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In the context of wearable medical systems, resources are scarce while performance requirements are high. Traditional sampling
strategies create large amounts of data, which hinders the device’s battery lifetime. However, energy savings are possible when
relying on an event-triggered strategy, following the brain example. In this paper, we explore the use of non-Nyquist sampling for
cardiovascular monitoring systems, with an in-depth analysis of the performance of a knowledge-based adaptive sampling strategy.
By reducing the average sampling rate from 360 Hz down to 13.6 Hz, we can increase the battery lifetime by 4x with a marginal
impact on the accuracy of heart-rate analysis.
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I. INTRODUCTION

AMPLING signals is the root of signal processing. Ever

since digital signal processing exists, uniform sampling has
been the most common approach. However, recent works have
shown that it is not always the optimal solution and alternatives
are possible.

A. The Data Overflow Problem

As global health improved, the World Health Organization
evaluated that coronary (or ischemic) heart disease combined
with stroke account for 26.6% deaths worldwide, motivating
the need for long-term heart monitoring. Such a personalized
healthcare is impossible without the existence of non-intrusive
devices. Thus, low-power cardiac monitoring wearable systems
are the future of global health. However, digitizing the elec-
trocardiogram (ECG) is the most expensive process for such
optimized systems [1]. The functional structure of wearable
cardiovascular monitoring systems is shown in Fig. 1, with
different possibilities for signal acquisition, processing and
wireless data transmission.

Like in many industries, most bio-medical applications
rely on collecting data according to the Nyquist-Shannon
theorem. Indeed, this theorem guarantees that all the frequencies
contained in the signal are perfectly acquired provided that
the uniform sampling frequency for the Voltage Analog-to-
Digital Converter (V-ADC, also called ADC) is at least twice
higher than the highest frequency in the signal. Conversely,
an insufficient sampling rate creates ghost frequencies in the
sampled signal due to the spectral folding phenomenon.

However, uniform sampling has two main issues. First, the
sampling is done at constant rate, ignoring the signal’s temporal
properties. This can lead to over-provisioned sampling during
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Figure 1: Structure of the cardiovascular monitoring system, along
with the final data sink on a smartphone or in the cloud. We consider in
this work different possibilities of signal acquisition (uniform or event-
triggered sampling), data processing (online in the sensor or offline
on a remote device) and transmission (short-range Bluetooth Low-
Energy (BLE) or mid-range LoRa). In total, there are eight different
scenarios envisioned which can significantly impact the energy budget.
The light-dotted arrows are constraints: the ECG processing needs to
happen only once, whether it is online or offline.

certain intervals without high frequencies. Secondly, defining
a high-enough sampling rate is not always possible because
certain signals, e.g., sound waves, do not have definite frequency
bounds.

The over-sampling effect of uniform sampling is critical in
the context of resource-constrained medical systems [2], [3]
because more data samples means more energy required to
process, store, or transmit the acquired data. Such wearable
medical devices are extremely limited in terms of processing
power, communication bandwidth, memory storage, and battery
lifetime. Once the device’s software is optimized to handle the
amount of data uniformly sampled with an efficient on-node
processing, the signal digitization becomes the main energy
expenditure [1], [2]. Changing the sampling paradigm is a
solution for better energy efficiency and, in fine, longer battery
lifetime for end-users.
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Figure 2: Comparison of the working principle of the usual V-ADC (2a) and the event-triggered T-ADC (2b).

As a first step, the micro-controller uC' configures the chip responsible for the analog-to-digital conversion, visible as a black arrows —p. In
the case of both V-ADC and T-ADC, the red lozenges ¢ shows the trigger of the measurement. In the V-ADC case, the trigger happens on
regular time intervals, whereas in the T-ADC case, the signal itself triggers the sampling by crossing the configured thresholds. The measured
value is visible following the red arrows —{> until they reach the axis. Whether it is voltage (V-ADC) or time (T-ADC), this analog
value needs to be digitized, using a given number of bits, which establishes the resolution of the measure. This conversion is showed with
the green arrows —. It illustrates the origin of digital noise, making visible the rounding of each sample towards discrete digital values,
which are represented as green dots @. Finally, each sample’s binary value (in green) is returned to the micro-controller uC' following

the blue arrows —3».

