
ar
X

iv
:1

90
6.

02
69

8v
1

 [
cs

.N
E

]
 6

 J
un

 2
01

9

Training large-scale ANNs on simulated resistive

crossbar arrays

Malte J. Rasch ∗, Tayfun Gokmen,

Wilfried Haensch

IBM Research AI, TJ Watson Research Center, Yorktown Heights , New York, USA

June 7, 2019

Abstract

Accelerating training of artificial neural networks (ANN) with ana-
log resistive crossbar arrays is a promising idea. While the concept has
been verified on very small ANNs and toy data sets (such as MNIST),
more realistically sized ANNs and datasets have not yet been tackled.
However, it is to be expected that device materials and hardware design
constraints, such as noisy computations, finite number of resistive states of
the device materials, saturating weight and activation ranges, and limited
precision of analog-to-digital converters, will cause significant challenges
to the successful training of state-of-the-art ANNs. By using analog hard-
ware aware ANN training simulations, we here explore a number of simple
algorithmic compensatory measures to cope with analog noise and lim-
ited weight and output ranges and resolutions, that dramatically improve
the simulated training performances on RPU arrays on intermediately to
large-scale ANNs.

1 Introduction

The amount of computation needed to train modern deep learning networks is
immense. Recently, it has been suggested to use resistive crossbar arrays to
accelerate parts of the ANN training in analog space, with a potential dramatic
increase in computational performance compared to digital systems [18, 2, 3,
1, 7, 8]. While analog crossbar arrays, also termed resistive processing units
(RPU) arrays [7], could speedup inference of DNNs (deep neural networks) and
CNNs (convolutional neural networks) [15, 17], the true benefit of an analog
deep learning accelerator lies in the acceleration of the training process as well,
since training of ANNs is generally orders of magnitude more computationally
demanding than inference. However, many significant design, material, and
algorithmic challenges still need to be addressed in order to enable training on
RPUs with high accuracy.

1

http://arxiv.org/abs/1906.02698v1

While forward and backward pass of the stochastic gradient descent (SGD)
are relatively straightforward to implement in analog hardware, a truly in-
memory weight update that matches the performance of backward and forward
passes in computing a pass in constant time, is much more challenging. A fully
parallized update is important, however, because if the gradients were instead
be computed in the digital part of the system, it would require on the order of
n2 computations and thus all speed advantages of the analog (i.e. computing
the forward and backward in constant time), would be lost.

One promising design is to use stochastic pulse sequences to incrementally
update the weight elements in a parallel fashion [7]. This approach was explored
for small to moderate DNNs and CNNs[7, 5, 14], as well as LSTMs [6] in sim-
ulations. It was shown that moderate amounts of analog noise and physically
limited weight update sizes can be tolerated during training, in particular, if one
introduces additional noise and bound management techniques, that mitigate
the analog noise in the backward pass and can be computed in linear time.

It was also noticed, however, that it is critical for the SGD algorithm to
employ device materials that have symmetric switching behavior [7], in other
words, a single update pulse in positive or negative direction should effectively
change the weight by a similar amount at least on average. To achieve this
balanced update behavior requires significant efforts on the material develop-
ment for RPUs or significant changes in gradient decent algorithms or network
architectures.

Another problem is the limited weight ranges and limited number of states
supported by the device material, which, in floating point terms, is related to the
bit resolution of the weights. Although the resistance of the memristive device
can be set to any analog value in principle, materials are inherently subject to
noise, and hardware designs require that the weight update is pulsed, where each
pulse will increase or decrease the weight value by an finite amount of dwmin on
average. Thus, if the weight is bounded in the range w ∈ [−wb, wb], the number
of states can be defined as Ns ≡ 2wb

∆wmin

. Note, however, that cycle-to-cycle
variation of the weight update is generally large and the read out process is
noisy, too, so that a single read might not be able to discern neighboring states.

