX and the RENESAS R-Car H3 platforms. Unfortu-
nately, high-performance processors do not only bring higher
computational capabilities, but an associated unprecedented
complexity that creates difficulties in the verification of the
security, reliability, and time predictability properties of the
system. To make things worse, despite some synergies, the
typical countermeasures to handle complexity for each of these
metrics are to some extent mutually exclusive. For instance
verifying reliability properties requires detailed information
about processor internals (observability) while security de-
mands for the opposite (opacity). Likewise, hardware features
like caches help to improve the average performance of the
system but challenge predictability and security due to the
existing dependence between input data and execution time.

Interestingly, injecting randomization at different layers of
the computing system has been shown beneficial in different
domains to optimize metrics such as security, resilience to
software bugs, hardware reliability and even timing analysis.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for

As an illustrative example, for security, randomization tech-
niques reduce the possibility of inferring information from
experimentation since execution time does not correlate any
longer with the particular values of sensitive data, thus chal-
lenging malicious attempts to obtain information. For the case
of cache side-channel attacks, memory layout randomization
avoids inter-task conflicts in the cache between the victim and
the attacker processes, preventing these conflicts from leaking
information since the memory layout, and so cache conflicts,
is different and random for every re-execution.

In this paper, with focus on the future computing platforms
that will be deployed in the automotive domain, we make the
following contributions:

1) From a conceptual point of view, we show how inject-
ing randomization in hardware/software non-functional
behavior can together protect against certain security
threats, improve hardware reliability, and time pre-
dictability of complex processors in automotive, with
minimum effects on average performance.

2) From a practical point of view, we discuss how random-
ization techniques align with the automotive industry
requirements. We also illustrate the associated average
performance and implementation costs of randomization
by respectively analyzing the performance and modifi-
cations applied to a commercially available multicore
processor targeting the space domain.

Overall, we show that injecting randomization in future
high-performance processor designs for cars (Section II) is a
promising solution to cover automotive security (section III),
time predictability (Section IV), and reliability (Section V)
needs of future automotive chips while its implementation and
average-performance overheads can be contained (section VI).

II. HARDWARE AND SOFTWARE EVOLUTION IN
AUTOMOTIVE COMPUTING SYSTEMS

The demand for higher levels of automation carries huge
changes on the software side. Software implements critical
functionalities such as learning and adaptation to the envi-
ronment, and manages huge and diverse sets of data. In fact,
software is becoming one of the main competitive factors in
every car generation. This has resulted in the software footprint
in cars already reaching hundreds of millions of lines of code,
and an increase in software’s performance needs. According
to ARM prospects achieving fully autonomous cars requires

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/

MDAT.2019.2927373

NVIDIA Pascal Architecture for autonomous driving
ARM Complex CPU
Interrupt Controller

‘ al- Denver | Cortex _ Cortex
I 2 as7 | As7

C 'F GP 15 DS 15 DS 15 DS

ML Qr 128 L2s

nzmrl Cortex | Cortex

As7
1$ D$ 1S DS

1 : :
T I 1$ DS
res ‘
!
i
i

Security || Video | Video | Display | Safety
Engine | Encoder | Decoder | Engines | Engines

i)

ASIL-D 2-core lock-step Coherency Fabric

iccM peem

EM core EM core

(MAIN) (SHADOW)

Gy Glecay
MPU | uDMA 1le MPU uDMA

Memory’

7o e,

—===mICAR AUTONOMOUS-DRIVING L
Past %

High Performance Processing Safe & Hard RT Processing Future

Fash R ¥can
: ’ AURIX

—— 16/26 < R
Application « swich» Safety

Controller Power
Processor Supply

Data-fusion chip

Fig. 1. Illustrative example of chip complexity evolution in automotive.

an unprecedented increase in computing power, up to 100X
with respect to that achievable in 2016.

