
104 2168-2356/20©2020 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

The Last Byte

Digital Object Identifier 10.1109/MDAT.2019.2957362

Date of current version: 6 February 2020.

 One Of the keynOte addresses at the just 
 concluded International Test Conference noted that 
even very high fault coverage (over 99%) in billion 
transistor circuits will still leave hundreds of thou-
sands of untested faults. The speaker was concerned 
about the quality issues due to this, and also security 
issues. If all these untested faults represent a block of 
untested logic, how can we be sure that the untested 
logic wasn’t inserted by some third party?

This problem resonated with me since I’ve had 
the opportunity to look at this kind of fault list. My 
untested fault list did not have any security problems 
that I could see. There were some chunks of untested 
logic between scan wrappers isolating memory from 
the rest of the logic, but these were unlikely to cause 
issues. Most of the rest of the untested faults list con-
sisted of faults that would get tested in real life, but 
which were marked as untested by the test gener-
ation software for a variety of good reasons. Some 
faults in multiple-use logic blocks showed up many 
times with slightly different names. Deal with one 
and you deal with many of these.

None of this proves that there aren’t insidious 
untestable faults hidden in the design, faults that 
could cause failures at board, system, and field 
 levels. How do we find the few bad faults in the 
sea of untested faults that do get tested in normal 
test programs?

Having just traveled by air, I saw that this prob-
lem like that of detecting suspicious passengers. We 
can use data analysis methods to screen out faults/
passengers unlikely to pose problems. For instance, 

faults associated with scan enable lines or clock 
lines would likely be detected during a test but will 
show up as untestable in a fault report. Similarly, a 
person with a history of travel between two airports 
is probably not worthy of further scrutiny.

Frequent travelers willing to pay can precheck 
themselves and skip most of the screening. Perhaps 
we should let netlists precheck some of their faults 
to eliminate them from undetected fault lists. This 
would be easier if we use data analysis methods to 
define similar faults so that marking one fault in a 
class as not a problem will mark them all that way.

Some of us are more likely to be faulty, or have 
ailments, than others. Genetic testing can find this. 
Several companies today offer ways of analyzing cell 
libraries to find realistic defects in them, some of 
which might not be covered by stuck-at or delay fault 
testing. However, not all these faults are equally prob-
able, depending on the layout of cells in a library. If 
we can state that a person has a probability of getting 
sick depending on genetics, maybe we can assign 
probabilities to the occurrence of these faults. Test 
all of them if possible, but when analyzing untested 
fault lists unlikely faults might go to the bottom.

Big data has helped semiconductor manufac-
turing to control processes that produce millions of 
components, but since our parts now have millions of 
internal components, we should be able to leverage 
methods used for big data in the large for big data in 
the nanometer small. 

 Direct questions and comments about this 
department to Scott Davidson; davidson.scott687@
gmail.com.

Big Data, Big Faults
Scott Davidson