In this paper, we focus on the latter issues, that is the limited number of
material states, restricted weight ranges, and the noise in the training process.
We here ask the following questions: even if we had a device with noisy but (on
average) ideally symmetric switching behavior, how many states are necessary
to successfully train larger scale models on more challenging image data sets
(than MNIST)? Are there simple ways to improve performance on RPU arrays
with their limited weight resources?

Our contribution are: (1) Scaling up the hardware realistic pulsed-update
training on simulated RPUs to larger networks with > 60 million weights and
> 1.2 million images, such as AlexNet on the ImageNet data set [13], (2) showing
the importance of normalization to overcome analog noise, (3) devising a new
scheme for virtually remapping the weight ranges to maximize usable resistive
states and achieving proper regularization on RPUs arrays.

2

+

�
ADC

Cint

V
out

RPU RPU

RPU RPU

RPU

RPU

RPU RPU RPU

I
1

I
REFt

meas

t
1

�
1

�

t
2

�
2

�

t
j

�
j

�

Vin

0

Vin
0

Vin

0

Backward Cycle

I
2

I
i

RPU RPU

RPU RPU

RPU

RPU

RPU RPU RPU

BL

P
j

�
j= �C

BL P
i = x
C

i
x

Update Cycle

St
oc

ha
st
ic

Pu
lse

s

	w
min

Pulse
coincidence

Figure 1: Backward pass and pulsed update for RPU arrays hardware implementation,
adopted from [7]. Forward pass is analogous to the backward pass (with input and
output reversed). (Left) Matrix-vector operation are performed in analog space, where
memristors encode the weights of the matrix and inputs are encoded temporally with
voltage pulses of variable length. (Right) During update cycle, stochastic pulse trains
are generated, where the probability of pulse occurrence encodes the input values. If
pulses from both input sides coincide at a RPU device, its resistive value is updated
corresponding to (on average) ∆wmin in weight units.

2 RPU model and simulations

Our simulation is based on the RPU model proposed by [7] (see Fig. 1 for
an illustration). We, however, adapted the previous C++-simulator of [7] to
integrate with the Caffe2 machine learning framework1 [12], to be able to flexible
handle different network architectures and datasets. We also re-implemented the
RPU simulation code to fully support GPUs acceleration to improve the runtime
for larger models and convolutions for inference and training. For the ConvNets
investigated below, a training simulation with fully pulsed update typically only
runs 2-3 times slower than a native floating point training in Caffe2.

We adopt the scheme of [5] and use stochastic pulse trains of maximal length
31. We ensured in our simulation that pulsed weight update is done (1) by
drawing actual stochastic pulse trains for each update2 and calculating the co-
incidence of pulses per weight, (2) for every coincident pulse occurrence the
corresponding device weight (conductance) is updated by a single step drawn
from a Gaussian distribution (with standard deviation 30% of the mean ∆wmin)
and saturating the hard bounds if necessary, (3) the sequence order of updates
(in case of a batch learning or convolutions) is preserved as if would be done in
hardware.

1https://caffe2.ai/
2We, however, used only 2 instead of the 4 positive and negative pulse train combinations

during update for speed advantages. We did not notice any different behaviour by this slight
simplification.

3

https://caffe2.ai/

1000

Analog
RPU array

ADC

N
O
IS
E

DAC

RPU RPU

RPU RPU

RPU

RPU

RPU RPU RPUIn
p

u
t

m
a

n
a

g
e

m
e

n
t

O
u

tp
u

t m
a

n
a

g
e

m
e

n
t

Figure 2: In the RPU simulations Caffe2 fully-connected and convolution layers are
replaced by operators that contain the analog hardware simulation. Given a network
architecture, e.g. AlexNet [13] in this illustration, each layer will be translated to a
separate RPU operator (of matching sizes of the weight matrices). The RPU operator
contains input and output management in the digital part, where inputs are normalized
or scaled by the maximal input value in floating point precision, as described in the
text. DAC and ADC have limited ranges and precision and the analog noise is drawn
each operation cycle from a Gaussian distribution and added to each analog output
line (see [7] for details of our RPU model).

