
84 2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

The Last Byte

 I Haven’t Been to DAC for a while, so I was 
happy to learn of the Hack@DAC initiative. This 
exercise is especially useful for security, the sub-
ject of the Hack@DAC highlighted in this issue of 
Design&Test. Security threats are always going to 
be distributed in the sense that they can come from 
anywhere, can attack a product no matter where it is 
and will be initiated by attackers with a wide variety 
of backgrounds and skills—wider than any security 
team can ever hope to have. A distributed defense 
from giving a wide range of hackers in the good 
sense the charter of trying to break a system can find 
flaws before the bad guys do.

One of the articles in this issue mentions that 
security workers inside a design team have the 
advantage of being able to ask about the design from 
those who created it. I can understand one thinking 
this when struggling to figure out what a chunk of 
RTL code does. But there is a downside.

Back when I started, designers were responsi-
ble for writing tests to detect manufacturing faults 
and defects. When we were able to fault simulate 
these tests, we found the coverage was much worse 
than the test writers’ estimates. Designers think of a 
design in terms of what it is supposed to do, which 
includes how it reacts to out of bounds inputs. 
Defects cause designs to operate in ways that design-
ers can hardly imagine. Even if they have a good 
imagination, there are an immense number of ways 
that something as simple as an arithmetic logic unit 
can fail. Covering them all functionally would tax 
the patience of the most dedicated designer, not to 
mention the time and money budget of the project.

Automatic test generators do not have these 
constraints. I looked at the automatically generated 
test for a counter. It exercised the counter in ways 
I’d never think of and did it more efficiently than 
I could.

The situation for security is similar. Security 
holes might be things that the designer missed or 
some function of the design that was unintended. 
A designer might be sure that a situation putting a 
design at risk will never come up—a Hack@DAC 
participant, not knowing this, might find that it does.

Perhaps AI would be a good avenue for security 
analysis, since learning systems approach problems in 
ways humans don’t. I didn’t find any such work in a 
quick search, but if there is some perhaps that would be 
a good special issue of D&T.

Not that it would help. Those companies likely to 
deploy such a system, and those companies who’d 
hire Hack@DAC veterans, are not likely to be the 
problem. Think of Internet of Things (IoT) devices 
out there with obsolete and insecure operating 
systems, basic mistakes like encoding passwords 
in firmware and sloppy design practices. How are 
we going to get those companies to pay attention 
to hardware security? Given the number of people 
today who are irresponsible despite putting other’s 
lives at risk, and aren’t even making a profit by being 
irresponsible, not likely.

Maybe the solution will be for an AI system 
to win Hack@DAC someday—and then go on to 
publish security reviews of IoT devices on social 
media. Perhaps shame will work where responsi-
bility doesn’t. 

Hacking in the Dark
Scott Davidson

Digital Object Identifier 10.1109/MDAT.2020.3045853
Date of current version: 10 March 2021.

 Direct questions and comments about this article 
to Scott Davidson; davidson.scott687@gmail.com; 
Twitter: @scottd687.


