
52168-2356/21©2021 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCSeptember/October 2021

 Cyber–physical system (CPS) design is char-
acterized by modeling a computer (or cyber) system 
together with the physical system that the computer 
controls. This approach differs from both classical 
control systems design and also embedded systems 
design. In the former case, given properties of the 
physical system or the “plant” to be controlled, a 
control law or strategy is derived, that when applied 
to the plant enforces the desired behavior on it. Such 
control laws are described mathematically, and their 
implementations in software already result in a CPS, 
viz., the plant together with the software implemen-
tation of the controller. But traditionally, the design 
of the control law did not take into account all the 
peculiarities of software implementation—such 
as delays involved in computing the control input 
based on the state of the plant, or numerical limita-
tions of the processor running the software, or how 
faithfully the software implements the mathematical 
description of the controller. When these issues are 
not accounted for when designing the controller, 
there might be a deviation in the behavior of the sys-
tem when analyzing the mathematical description of 
the controller, versus what would be observed with 
the software implementation.

Guest Editors’ 
Introduction: Cross-
Layer Design of Cyber–
Physical Systems
Samarjit Chakraborty
University of North Carolina at Chapel Hill, 
Chapel Hill, NC, USA

Jian-Jia Chen
Technical University of Dortmund, 
Dortmund, Germany

The need to close this model-implementation gap 
has been recognized for quite some time and has led 
to the theory of computer-controlled systems (see the 
book with this title by Åström and Wittenmark, Dover 
Publications, 2011). Here, the control law is designed 
by accounting for software-implementation issues like 
delays and numerical limitations. However, this is not 
yet a CPS design, because it is rather only concerned 
with how the physical plant is manipulated (or actu-
ated), but not with how the computer system imple-
ments the law in software. In a similar vein, the area 
of networked control systems also studies how distrib-
uted controllers implemented over a wireless network 
are to be designed. The goal here is to mitigate the 
impact of variable delays and packet drops—arising 
from the wireless network when communicating plant 
states and control signals—on the performance of the 
closed-loop system. Again, here the focus has been 
on designing the controller, with the wireless network 
assumed to be given. On the other hand, a CPS-ori-
ented design, which has also been subsequently stud-
ied, is concerned with jointly designing the controller 
and the wireless network (e.g., by considering suitable 
packet scheduling strategies) to optimize control per-
formance, together with possibly other metrics like 
channel utilization or the power consumed by wireless 
sensor nodes.

Similarly, while embedded systems have long been 
used for implementing control tasks, such tasks have 

Digital Object Identifier 10.1109/MDAT.2020.3047734
Date of current version: 28 September 2021.

Anuradha Annaswamy
Massachusetts Institute of Technology, 
Cambridge, MA, USA

Devendra Rai
Robert Bosch R&D, 
Germany



6 IEEE Design&Test

Guest Editors’ Introduction

almost always been considered as black boxes char-
acterized by activation periods, execution times, and 
deadlines, which were used for the purpose of sched-
uling them. The parameters came from the control 
designer and the goal of the embedded systems engi-
neer was to implement the tasks to satisfy the given 
periodicity and deadline constraints. Such abstrac-
tions—where the control designer did not have to 
consider any implementation platform issues, and 
the embedded systems engineer implementing the 
controller did not have to understand how the con-
troller was designed—provided a clean separation 
of concerns. But they were associated with several 
disadvantages. As mentioned above, they resulted 
in a model-implementation gap, which even when 
addressed by suitably designing the controllers, did 
not lead to efficient implementations. Clearly, design-
ing the controllers first without accounting for all 
implementation choices, followed by implementing 
them, eliminates a number of optimization options. 
This is because the “structure” of the controller has 
already been fixed by the time implementation-level 
optimizations are being considered. In contrast, a 
CPS-oriented approach achieves optimality by jointly 
considering all controller design along with plat-
form-specific implementation options.