B. An Old-New Hope for Efficient Data Sampling

From the Animalia kingdom, the brain is an event-triggered
system, down to it’s smallest component. Neurons react to
action potentials they receive, because this is an energy-
efficient approach. However, event-triggering is not exclusive to
biological systems. In the computing world, external interrupt
signals on micro-controllers/processors are mimicking this
approach.

However, less have been done in the context of event-driven
sensing. In particular, constant signals do not need new samples
as the absence of samples carry the information about the signal
being invariant. Hence, new data points are required only if the
signal is changing. Time Analog-to-Digital Converters (T-ADC),
or also called in the literature as Time to Digital Convertor
(TDC), measure time between two events, such as the output
of a multi-threshold comparator in case of a level-crossing
approach. Rather than sampling the signal value with regular
time intervals (Fig. 2a), level-crossing T-ADCs sample the
time needed for the signal to change from one value to another
(Fig. 2b). When comparing V-ADCs and T-ADCs in Fig. 2,
there is a fundamental change in the process. It is however not
easy to claim that one solution outperforms the other, as the
performance of each sampling scheme is signal-dependent.

C. Contributions

In the context of non-intrusive health monitoring, wearable
medical devices are defining the concept of personalized
medicine. Such devices must be both very efficient and not cum-
bersome to use, and therefore provide a long battery life. Since
signal digitization becomes the main energy expenditure [1],

[2], improving the sampling strategy is crucial. Targeting ECG-
based devices, we present in this article event-triggered solutions
for wearable medical systems.

As a high-level explanation, our proposed strategy collects a
new sample as soon as the error between signal and the linear
interpolation of the previous measurements reaches a certain
threshold. Lowering the error threshold refines the digitized
signal and is a design parameter.

II. EVENT-TRIGGERED PARADIGM IN SENSING AND
SAMPLING FOR ELECTROCARDIOGRAMS

Event-triggered sampling covers multiple approaches. In the
following subsections, we explain these different paradigms
applied to the specific case of ECGs.

ECG signals combine periods of high frequency when the
beat happens, and lower frequencies otherwise. Each heartbeat
in an ECG is observed as a sequence of three wave components
(annotated in Fig. 3):

1) P wave: electrical activation of the atria,

2) QRS complex: electrical activation of the ventricles,

3) T wave: electrical recovery of the ventricles.

A. Level-Crossing Event Triggering

When comparing different sampling strategies, we consider
the distance between the linearly interpolated signal and the
source signal. In the two cases illustrated in Fig. 3, we highlight
the trade-offs of both solutions. On one hand, for the traditional
V-ADC, a low sampling rate can miss the main R peak from
the QRS complex. On the other hand, the T-ADC measures
an accurate timing of the R peak, while accumulating error on
the smaller T wave.
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Figure 3: Defining the reconstruction error between the classical V-ADC (3a) and the event-triggered T-ADC (3b).

Both the V-ADC and T-ADC scenarios show the same number of samples. Due to the low sampling frequency, the V-ADC signal is missing
almost completely the R peak from the QRS complex, whereas the T-ADC, relying on an exponential scaling of levels, captures the most
important feature. [Source: Record AO0848 from the PhysioNet Challenge 2007 database, between ¢ = 2.8s and ¢ = 3.8s.]

Compressed sensing [4] helps lower the average sampling
rate, but as the decision is taken in advance whether to sample
or not, it statistically skips important data points. Understand-
ably, this bet can miss crucial events, namely irregular beats
conveying signs of pathologies. This is combined with a costly
signal reconstruction, which adds noise and cannot be targeting
a low-power system. Using event-triggered strategies brings the
benefits of lower sampling rate without the risk of speculation.