In our simulations, all analog noise, such as circuit components and periph-
eral noise, is referred to the output of the analog computation and modeled as
Gaussian noise processes added to each analog output line. The noise values
are re-drawn for each analog computing step, i.e. each computed vector-matrix
product. The device specification in [7] gives reasons to set the standard devi-
ation of these cumulative noise terms to 0.06.

Additionally, we assume that each analog RPU array stores the weights of a
layer (the kernel matrix) and performs matrix vector products in a way described
in [7, 5]. The RPU array is communicating with the next layer in digital space,
thus we assume analog-to-digital (ADC) and digital-to-analog (DAC) converters
per RPU array (see Fig. 2). The DAC/ADC discretizes the input values into m

bins in the range of its bounds (which are fixed by hardware design to ±1 for
DAC, and ±12 for the ADC, see our definition of the baseline RPU model [5]).
The bit resolution of the converters are then log2 m. We here assume 7 bit for
DAC and 9 bit for ADC if not stated otherwise (see also [6] for a discussion).

For the SGD training, we just use plain batch-wise SGD without any addi-
tional momentum or weight decay, which would be difficult to efficiently imple-
ment on analog hardware architectures.

4

2.1 Noise, bound, and update management techniques

It has been shown previously [5] that it is essential to introduce noise manage-
ment techniques on the digital side, to cope with the noisy analog computations
as well as the bounded ranges of the inputs and outputs of the analog RPU.

Noise management becomes vitally important during backward pass, since
the backward propagated errors are usually orders of magnitude smaller than the
forward pass values and would be buried in the analog noise floor if not properly
re-scaled. In particular, we use the noise management introduced by [5], where
the digital input vector x is divided by α = max |xi| before the DAC and
re-scaled again by α after the ADC in digital. Additionally, we use a bound
management (only in the forward pass), that iteratively multiplies α by factors
of 2 until the ADC bound does not saturate any of the outputs anymore. In
this way, larger output values can be accommodated, with the cost of ADC
resolution (which is effectively reduced by a factor of 2 for each iteration) and
cost of runtime since the computation of the forward pass is essentially repeated
multiple times. However, since one cycle is very fast (order of 100ns) and the
geometric reduction of α does not need many iterations (at the very most the
number of bits of the ADC), the additional runtime cost seems tolerable if
necessary for high accuracy, which is in particular important before the softmax
layer. Also, hardware solutions could cut short the integration time further, by
triggering an abort when one output saturates early.

In addition, we use an update management introduced in [5], that rescales
the pulse generation probabilities based on the max |xi| and max |dj | and the
expected pulse width ∆wmin, where d denotes the error vector during update.
We refer to [5] for the details.

3 Results

We first investigated a small 3-layer convolutional network plus one fully-connected
layer and ReLu activation3 on the CIFAR10 data set (with weak data augmen-
tation, e.g. mirroring and color jittering). The network has 79328 weights and
uses lateral response normalization (LRN) between convolution layers. The im-
age size is 32 × 32 pixels. While of similar model and data size as the CNN
previously investigated on the MNIST data set [5], the CIFAR-10 dataset con-
tains rescaled color images, whose classification is much more challenging than
classifying the cleanly handwritten binary digits of MNIST: Using floating point
(FP) and no input data augmentation, the above CNN achieves about 0.8% test
error on MNIST, while only 25% test error on CIFAR-10.

We first trained the network with our baseline RPU model (see [5] for def-
inition), except with balanced weight update and 7 bit DAC and 9 bit DAC
resolutions. This RPU model has 1200 weight states on average per device
(∆wmin = 0.001 and wb = 0.6) and gave very acceptable performance for a

3We used the “Full” network (except from changing the sigmoid activations to ReLu) from
the Caffe cifar10 examples.