At hardware level, the integration of new functionalities
in cars forces manufacturers to include not only a higher
number of on-board electronic control units (ECU), but also
replacing some of these relatively simple microcontrollers by
much more complex processor designs as a way to contain
their number. However, one of the most critical aspects of
using high-performance processor designs in the automotive
domain relates to the increase of the complexity and cost
of the verification process that aims at showing that designs
comply with the robustness criteria specified in the 1S026262
standard. Figure 1 shows an illustrative architecture of today’s
lock-step ECU devoted to ASIL-D applications, a complex
processor used for driving assistance systems, and a comput-
ing platform proposed for autonomous cars. As shown, the
degree of hardware complexity and parallelism — reaching its
maximum exponent with Graphics Processing Units (GPUs) —
increases significantly to respond to the exponential increase in
performance demands. In lock-step CPUs, critical applications
are relatively simple and low-performance demanding. In
the data-fusion chip, critical applications require some more
performance — provided by the ASIL-D AURIX processor —
while high-performance applications execute on a lower ASIL
(e.g. ASIL-B) hardware. Finally, in the chip for self-driving we
do not see the separation among the safety processing and the
high-performance processing. This is due to the convergence
between both to effectively provide autonomous driving.

Unfortunately, the necessary inclusion of high-performance
processors in cars brings new challenges not faced so far in the
automotive domain. First, high-performance features included
in these processors complicate the verification process of both
timing and functional correctness. For time predictability the
inclusion of a higher number of stateful resources significantly
complicates deriving trustworthy execution time bounds. Sec-
ond, smaller and inevitably more vulnerable technology nodes
are required to accommodate a higher amount of hardware
resources in a single chip which clashes with the robustness
needs imposed by 1S026262. And third, the new hardware
features (e.g. caches and shared resources) produce software

execution time variability and interferences between different
software components, that can be used by external attackers
to extract sensitive information such as cryptographic keys
through side-channel attacks.

Complex computing hardware prevents managing auto-
motive security, time-predictability and reliability with per-
component ad-hoc solutions requiring specific verification
means given that verification cost is already huge in much
simpler platforms. Instead, a global strategy is needed to
address security, time-predictability and reliability holistically
without significantly increasing verification costs.

III. SECURITY

Connected vehicles have become one of the major goals of
car makers given their potential to, for instance, provide the
user with new software updates that add new features and
enhance existing functionality. These interconnection capa-
bilities compounded with the utilization of high-performance
processor, can be used by malicious software to perform
several types of attacks. In particular, we focus on: side
channel attacks, unauthorized control information tampering
and denial of service.

A. Unauthorized control information tampering (UCIT)

UCIT vulnerabilities include many common software-
related security problems such as buffer overflow, format
string, integer overflow, and double-freeing of heap buffer.
Attackers exploit these vulnerabilities by changing control
information with the purpose of pointing to the attacker’s
malicious code. These attacks do not depend on the potential
actions on the user side but simply exploit existing program
bugs to attack the system.

Benefits of Randomization. Randomization offers a path to
address UCIT attacks by relocating both position independent
and dependent regions either by software or hardware means.
Different randomization schemes based on memory layout
randomization can effectively protect the system from UCIT
vulnerabilities by randomizing the locations of critical data
elements and thus, making difficult, if at all possible, for an
attacker to exactly determine the runtime locations of vulnera-
ble points using experimentation. Coarse-grain randomization
mechanism like the transparent runtime randomization [5]
suffice to protect the system from UCIT vulnerabilities. While
they fail to meet other properties like protection against SCA,
fine-grain randomization mechanisms like [1] can provide that
protection.

B. Denial of Service (DoS)

In high-performance multicore processors, some key re-
sources are shared among running tasks. Resource shar-
ing allows processors to improve area and power efficiency
but introduce a side effect on the security, and also time-
analyzability, when processors do not provide sufficient per-
formance isolation properties. Multicore processors are vul-
nerable to DoS attacks since one shared resource, typically
the memory system, can be unfairly shared amongst multiple

cores. In this context, a malicious task can compromise the
performance of another task running in the same processor
by clogging a shared resource, significantly affecting the
performance of co-running tasks or even precluding resource
utilization by others. Intuitively, one may think that this effect
only arises in processor designs for the mainstream market
with limited performance isolation properties, however, this
effect has also been observed in some processors targeting the
real-time domain [8].

DoS attacks can be prevented by allowing a fair utilization
of shared resources. This requires (1) a proper dimensioning
of system resources with per-core dedicated buffers to avoid
scenarios where an attacker stalls a shared resource, and (2)
adequate arbitration policies.