Even though the ECG contains a lot of information, full
details about the P, QRS, and T waves is optional. Depending
on the application, desired accuracy and use-case, partial data is
enough. For instance, it is possible to have an online detection
of Obstructive Sleep Apnea (OSA) on a wearable device only
relying on the time between heart beats [2]. The accuracy is
improved when the peaks’ amplitude is also used. Because
all the processing is performed on the device, it must save as
much energy as possible.

This aforementioned OSA detection system relies on a
ECG-specific V-ADC ADS1191 from Texas Instruments. If
we lower the sampling frequency for a coarse acquisition,
two problems arise. First, it is impossible significantly reduce
the sampling frequency as we need to accurately detect
heart-beats. Secondly, the algorithm needs accurate timing
between the heart-beats, otherwise the quality of the results
decrease dramatically. Lowering the sampling frequency lowers
the temporal resolution of the heart-beat detection. As a
consequence, any energy saved from lowering the sampling
frequency is paid with a lowered performance.

However, switching to a T-ADC signal acquisition process
is beneficial due to two reasons. First, it becomes difficult
to miss the heart-beat as it is the highest peak in the signal.
It will quickly cross multiple thresholds, clearly flagging its
presence in the triggers received. Secondly, even with a coarse
configuration (ie. low number of thresholds), we only lose
precision in the peak height but the time of when the heart-
beat happened is preserved.

B. Error-Based Event Triggering

Putting the focus on the signal reconstruction error, the event-
triggered sampling task is a minimization problem. In our case,
we look for the minimum number of samples that allow us
to obtain a digital representation of the analog signal that is
sufficient for ECG processing.

A family of methods well suited for this problem is polygonal
approximation, also called piecewise linear representation or
linear path simplification [5]. These methods assume that the
input signal can be represented as a sequence of linear segments,
and they apply different techniques to obtain the minimum
number of segments satisfying some error criterion.

Within this family, one method especially suitable for
sampling time series is the Wall-Danielsson algorithm [6]. This
method has linear complexity, works online, and only needs
one signal sample in advance to estimate the approximation
error. Conversely, it cannot guarantee optimality neither in the
number of points nor in the selected samples. This method
follows a bottom-up approach, in which points are merged to
the current linear segment until an error threshold is reached,
and then a new segment is created. The error is measured as
the area deviation between the original signal and the current
segment, as illustrated in Figure 3.

This algorithm overcomes two main shortcomings of the
classical level-crossing method. First, an almost constant signal
oscillating near a level generates more events than required.
Second, fast linear changes generate numerous events. With
polygonal approximation, the number of samples is not affected
by constant displacements of the signal level, and linear changes
are always represented by just two samples, no matter the slope
value. In this work we have used the Wall-Danielsson algorithm
as the basis for a novel adaptive-sampling method for ECG
signals, which is explained in Section II-C.

Higher order approximation functions (quadratic or cubic
splines), are not suitable for this specific problem. The main
reasons are the absence of linear methods for building the
approximation, the complexity of the reconstruction procedure
and the higher dependency on floating-point precision. Since
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Figure 4: Event-triggered adaptive sampling of an ECG fragment using polygonal approximation. Top: Original signal, sampled at 360 Hz.
Bottom: Resulting signal of the adaptive sampling method. The detection of a regular rhythm enables a substantial reduction of the sampling
frequency by getting a much coarse representation of the signal. After a rhythm change (second vertical line), the sampling frequency is
increased to allow getting the details of the abnormal area. [Source: Record 119 of the MIT-BIH Arrhythmia DB, lead MLII, between 17:10

and 17:24].

our final objective is not only data volume reduction, but mainly
energy saving, we require methods that do not compensate the
savings derived from a lower sampling rate with an increased
computational cost.

C. Knowledge-Based Adaptive Sampling for ECG Signals

An important ECG feature that can be exploited to reduce
the amount of data is the physiological regularity observed in
the signal. In particular, under a normal sinus rhythm situation,
the same heartbeat pattern is repeated between 60 and 100
times per minute. Thus, if this situation is detected on a signal
fragment, from that point onward it would be enough to capture
just the information needed to identify a change in the rhythm.