5

https://github.com/BVLC/caffe/tree/master/examples/cifar10

0 100 200 300 400 500
Epochs

20

25

30

35

40

45

50
T
e
st

 e
rr

o
r

[%
]

3-layer CNN: 'off-the-shelf'

Floating point reference

dw_min=0.001

dw_min=0.00025

0 100 200 300 400 500
Epochs

20

25

30

35

40

45

50

T
e
st

 e
rr

o
r

[%
]

3-layer CNN: w/z-scored activations

Floating point reference

dw_min=0.001

dw_min=0.00025

Figure 3: 3-layer CNN network on CIFAR10 trained with the baseline RPU model [5],
except using balanced switching behavior. (Left) Using the ’off-the-shelf’ model with
the RPU simulation for each layer, performance is severely impaired compared to the
floating point reference, even if the number of states is increased 4× (red line). (Right)
Normalization of the (digital) activations between layers improves RPU performance
and eliminates overfitting (ie. late rise in test error, see left). Parameters: λ = 0.1,
multiplied by 0.8 every 20 epochs; no weight decay; batch size 100.

smaller CNN on MNIST (compare to [5] Figure 4, “All no imbalance”). Nev-
ertheless, here we found that performance is dramatically impaired, see Fig. 3
(left, green curve), albeit using the same bound and noise management tech-
niques described in [5]. Even increasing the number of available states by 4×
does not reach FP performance (Fig. 3, left, red curve).

Thus, more challenging data sets and larger networks seem to again require
additional algorithmic improvements for training RPUs. In the following, we
introduce two simple remedies.

3.1 Normalization balances activations in the presence of

noise

The reason for the poor learning ability becomes clear when estimating the
signal-to-noise ratio of the analog matrix product. For each analog output, we
have yi = wix + ξ, where wi is the ith row of the analog weight matrix and
ξ the analog noise term, i.e. a Gaussian process with zero mean and standard
deviation σ. If we assume that wi is a “good” feature vector for input x, the

direction of x and wi should approximately match, thus wi ≈ ‖wi‖
‖x‖ x. Thus

for a number of similarly well matching inputs, the signal-to-noise ratio
〈y2

i
〉

σ2 is
roughly

SNR ∝ ‖wi‖2 〈‖x‖2〉
σ2

. (1)

Although this is only an approximate calculation, it shows that weight vectors,
that are well matched with the inputs, will quickly grow in norm to improve the
signal-to-noise ratio during initial SGD training.

6

Moreover, since only few rows ofW matches the input initially well, they will
outgrow others quickly, leaving the norms of the rows of W very unbalanced.
Note that this is in particular problematic with the RPU noise management,
since the inputs are divided by max |xi| so that weakly activated inputs get
buried in the output noise. If they are suppressed to such a degree that the
output becomes smaller than the smallest ADC resolution, they may become
essentially zero in the output.

Thus we propose here to counter-act this drive to unbalance rows of W

by using (channel-wise) normalization of the input (z-scoring). Note that this
is very similar to spatial batch normalization (BN) used by default (for other
reasons) in modern deep learning architectures, such as ResNet [10]. However,
since we here simply want to maintain the variance across the inputs, we do
not train an additional scale or bias per channel, like typically done in BN [11],
and we place the normalization before each layer. Additionally, we z-score the
inputs across the batch before a fully-connected layer, not only convolutions.
As in BN, during testing we use running mean and variances from the train
runs and are fixed during testing.

With this modification of the network structure, where we replace the LRN
with activation z-scoring, we find that the 3-layer CNN even beats the orig-
inal model (using LRN) considerably, when trained in software with floating
point accuracy without any RPU hardware simulations or noise (with identical
learning rate and without weight decay), see Fig. 3 (right, blue curve).

More importantly, the baseline RPU model now performs much more stable,
and at least the model with 4× more states almost reaches FP performance
Fig. 3 (right, red curve). However, the baseline RPU model with more limiting
number of weight states is still 10% off the FP reference (green curve).