Benefits of Randomization. A time-randomized processor
meeting these goals is presented in [11]. It ensures a fair
utilization of shared resources by (1) limiting the number of in-
flight requests for each core (thus limiting the maximum delay
a request can suffer due to contention), and (2) implementing a
random arbitration policy that accounts for the time each core
uses shared resources [11]. Hence, shared resource bandwidth
is fairly shared across cores regardless of their timing behavior.
Moreover, such time-randomized arbitration policy is compat-
ible with AMBA protocols for communications, since AMBA
adds no constraints on the particular arbitration policy used.

C. Side-channel attacks (SCA)

SCA extract secret key data by exploiting the information
leakage resulting from the physical implementation of the
system. An important bulk of SCA exploits the information
leakage of the hardware through input data dependent execu-
tion time. The most common timing-related SCA exploit cache
behavior to obtain sensitive information. There are several
main types of SCA able to exploit different cache properties.

Contention-based attacks. In this case the, attacker con-
tend for the same cache set with the victim process, potentially
leading to eviction of one’s cache line by the other. When the
contention and eviction is deterministic, the attacker can infer
the memory address (determined by the value accessed) of the
victim based on the cache sets that have been accessed.

Benefits of Randomization. Layout randomization [11],
[10] is an effective mechanism to protect against contention-
based attacks [10]. This is so because, when layout random-
ization is applied, conflicts in the cache cannot be determin-
istically mapped to specific addresses and thus, there is no
information flow between the victim and the attacker.

Reuse-based attacks. These attacks exploit shorter execu-
tion times experienced by memory accesses when fetched data
blocks are stored in the cache (i.e they are reused).

Benefits of Randomization. Unfortunately, layout random-
ization is not enough to protect against reuse-based attacks
since this sort of attacks exploit the fact that data that is
already in the cache will be accessed faster regardless of the
location of cache memory lines. Interestingly, the only existing
mechanism able to protect against reuse-based attacks that
allows using caches is also based on randomization [2]. This

00 150 2 250 50
Byte Values Byte Val

(a) Deterministic (b) Randomized (c) Secure

Fig. 2. Side-channel attack key value candidates. White cells show discarded
value; orange cells possible candidates for the key; and black cells the actual
key value identified by the attacker.

mechanism implements a randomized fetching algorithm that
decouples the presence of data in cache from the actual request
of data, thus confusing the attacker when assessing if blocks
already present in the cache are being requested.

Power attacks. The amount of power dissipated by a
program can also leak cryptographic information. When in-
structions execute fixed-time repetitive operations, like cryp-
tographic algorithms that use multiple iterations for a given
secret key, attackers can match power profiles obtained to infer
the cryptographic data.

Benefits of Randomization. Randomizing the execution
time to achieve protection against power analysis attacks was
proposed in [3] by introducing random noise via randomly
interleaving dummy instructions with the actual code when
the execution of encryption algorithms is detected. However,
memory layout randomization schemes such as those imple-
mented in [11] already randomize the execution time exhibited
by the processor thus being a better option to protect from
both sources of attacks, namely contention-based and power
analysis attacks.

D. Illustrative SCA Example

Figure 2 shows the results of a timing SCA trying to recover
the secret key being used for AES encryption. In particular,
the experiment performs Bernstein’s AES SCA in which an
intruder measures the execution time of encryption rounds on
a victim’s machine and a copy of the same hardware and
software, and then correlates the timing results to extract the
value of the AES secret key (16 Bytes). This attack relies on
cache conflicts to reveal information. We performed the attack
on a cycle accurate simulator and compared to which extent
the attacker is able to narrow down the correct value of the
secret key in a deterministic cache microarchitecture against
a non-deterministic one.

Figure 2(a) shows some results for a non-randomized (deter-
ministic) architecture. Black marks show the secret key values
belonging to candidate values (in orange). We observe how
some bytes are obtained (e.g. byte 1) and others require brute
force to be retrieved (e.g. byte 2). In the case of the randomized
design [11] (Figure 2(b)) the attack discards the correct value
for some bytes of the key (blue circles). Hence, a brute force
attack on the values regarded as candidates will be incapable
of finding the key. For the sake of completeness, we also
performed the attack on a processor with caches implementing

a solution against specific attacks [10] on Figure 2(c). As it
can be observed, the attacker is still able to retrieve most of
the values of the secret key. This is due to the fact that the
particular implementation of a secure cache fails to isolate
the leakage of information under the presence of internal
interference, which is the vector of attack for Bernstein’s
method.
IV. TIME PREDICTABILITY

Automotive systems must undergo an assessment of
their functional and non-functional properties. For the later
1SO26262 part 6 includes the requirement that in the software
verification step an estimation of the upper bound of execution
time of programs shall be made. This upper-bound is usually
known as Worst-Case Execution Time (WCET). To do so, real-
time systems employed in the automotive domain have relied
so far on using simple processor (predictable) so an upper-
bound on the execution time of a task can be estimated with
affordable verification costs.