This idea is illustrated in Figure 4, showing a 24-second
ECG segment. As long as we observe three regular P-QRS-T
heartbeat patterns with a normal distance between them, we
drastically reduce the detail of the signal just to be able to
check that the regularity is maintained. This results in a rougher
signal, but detailed enough to observe the regular heartbeats at
the expected time points. When an unexpected event breaks
this regularity, the procedure is able to increase the detail and
support a more precise analysis of the new situation.

The pseudocode of the method for knowledge-based adaptive
sampling is shown in Algorithm 1. There are four main
variables, sig’, llim, ulim and thres, that correspond to the
linearly interpolated subsampled signal, the lower and upper
temporal limits for the next expected QRS complex according
to the current rhythm, and the threshold for the polygonal
approximation algorithm. Two constants, mRR and M RR
represent the minimum and maximum possible RR interval

(distance between consecutive QRS complexes), and their values
are obtained from the ggrs documentation.

Each cycle of the algorithm has four main steps: 1) obtain
the signal up to ulim (line 8), 2) subsample it with the current
threshold and interpolate it (lines 8-9), 3) look for the next QRS
complex (line 10), and 4) update the approximation threshold
and the time limits for the next QRS complex (lines 12-
32). The subsampling function is called WD(), and it is a
direct implementation of the Wall-Danielsson algorithm [6]. It
receives as input a signal and an error threshold, and returns
the time and value of the selected points, that are subsequently
interpolated by means of the LINTERP() function. The error
threshold is updated as a fraction of the area of the largest
wave of the observed QRS complex, which is estimated from
its amplitude and duration (line 18). The delineation of the
QRS complex and its constituent waves is made using the
grsdel algorithm [7] (line 16). After this, the time limits for the
following QRS complex are updated considering the regularity
of the observed rhythm (lines 24-30). The adopted definition
of regularity has been taken from the Construe algorithm’s
implementation [8], which sets a maximum instant variation
of the RR interval of a 20% or 200 ms (lines 28-30).

In order to avoid one-time increases that could lead to
an excessive signal deformation, a conservative approach has
been adopted for the updating of the polygonal approximation
threshold. Thus, if the new threshold nthres is lower than the
previous one, the new one is immediately applied (line 20).
However, if the new threshold is higher and the QRS was
observed on time (between [lim and wlim), then the increase
is applied in a 90%-10% fashion, requiring some time to
get a large increase (line 22). The initial value selected for
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Algorithm 1 Adaptive sampling algorithm. It takes as input an
ECG signal sig and returns an event-triggered sampled version sig’
obtained by polygonal approximation with dynamic thresholding. For
compatibility with the QRS detector, sig’ is linearly interpolated at
the same frequency of sig.

1: function ADAPTIVE_SAMPLEC(sig)

2: const mRR = 0.285, MRR = 2.4s

3 var sig’ = || > Resulting subsampled signal
4: var [lim,ulim =0, MRR

5: var thres = 0.5mm?
6.
7

8

var beats = ] > Dynamically detected QRSs
while len(sig’) < len(sig) do
: x,y = WD(sig[len(sig’) : ulim], thres)
9: segment =

LINTERP(z, y)
10: grs = GQRS(segment)[0]
11: sig’ = CONCATENATE(sig’, segment][: qrs])
12: if grs is null then
13: thres = 0.5mm?
14: ulim = 2 - ulim — beats[—1]
15: else
16: delineation = QRSDEL(qrs)
17: w = MAX(delineation.waves)
18: nthres = 0.25 - (w.amp - w.dur/2)
19: if nthres < thres then
20: thres = nthres
21: else if grs > llim then
22: thres = 0.9 - thres + 0.1 - nthres
23: end if
24: llim,ulim = qrs + mRR,qrs + MRR
25: APPEND (beats, qrs)
26: rro = beats[—1] — beats[—2]
27: rr1 = beats[—2] — beats[—3]
28: if [rro —rr1| < 0.2s V0.8 < ¢ < 1.2 then
20: llim = qrs+MIN(0.8 - rro, o — 0.25)
30: ulim = qrs+MAX(1.2 - r7o, 770 + 0.25)
31: end if
32: end if
33: end while
34: return sig’

35: end function

the threshold is 0.5 mm?2 in common ECG scale (25 mm/s,
10 mm/mV). According to the experimental results shown
below, a fraction of 0.25 for threshold update has shown a
good compromise between the resulting sampling frequency
and the QRS detection performance.