3.2 “Virtually” remap weight ranges to maximize usable

states

Our second suggestion is to “virtually” remap the weight bounds to an usable
weight range per layer, which not only maximizes the available physical states,
but also has the additional benefit that saturation at the weight bounds acts
as n adequate weight regularization. The motivation comes from the following
observation.

Between layers of a deep network, it is important to approximately main-
tain a 1:1 ratio of the standard deviation of the input and outputs of a layer.
In particular, assume that yj =

∑n

i=1
wjixi and xi ∼ N (0, 1) behaves like a

standard normal random variable. Let’s for simplicity assume that the matrix
W has all identical entries w. Then, it is easy to see that the output standard
deviation is of the order of

√
n, i.e. yj ∼ N (0, w

√
n). Thus, the standard devi-

ation of the output is proportional to the square root of number of dimensions
of the input. This idea, which also holds for more general W , is the basis for
all weight initialization techniques, such as Xavier or He initialization [4, 9].
In Caffe2’s Xavier implementation, the weight is initialized uniformly in the

7

0 100 200 300 400 500
Epochs

20

25

30

35

40

45

50
T
e
st

 e
rr

o
r

[%
]

3-layer CNN: w/weight scaling

Floating point reference

dw_min=0.001

dw_min=0.00025

0 100 200 300 400 500
Epochs

20

25

30

35

40

45

50

T
e
st

 e
rr

o
r

[%
]

3-layer CNN: w/z-scored and scaling

Floating point reference

dw_min=0.001

dw_min=0.00025

Figure 4: Same network and settings as in Fig. 3 but now additionally applying the
described weight scaling. (Left) Using the original 3-layer CNN with RPU simulation.
Note that proper weight scaling makes the RPU network actually beat the performance
of the FP performance, when using 4× more states (red), and dramatically improve
the baseline RPU model with more limited number of states. (Right) Using the z-
scored network in combination with the weight scaling does not further improve the
RPU simulations for this network. Parameters: as in Fig. 3, γ = 0.4

range w ∈
(

−
√
3√
n
,+

√
3√
n

)

. Note that the division by
√
n achieves that the out-

put standard deviation is roughly of the order of the input standard deviation,
independent of the number of column of the weight matrix.

Such weight initializations were shown to be very essential in successful train-
ing of deep ANNs, as it prevents an explosion of the activations through the
layers and normalizes for different weight matrix sizes [4, 9].

3.2.1 Proper weight scaling for RPUs

We propose to take advantage of the requirement of scaling the weight into a
smaller range for larger weight matrices. The insight is that, even for a trained
model the requirement of having the similar input and output standard deviation
should still hold4. Thus individual weights should not deviate “too much” from
their initialization bounds. That means after training it is still max |wij | = β√

n

with β ≈ 1 or at most a few times larger than that. Given the limited weight
resources in analog space, we thus do not need to waste weight states to code
for weight values ≫ 1√

n
. Our approach is thus to virtual map the weight range

(− β√
n
, β√

n
) into the original weight range (−wb, wb). This can be achieved in

the RPU array by adjusting the mapping of weight values to resistive values
accordingly without changing the hardware specifications. Or it could be done
in digital, by additional scaling the digital output of the RPU calculation (of
forward and backward passes) by a factor of β√

nwb

, to virtually re-scale the

weight range. Note that in this case the learning rate λ has to be divided by the

4at least for intermediate layers, the final layer before the softmax might be an exception

8

same factor for that particular layer, to re-scale it properly to the re-mapped
weight range.

We use β ≡
√
3

γ
(with γ ≤ 1) for all layers if not otherwise stated, and

initialize the weights uniformly in the range (−γwb, γwb). Thus we allow the
weights to grow 1

γ
times beyond the maximal initialization value and therefore

maximize the number of available states in this range. Note that we use the
bound management to ensure that signals are not saturated because of the
limited output range (see above).