With current industrial practice, the quality a WCET es-
timate, predominantly builds on previous experience and
engineering judgment. A common industrial practice is
Measurement-Based Timing Analysis (MBTA) that consists in
running a set of tests aimed at triggering the worst possible sit-
uations, measuring execution time and recording the maximum
observed value, or High-Water Mark (HWM). A safety margin
(e.g. 20% in single-core processors) is added to the HWM,
to compensate for the uncertainties of the testing process.
Parallel high-performance hardware complicates deriving (and
providing evidence of the correctness of) the margin. With
MBTA, guaranteeing that tests hit the worst-case (or a good
approximation to it) becomes infeasible as hardware complex-
ity grows: analyzing the worst-possible execution conditions
requires precise control of low-level architectural features with
significant impact on execution time variation.

Benefits of Randomization. Removing jitter from hardware
components by forcing them to work on their worst latency
eases timing analyzability while increasing the security of the
system. However, this may cause large performance losses,
thus limiting the computational benefits of multicore proces-
sors. This approach has been the one traditionally followed in
low-performance time-critical systems, which do not match the
performance expectations of future automotive applications.
Injecting randomization in the hardware resources exhibiting
jitter simplifies the application of statistical techniques to
derive the worst-case execution time (WCET) for the soft-
ware [11]. This, in turn, simplifies reasoning on the proba-
bility of different execution times to occur, so that the value
whose exceedance probability can be deemed as low enough
according to safety standards (i.e. [SO26262), can therefore
be used as WCET estimation.

A. LEOPARD: a time-randomized multicore processor

As an illustrative example of the feasibility of the use of
randomization, we describe LEOPARD, an enhanced 4-core
LEONS3 architecture [11]. LEOPARD implements randomiza-
tion in cache placement/replacement and arbitration policies,

on ! 1)
Chip ﬁnemory controller 5
{

e

Bfls 2R3

BEEBRBES
t 1 1 1

-

ecution Time

Normaliz

DET LEOPARD| DET LEOPARD

OBSERVED WCET

Fig. 3. Leopard block diagram and WCET results for a Space application [11].
Processor blocks including randomization features are marked with a x. Note
that I$ and D$ respectively stand for instruction and data cache, while PRNG
stands for pseudo-random number generator (see Section VI-B)

as shown in Figure 3. A low overhead pseudo-random number
generator (PRNG) produces 32-bit sequences of bits which
are divided into small sequences and sent to the different
randomized resources. The PRNG incurs low-overhead and
produces long-enough sequences to prevent correlation among
randomized events [11]. By using random placement policies,
LEOPARD defeats SCA attacks, which cannot infer addresses
— and hence data — from the impact of cache conflicts in
timing behavior. Also, since execution time — and hence energy
consumption — is randomized to some degree, LEOPARD
challenges power analysis attacks. LEOPARD limits per-
core in-flight requests in shared resources and implements
a random credit-based arbitration for those resources, thus
avoiding an attacker to hog shared resources, as needed to
prevent DoS attacks. This design, by providing randomized
timing behavior and appropriate random placement policies,
also enables reliable operation since it meets the requirements
described in Section V. Figure 3 (right) shows observed
performance and WCET estimates obtained with a critical
real-time control function running together with 3 memory
intensive payload applications on LEOPARD and on its time-
deterministic (DET) counterpart. Note that the WCET for DET
is less trustworthy since an arbitrary 20% margin on top of
the highest observed execution time is used. Instead, prob-
abilistic tools are used on top of LEOPARD measurements,
which produce quantifiable confidence [11]. All results are
normalized w.r.t. single-core execution with no contention.
For both, observed execution time (average performance) and
WCET estimates, randomization provides competitive results
with higher confidence on obtained WCET bounds.