III. EXPERIMENTAL EVALUATION

To demonstrate the potential of this knowledge-based adap-
tive sampling approach for ECG signals, we performed a series
of experiments comparing the performance of a standard QRS
detection algorithm using different sampling methods. The
details of these experiments are explained next.!

A. Dataset and Detection Algorithm

The dataset used is the MIT-BIH Arrhythmia database
available on PhysioNet, which is widely used in the bibliography
to evaluate QRS detection algorithms. This database contains

'With the aim of supporting reproducible research, the full source code of
the algorithms to reproduce the experiments presented in this paper has been
published under an Open Source License, along with the individual results:
https://c4science.ch/diffusion/8502
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Figure 5: Evolution of the QRS detection error with the average
sampling frequency and the area fraction used for threshold update.

48 ECG records of 30 minutes duration sampled at 360 Hz. In
our case, the event-triggered sampling procedure is single lead.
We decided to use the MLII, as it is the most repeated lead in
the database. Since records 102 and 104 do not have this lead
available, they were discarded for the experiments. Hence, the
total run-time of the database is 23 hours.

The implementation of the ggrs algorithm used for QRS
detection is from the WFDB software package from PhysioNet.
This enables us to use a openly available and trustworthy
resource for unbiased performance assessment.

B. Compared Methods

Comparing each approach requires a systematic process. As
a reference, we considered the performance using the 360 Hz
uniform sampling (US) from the database. We then applied
the same methodology for the three approaches we considered,
namely:

e Level-Crossing (L.C.) Sampling: to convert the database
to a level-crossing scheme, we considered a regularly
spaced set of levels. Whenever the signal crossed a level,
both the time and level value were reported. Finally, we
benchmarked the performance of a linear interpolation
resampled at 360 Hz.

o Compressed Sensing (C.S.): we compressed the database
using the exact same approach as defined in [4], with
a compression ratio of 50%. After decompression, we
obtained the initial sampling frequency of 360 Hz, not
requiring additional processing.

o Knowledge-Based (K.B.) Sampling: similarly as the level-
crossing sampling, we obtained series of times and values.
This approach also required a linear interpolation at 360 Hz
to run the performance benchmark.

C. Performance Validation

For benchmarking the influence of the event-triggered sam-
pling strategy on the QRS detection algorithm’s performance,
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Sampling Strategy Se +P F, fs (Hz)
Uniform Sampling (U.S.)  99.73 99.85 99.79  360.0
Compressed Sensing (C.S.) 99.64 99.82 99.73  180.0
Level-Crossing (L.C.) 99.66 99.83 99.74 43.7
Knowledge-Based (K.B.) 99.62 99.84 99.73 13.6

Table I: QRS detection performance comparison among different
sampling strategies and resulting average sample rate for the 46
selected records from the MIT-BIH Arrhythmia DB.

Algorithm 1 was applied to all records in the dataset that have
the MLII lead available. Then, the ggrs algorithm was run
both on the original signal and in the resultant subsampled
and interpolated signal. The results of both runs were then
compared with the manual beat annotations contained in the
.atr files using the bxb application from the WFDB toolkit,
using the F} score as the performance metric.

Figure 5 shows how the overall F; and the average sampling
frequency varies depending on the fraction constant we apply
to update the approximation threshold (line 18 in Algorithm 1).
As we can see, reducing the sampling frequency more than
10x (down to 34.10 Hz) has no noticeable performance penalty,
and reducing it up to 37x (9.59 Hz) has less than 1% of F}
decrease. From this curve, we select a constant fraction of
0.25 as a good compromise between a 26x reduction of the
sampling frequency (13.60 Hz) and only a 0.06% of I} penalty.
This is an acceptable performance decrease to qualify for
medical certification [4], while lowering the most the sampling
frequency. It should be noted that in this scheme each sample
has to be larger, since it has to encode both the time and the
physical value of the signal.