We trained the 3-layer CNN again using the above scaling and normaliza-
tion approaches. We find that, in particular when the number of states is more
limited (e.g. 1200 for the baseline RPU model), scaling the weight bounds
properly is the most effective to increase performance (see Fig. 4, left). In this
network architecture, the performance increased by least 10 %-points. More-
over, the RPU now is much better regularized (no late increase in test error as
in Fig. 3 left), as the saturation at the limited weight range prevents individual
weights to become dominating.

The weight scaling approach seems to also normalize the activation correctly,
so that z-scoring does not gain on top of using the weight scaling (compare Fig. 4
right).

Note that when the number of states is increased 4-fold, the RPU model in
fact now beats the floating point reference, despite the noise and pulsed weight
update, because of better regularization properties. In conclusion, the weight
scaling forces the RPU to operate on the correct weight range and maximizes
the available states in this range. Thus, the requirement for the amount of
states is lessened.

3.3 Larger networks and data sets

3.3.1 ResNet on CIFAR

We further investigated the number of states needed for training ResNet20 (i.e.
n = 3 in [10] 4.2) on CIFAR10 and CIFAR100 data sets. We use the above
weight scaling technique. Note that ResNet has batch normalization per de-
fault which we use here instead of the z-scoring (results are slightly better for
BN in case of ResNet). We applied weight scaling and varied the number of
states of our baseline RPU model (by changing ∆wmin) and found that (see
Fig. 5) (1) weight scaling improves the performance considerably, in particu-
lar, when the number of states is smaller, (2) with weak data augmentation,
pulsed update RPU generalizes better than the FP reference, (3) with strong
data augmentation (30% scale jitter with random cropping, and random image
shuffling per epoch) the RPU model needs at least 48K states to be able to
come close to the FP reference, which improves dramatically with stronger data
augmentation.

Our results indicates that larger networks and more challenging tasks (such
as CIFAR100) demand more resources in terms of number of states. In par-
ticular, analog noise and finite number of states seem to limit the performance

9

gain achieved by strong data augmentation, which is very effective method for
improving generalizability for ANNs trained with floating point accuracy and
limited dataset sizes.

3.3.2 AlexNet on Imagenet

For the first time, we simulate analog network training on close to state-of-
the-art scale using pulsed weight update and noisy backward pass within the
specification of analog RPUs. We train AlexNet [13] from scratch on the Ima-
genet database, a problem, that is more than 40000 times more challenging than
training LeNet on MNIST (in terms of MACs per epoch), which nevertheless is
still used as a typical benchmark for analog hardware evaluation [16].

We find that using AlexNet off-the-shelf is not trainable with our baseline
RPU model (even with floating point update but limited ADC/DAC resolution,
not shown). We thus applied the above z-scoring techniques between each layer
and tested the effect of additionally using weight scaling on the number of device
states necessary. In Fig. 6 we show that, using 12K states during pulsed update
(∆wmin = 0.0001, 10x more states than our baseline RPU model), reaches top-
1 test error of only slightly below 80%. On the other hand, enabling weight
scaling, we find that the test error is dramatically improved, by about 20 %-
points, reaching test errors of slightly below 60%. That this positive effect of
weight remapping is larger for AlexNet than for ResNet is understandable since
the dimensions of the weight matrices (and therefore the scale term proportional
to

√
n) is much larger (up to 9216) than for ResNet on CIFAR (up to 577).

However, our results also indicate that for reaching the floating point accu-
racy of below 50%, 12K states are not enough. Thus, although our approach
dramatically improves accuracy of analog approaches, even with symmetric up-
dates, reaching floating point accuracy with analog hardware on larger scale
networks remains a challenge and probably requires additional algorithmic im-
provements similar to those presented here.