V. RELIABILITY

One key metric in the design of electronic automotive
components is its life expectancy, which for current cars is
settled around 10 years. On the contrary, the lifetime of high-
performance processor is much shorter (= 5 years). While
the utilization of more robust technology nodes and reduced
operating frequencies will extend high-performance processors
lifetime, new architectural solutions are also required to con-
tribute to reaching this goal and ensure lower failure rates

during the lifetime of the devices. High-performance hardware
features impact non-functional aspects other than performance
and may create systematic repetitive patterns either in time
or in space. For instance, conventional cache memories build
upon modulo placement so that location of data is determined
by its address. Hence, this may make some cache regions to
be highly utilized whereas others remain unused. Sources of
aging such as Hot-Carrier Injection, whose impact is directly
proportional to utilization, can therefore lead to early failures
if cache space is used very heterogeneously. Alternatively,
patterns can occur also in the time dimension if events such as,
for instance, memory accesses, occur with precise frequencies.
Using deterministic caches, and arbiters in interconnects and
memory controllers, can create those systematic patterns. A
side effect is that power dissipation follows those patterns.
The synchronization of power demanding events and the
frequency at which those events occur has been shown to be
the factors with major contribution to the voltage noise in
the power distribution networks of multicore processors [9].
Voltage noise is created by power fluctuations and this effect
is amplified when such fluctuations are repetitively caused by
the synchronization of high power consuming events. This may
cause severe voltage droops and hence, failures affecting all
tasks running in the processor.

Benefits of Randomization. We illustrate how randomiza-
tion can help increasing reliability with two examples.

A. llustrative Example 1

In caches conventional placement algorithms such as mod-
ulo, access distribution across sets is completely address
dependent. Instead, when cache placement is randomized [11],
accesses to the cache sets are randomly distributed since ran-
dom placement algorithms employ a combination of address
tags bits with random bits of a seed to generate the index
cache contents so every time the random seed is modified
a different set is accessed for any given address. Having a
highly biased cache set utilization is expected to lead to higher
degradation due to, for instance, hot carrier injection, whose
effects are proportional to utilization as indicated before. This
is illustrated in Figure 4(a), where we show the normalized
access distribution to the sets of a well-known automotive
benchmark to a level 1 cache (128 sets). We observe how
modulo placement (deterministic) can easily result in a con-
centration of accesses in few sets (top plot), thus leading to
early degradation. Instead, random placement (bottom plot)
guarantees a homogeneous distribution of sets over time, thus
minimizing maximum degradation. Note that utilization in
both plots is normalized w.r.t. the highest utilization of any
set in the non-randomized design.

B. Illustrative Example 11

In conventional processor architectures pathological sce-
narios can lead to the systematic occurrence of recurrent
high power demanding events. In processors including ran-
domization the occurrence likelihood of extreme situations is
not only reduced but also it can be measured quantitatively

DETERMINISTIC Cache

Accesses
e o o 9o
N d @

e
oo

RANDOMIZED Cache

Accesses
e 9o o o
N » o ®

e
o

[} 20 40 60 80 100 120
Sets
(a) Normalized access distribution to level 1 data cache sets for
a2time for modulo (top) and randomized placement (bottom)

0.012 T

DETERMINISTIC Cache |
0.008 - —

50.006 g
0.004 g
0.002f h

0 " s
0.012 T

RANDOMIZED Cache -|

o 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
Frequency (Hz) %108

(b) Frequency spectrum of power dissipation for a regular processor
(top) and a time randomized processor (bottom)

Fig. 4. Power dissipation and access distribution across sets

using statistical tools, which allows to properly dimension
the system [9]. Figure 4(b) shows the frequency spectrum
resulting from the application of the Fast Fourier Transform
to the power profile of a pathological benchmark executed
in a conventional processor (top) and in a time-randomized
one (bottom). As shown in the plot, in a time-randomized
processor the synchronization of power demanding events
is much less significant leading to an almost flat spectral
behavior. The power measurements have been sampled from
MCcPAT, a power simulator, that models power dissipation
through the use of performance monitoring counters. McPAT
has been set to model an automotive processor at 0.9V and
22nm technology.