Then, Table I shows a performance comparison between the
proposed method and the other sampling strategies, including
ordinary uniform sampling, compressed sensing and level-
crossing. The considered performance metrics are specificity,
positive predictivity and the combined F} score. The com-
pressed sensing method has been applied as explained in [4],
while the adopted level-crossing scheme is linear with a thresh-
old every 200 puV. The results show that for a similar F} score,
compressed-sensing halves the sampling frequency while level-
crossing divides it by more than eight. The knowledge-based
approach outperforms the two other strategies. Because of the
simpler model of level-crossing for hardware implementation,
it must be considered.

D. Energy Consumption for Wearable Cardiac Monitoring
Systems

We modeled the consumption of a full cardiac monitoring
system active for 23 hours to match the database considered
in Section III-A. As illustrated in Fig. 1, we studied multiple
approaches to sampling, processing and transmitting data. All
our results in Table II consider V-ADC or T-ADC (level-
crossing or knowledge-based) sampling, embedded online
processing or remote offline processing, and finally BLE or
LoRa for wireless data transmission.

Data Flow Stream [J] Online [J]
Strategy V-ADC T-ADC V-ADC T-ADC
(from Table I) U.S. L.C./ K.B. US. L.C.=KB.
ADC [9] 27.7 0.18 27.7 0.18
Sig. proc. [10] - - 23.9 23.9
BLE tx. [11] 56.7 11.8/994 7.06 7.06
LoRa tx. [12] 660 88.0/66.0 22.0 22.0
Total (BLE) 844 12.0/10.1 587 31.2
Total (LoRa) 687 88.2/662 737 46.1

Table II: Model of the total energy consumption for the scenarios
considered, with different sampling strategies (Uniform-Sampling V-
ADC, Level-Crossing T-ADC, or Knowledge-Based T-ADC), signal
processing (streamed to another device or local online analysis), and
wireless communication protocols (BLE or LoRa). The values are
reported for 23h of run-time.

In all cases considered, the medium-range low-power LoRa
wireless communication is higher-power than BLE, even though
it becomes very competitive with smaller payloads. This is
therefore a solution to consider when no Bluetooth-enabled
smartphone is available.

Focusing on the data acquisition and processing, the most
straightforward approach of streaming the V-ADC sampled
ECG signal is the least efficient. Our results match the
conclusions in [1], where ECG streaming consumes more
than on-device delineation. However, a paradigm shift occurs
with state-of-the-art T-ADCs devices. Indeed, the much lower
sampling frequency enables savings both at the sampling level
and at the transmission level. Paying attention to the results, the
L.C. T-ADC is very close to the most advanced K.B. T-ADC,
even though the sampling frequency is higher (43.7 Hz vs
13.6 Hz). This is because in the K.B. strategy, each sample
has 10 bit for time and 12 bits for voltage, whereas the L.C.
strategy only requires one bit to encode the direction of the
signal change as the levels are known. Therefore, a direct
streaming of the T-ADC values for remote processing is the
most efficient solution. From these results, we envision devices
with a battery lifetime multiplied by at least four.

IV. CONCLUSION

In this work, using an event-triggered sampling strategy,
we demonstrated that the sampling rate required to perform a
widespread task in current wearable medical systems (heart-rate
monitoring) can be reduced between one and two orders of mag-
nitude which retaining the same performance as a compressed-
sensing approach with 50% compression ratio. Hence, the
observed magnitude of the difference allows for optimism,
with high energy-savings for a hardware implementation, along
with a lowered processing and storage for micro-controllers
thanks to a lower amount of data to process. When considering
full systems, such as wearable cardiac monitoring devices,
further developing and the use of T-ADCs opens the way to a
promising future of long-lasting solutions for a non-intrusive
and personalized healthcare.
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