4 Conclusion

Scaling up simulations of analog crossbar approaches for acceleration of ANN
training is a necessary and essential prerequisite for evaluating and finding new
algorithmic or hardware design solutions that minimize the accuracy gap in
respect to the floating point reference. We show that simple algorithmic modifi-
cations, such as proper normalization and weight range remapping, can dramat-
ically improve training performance on large-scale ANNs with constraint weight
resources (range and precision).

Our results also highlight the importance of having a digital part between
layers that could accommodate not only the activation functions and pooling,
but also the essential bound and noise managing techniques, and other algo-
rithmic compensatory measures such as normalization and weight remapping as
suggested here. To maintain the advantages of the crossbar architecture, these

10

digital operations need to be computed locally close to the array’s peripheral
edges.

While our algorithmic improvements yield a considerable improvement in
performance of training in-memory on analog RPU arrays, the number of re-
quired states to match the FP reference for large scale networks is still beyond
current materials [8]. However, possible solution pathways exist, e.g. one RPU
device might be a combination of multiple physical devices (of possibly differ-
ent significance), which could dramatically enlarge the number of attainable
states (e.g. as in [15, 1]).

Note that the ConvNets evaluated here are generally not well suited for
analog architectures because of the re-use of the kernel matrix, which slows down
computation in analog systems (see [14] for a discussion). However, [14] also
suggested an algorithmic modification of ConvNets to overcome this problem
and better map the ConvNet architecture to analog RPU systems by replicating
kernel matrices and train them in parallel. How noise and limited number of
states are effected in these so-called RAPA-ConvNets remains to be investigated.

While we here have simulated the training process on RPU arrays, a related
problem is training ANNs in a RPU hardware-aware manner, to optimize the
inference performance on RPU devices. These simulation would include all com-
ponents used in our simulations, except that the weight update and backward
pass would be considered perfect and noise-free, which would dramatically im-
prove the attainable accuracy, even with much less available states or more noise
in the forward pass. Thus, training in analog space is a much more challenging
problem than training to optimize inference on analog RPUs.

In summary, we here explored the challenges of analog hardware design con-
straints for training large-scale networks and suggested a number of algorithmic
compensatory measures to lessen the performance impacts of noise, limited num-
ber of states and limited weight ranges, even if the device switching behavior
would be ideal, as assumed here. While we show a dramatic improvement,
our results also suggest that more concentrated research efforts on algorithmic,
material, and system-level are needed to be able reach state-of-the-art training
performance of analog ANN accelerators.

References

[1] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Nolfo,
S. Sidler, M. Giordano, M. Bodini, N. C. Farinha, et al. Equivalent-
accuracy accelerated neural-network training using analogue memory. Na-
ture, 558(7708):60, 2018.

[2] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Vir-
wani, M. Ishii, P. Narayanan, A. Fumarola, et al. Neuromorphic computing
using non-volatile memory. Advances in Physics: X, 2(1):89–124, 2017.

[3] A. Fumarola, P. Narayanan, L. L. Sanches, S. Sidler, J. Jang, K. Moon,
R. M. Shelby, H. Hwang, and G. W. Burr. Accelerating machine learning

11

with non-volatile memory: Exploring device and circuit tradeoffs. In Re-
booting Computing (ICRC), IEEE International Conference on, pages 1–8.
Ieee, 2016.

[4] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 249–256, 2010.

[5] T. Gokmen, M. Onen, and W. Haensch. Training deep convolutional neu-
ral networks with resistive cross-point devices. Frontiers in neuroscience,
11:538, 2017.

[6] T. Gokmen, M. Rasch, and W. Haensch. Training lstm networks with
resistive cross-point devices. Frontiers in neuroscience, 12:745, 2018.

[7] T. Gokmen and Y. Vlasov. Acceleration of deep neural network train-
ing with resistive cross-point devices: design considerations. Frontiers in
neuroscience, 10:333, 2016.