VI. RANDOMIZATION FOR AUTOMOTIVE SYSTEMS

The utilization of randomization techniques in the context
of automotive systems may bring some difficulties. In general,
safety critical systems have traditionally advocated for hard-
ware computing platforms in which the timing behaviour of
applications is as deterministic as possible to ease the timing
verification. However, the current game-changing situation
caused by the advent of complex high-performance hardware
clashes with classical real-time deterministic platforms.

The contribution of this paper aims at building the proper
argument over a holistic randomization approach as the one
proposed in [11] in which randomization does not only bring
benefits to security but also to reliability and predictability.

When randomization is applied in this manner the timing
behaviour of the processor can be easily modeled with prob-
abilistic timing analysis techniques. Therefore, in our view,
the adoption of randomization-based solutions (on which we
elaborate next) although not trivial and might require some
changes to standards, it is not going to find a roadblock due
to certification.

A. Probabilistic Reasoning in Certification and Qualification

Security. The Common Criteria (CC) standard for security
certification does not strictly impose any specific method for
certification, nor imposes the certification of the system itself.
Still, CC is widely used to certify security aspects of systems
in different domains. Hence, CC is agnostic on whether the
system uses or not randomization for security purposes. In fact,
probabilistic and statistical reasoning built upon randomization
is a very convenient fit for Evaluation Assurance Levels
(EAL), which describe the degree of rigor and depth of the
evaluation of the security aspects (from 1 to 7, being EAL-7
the highest). In particular, there is an excellent match between
the quantitative evaluation of randomization for security and
the evidence needed to reach a specific EAL.

Timing Analysis. Authors in [4] have shown how to fit
execution time exceedance into a residual random fault in
1SO26262. Using such approach timing verification engineers
can attack the predictability challenges associated with the
utilization of complex hardware in an affordable and sys-
tematic manner. In this context, the utilization randomization
techniques are a key element to ease the process of quantifying
the residual risk associated with the timing violations of
software functions.

Reliability. Random hardware faults are already part of
1S026262, which provides guidelines regarding coverage and
evidence required for different ASIL levels. Therefore, ad-
dressing reliability considerations by means of probabilistic
reasoning built upon randomization is a perfect fit for certifi-
cation against 1SO26262.

B. Overheads of randomization

Randomization of non-functional aspects such as cache
placement or arbitration policies of shared resources can
be achieved with hardware and software means. Taking as
an example the cache, cache layout randomization can be
implemented at software level by dynamically or statically
reallocating code, heap and stack at runtime [1], [5], [6].
The latter solution, that is based on generating different
versions of the source code each with a random order in
the definition of functions, a random padding among them,
a randomization of the locals and globals, has been shown
compatible with ISO26262 [6]. Hardware randomization, im-
plemented in caches and arbiters of shared resources, requires
hardware modifications that impact aspects such as power,
area and performance. These overheads have been analyzed
for the LEOPARD processor, showing them to be very low
(typically below 2% for EEMBC and Mediabench work-
loads [7]). Hence, we regard those overheads as low to make

randomization an attractive approach to deal with security,
predictability and reliability concerns. Randomization has also
been implemented in the shared L2 caches in LEOPARD.
Including randomization in shared caches does not impose
additional hardware overheads compared to a private cache.
The main implications come from the need for handling seed
across different tasks. Additionally, including randomization
in shared caches also allows to deploy mechanisms to handle
inter-task interferences beyond simple partitioning schemes
since in randomized caches inter-task evictions depend only
on the frequency at which contending task are able to evict
data from the shared cache. In general, randomization tech-
niques provide more efficient ways to handle interferences in
processors with intensive resource sharing.

VII. CONCLUSIONS

Driven by the unprecedented demand for high-performance,
automotive chip providers are embracing aggressive parallel
hardware designs as the only feasible approach to cover
those demands. However, high-performance hardware has side
effects on validation and verification of security, reliability
and predictability requirements. We have analyzed the op-
portunities brought by randomization to provide a feasible
path to address these challenges. We have further analyzed
randomization overheads and how it fits, or require mini-
mum changes to fit, security (Common Criteria) and safety
(ISO26262) standards in the automotive domain.

ACKNOWLEDGMENTS

This work has been partially funded by the Spanish Ministry
of Science and Innovation under grant TIN2015-65316-P.
Jaume Abella has been partially supported by the Ministry
of Economy and Competitiveness under Ramon y Cajal fel-
lowship number RYC-2013-14717.