[8] W. Haensch, T. Gokmen, and R. Puri. The next generation of deep learning
hardware: Analog computing. Proceedings of the IEEE, 107(1):108–122,
2019.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of
the IEEE international conference on computer vision, pages 1026–1034,
2015.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the 22nd ACM international confer-
ence on Multimedia, pages 675–678. ACM, 2014.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[14] M. J. Rasch, T. Gokmen, M. Rigotti, and W. Haensch. Efficient convnets
for analog arrays. arXiv preprint arXiv:1807.01356, 2018.

12

[15] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar. Isaac: A convolutional neu-
ral network accelerator with in-situ analog arithmetic in crossbars. ACM
SIGARCH Computer Architecture News, 44(3):14–26, 2016.

[16] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, 2017.

[17] C. Yakopcic, M. Z. Alom, and T. M. Taha. Extremely parallel memristor
crossbar architecture for convolutional neural network implementation. In
2017 International Joint Conference on Neural Networks (IJCNN), pages
1696–1703. IEEE, 2017.

[18] J. J. Yang, D. B. Strukov, and D. R. Stewart. Memristive devices for
computing. Nature nanotechnology, 8(1):13, 2013.

13

10-5 10-4 10-3

10

15

20

25

30
35
40
45

T
e
st

 e
rr

o
r

[%
]

resnet20 on CIFAR10, weakly augmented

weight scaling=0

weight scaling=1

Floating point reference

10-5 10-4 10-3

10

15

20

25

30
35
40
45

resnet20 on CIFAR10, augmented

weight scaling=0

weight scaling=1

Floating point reference

10-5 10-4 10-3

dw_min

30

35

40

45

50

55

60

70

T
e
st
 e
rr
o
r
[%
]

resnet20 on CIFAR100, weakly augmented

weight scaling=0

weight scaling=1

Floating point reference

10-5 10-4 10-3

dw_min

30

35

40

45

50

55

60

70

resnet20 on CIFAR100, augmented

weight scaling=0

weight scaling=1

Floating point reference

Figure 5: Training on Resnet20 (18 conv layers) on CIFAR10 (upper plots) and
CIFAR100 (lower plots). Left plots uses weak augmentation as before (color jitter
and random mirroring), where as use stronger input augmentation (scale jitter 1.3
times and random order shuffeling). Note that 4x times more states than the baseline
RPU model is enough to beat the floating point reference, when using weight scaling.
However, while input augmentation strongly improves the floating point accuracy, it
improves the RPU network less well (and actually significantly reduces the performance
in case of ∆wmin = 0.001), potentially because the input becomes too erratic for the
noisy pulsed update process. Higher number of states, recover the lost performance to
some degree. Parameters: best of λ = 0.2 or λ = 0.4, multiplied by a factor each 150
epochs so that 1% of λ is reached after the 500 epochs training; batch size 100; γ = 1.

14

0 20 40 60 80 100
Training epochs [#]

50

55

60

70

80

90

T
e
st
 e
rr
o
r
[%

]

AlexNet (z-scored) on ImageNet

Floating point reference

dw_min=0.0001, weight scaling=1

dw_min=0.0001, weight scaling=0

Figure 6: Training on AlexNet on ImageNet with (symmetric) pulsed update and
z-scored activations. Effective number of states is 12K, otherwise the baseline RPU
model is used as above. Note that enabling the weight scaling dramatically improves
training performance. However, even with weight scaling, 12K states are not enough
to reach FP performance. Parameters: λ = 0.00125, multiplied by 0.8 every 15 epochs;
only weak augmentation; batch size 25.

15

	1 Introduction
	2 RPU model and simulations
	2.1 Noise, bound, and update management techniques

	3 Results
	3.1 Normalization balances activations in the presence of noise
	3.2 ``Virtually'' remap weight ranges to maximize usable states
	3.2.1 Proper weight scaling for RPUs

	3.3 Larger networks and data sets
	3.3.1 ResNet on CIFAR
	3.3.2 AlexNet on Imagenet

	4 Conclusion