REFERENCES

[1] C. Curtsinger et al. Stabilizer: Statistically sound performance evalua-
tion. SIGARCH Comput. Archit. News, 41(1):219-228, March 2013.

[2] F. Liu et al. Random fill cache architecture. In MICRO, pages 203-215,
Dec 2014.

[3] H. Qu et al. A random delay design of processor against power analysis
attacks. In ICSICT, pages 254-256, 2010.

[4] 1. Agirre et al. Fitting software execution-time exceedance into a residual
random fault in is0-26262. IEEE Transactions on Reliability, pages 1—
14, 2018.

[5] J. Xu et al. Transparent runtime randomization for security. In SRDS,
pages 260-269, Oct 2003.

[6] L. Kosmidis et al. Containing timing-related certification cost in
automotive systems deploying complex hardware. In DAC, pages 22:1-
22:6, New York, NY, USA, 2014. ACM.

[7]1 P. Benedicte et al. Design and integration of hierarchical-placement
multi-level caches for real-time systems. In DATE, 2018.

[8] P. K. Valsan et al. Taming non-blocking caches to improve isolation in
multicore real-time systems. In RTAS, 2016.

[9] R. Bertran et al. Voltage noise in multi-core processors: Empirical

characterization and optimization opportunities. In MICRO, pages 368—

380, 2014.

Z. Wang et al. A novel cache architecture with enhanced performance

and security. In MICRO, pages 83-93, Nov 2008.

C. Herndndez. Design and implementation of a time predictable

processor: Evaluation with a space case study. In ECRTS, pages 16:1—

16:23, 2017.

J. Owens. Delphi automotive, the design of innovation that drives

tomorrow. Keynote talk. In DAC, July 2015.

[10]
(11]

[12]

David Trilla is a PhD. Student for the CAOS group at BSC.
He obtained his M.S. degree in 2016 fromt the Universitat
Politecnica de Catalunya. He enrolled BSC in 2014 and
his current research focuses on the effects on energy con-
sumption, security and reliability on randomized architectures.
Contact Information: Nexus II Building. ¢/ Jordi Girona,
29. 08034 Barcelona (Spain). phone: +34 934137166. mail:
david.trilla@bsc.es.

Jaume Abella is a senior PhD. Researcher at BSC and
HiPEAC member. He received his MS (2002) and PhD. (2005)
degrees from the UPC. He worked at the Intel Barcelona
Research Center (2005-2009) in microarchitectures for fault-
tolerance and low power, and memory hierarchies. He joined
the BSC in 2009 where he is in charge of hardware designs
for FP7 PROXIMA, and BSC tasks in H2020 SAFURE.
Contact Information: Nexus II Building. ¢/ Jordi Girona,
29. 08034 Barcelona (Spain). phone: +34 934137609. mail:
jaume.abella@bsc.es.

Carles Hernandez received the M.S. degree in telecommu-
nications and PhD in computer sciences from Universitat
Politecnica de Valencia, in 2006 and 2012, respectively. He is
currently senior PhD. Researcher at the Barcelona Supercom-
puting Center. His area of expertise includes network-on chip
and reliability-aware processor design. He participates (has
participated) in NaNoC, parMERASA, PROXIMA IP7 and
VeTeSS ARTEMIS projects. Contact Information: Nexus II
Building. ¢/ Jordi Girona, 29. 08034 Barcelona (Spain). phone:
+34 934137170. mail: carles.hernandez@bsc.es.

Francisco J. Cazorla is the leader of the CAOS group at
BSC and member of HIPEAC Network of Excellence. He
has led projects funded by industry (IBM and Sun Microsys-
tems), by the European Space Agency (ESA) and public-
funded projects (FP7 PROARTIS project and FP7 PROXIMA
project). He has participated in FP6 (SARC) and FP7 Projects
(MERASA, VeTeSS, parMERASA). His research area focuses
on multithreaded for both high-performance and real-time
systems on which he is co-advising several PhD theses.
Contact Information: Nexus II Building. ¢/ Jordi Girona,
29. 08034 Barcelona (Spain). phone: +34 934137173. mail:
francisco.cazrola@bsc.es.