As is probably apparent from this discussion, 
cross-layer design is fundamental to any CPS-oriented 
design method. Tighter interactions between the con-
troller design (or modeling) layer and the controller 
implementation layer, open up new optimization 
opportunities that would not be available otherwise. 
While computer science has thrived on the principle 
of separation of concerns in order to tackle design 
complexity, there are many recent examples where 
redefining the traditional abstraction layers—and fol-
lowing a cross-layer approach—has shown immense 
benefits. Although we have illustrated the CPS concept 
in a relatively abstract fashion using a controller and 
its implementation on a computer, other concrete 
examples of CPS abound. They arise in the context 
of transportation—e.g., how to dynamically control 
toll prices to reduce traffic congestion, how to con-
trol traffic lights, and how to dispatch electric taxis so 
their charging demands are aligned with the availabil-
ity in the power grid. In the context of a smart home, 
CPS-related questions could be: when to switch on the 
clothes dryer depending on the electricity demands of 
the home and the time-varying price of electricity, or 
how to automatically adjust heating and the opening 

of motorized windows to let in the fresh air, based on 
the quality of a person’s sleep being monitored by her 
Fitbit-like activity tracker. Other domains where such 
CPS-oriented design questions are being asked include 
robotics, large electrical energy storage systems, smart 
electricity grids, smart manufacturing or Industry 4.0, 
medical devices, and autonomous vehicles.

In each of these domains, what constitutes the 
physical “plant” that needs to be controlled, what is 
an appropriate model of such a plant, how should 
the control laws be formulated, and what is the 
“computer” (or the cyber component) implement-
ing the control strategy, are all very different. As a 
result, answering these questions and also how mod-
els, relevant performance metrics, and optimization 
techniques from the different design layers should 
be combined to enable a cross-layer design, requires 
significant innovation. Let us go back to our original 
example of mathematically designing a controller 
and implementing it in software running on a com-
puter. Here, the models of plants and controllers 
should capture their evolution in continuous time 
and are typically differential equations. On the other 
hand, the computer implementing the controller 
operates in discrete time, and a suitable model of it 
might be a state machine. Relevant metrics during the 
controller design stage are stability, settling time, or 
peak overshoot, whereas during the implementation 
stage they might be the utilization of the processor 
or a communication bus. Similarly, methods during 
controller design might be Lyapunov techniques, 
whereas during the implementation stage they could 
involve schedulability analysis techniques from the 
real-time systems domain. How to combine these 
different models, metrics, and methods across mul-
tiple layers to enable cross-layer design, very much 
depends on what these three “M”s are for each of the 
layers involved. And these in turn depend on the CPS 
application domain, such as those outlined above.

This special issue brings together eight contributed 
articles that illustrate how such cross-layer design for 
CPS could be enabled in different application settings. 
The first article, titled “Cross-Layer Design of Automo-
tive Systems,” by Wang et al., shows that automotive 
control and software design has to consider multi-
ple abstraction layers. The authors span all the way 
from the vehicular network layer dealing with vehi-
cle-to-vehicle and vehicle-to-infrastructure commu-
nication, to the automotive in-vehicle hardware and 
software later. Such a cross-layer design is important 



7September/October 2021

not only for optimization but also to ensure functional, 
as well as other properties like security. The second 
article, “Reconfigurable Pipelined Control Systems,” 
by Sanchez et al., shows how appropriately structuring 
compute-intensive sensor data processing—like those 
from cameras—can mitigate large sensor-to-actuator 
delays in feedback controllers. Here, the main tech-
nique involves a cross-layer codesign of the controller 
and the sensor data processing on multicore proces-
sors. The third article, titled “Cloud-Ready Acceleration 
of Formal Method Techniques for Cyber–Physical Sys-
tems,” by Khaled and Zamani, also deals with a similar 
computation bottleneck issue, but that arising when 
synthesizing controllers from formal specifications. 
Here, the authors show how resorting to cloud comput-
ing might provide a solution.

The fourth article, titled “Integrating Interobject 
Scenarios with Intraobject Statecharts for Developing 
Reactive Systems,” by Harel et al., deals with an impor-
tant topic of how to reconcile the differences between 
a model and an implementation. As we discussed ear-
lier, this is a central problem in cross-layer design of 
CPS stemming from the different models and concerns 
at the design and the implementation stages. This arti-
cle shows that it is, however, possible to have a single 
tool and method to support both requirement specifi-
cations and implementation. A common method and 
tool for both the phases results in a smooth transition 
between them while ensuring semantic consistency. 
The fifth article—at least at an abstract level—deals 
with the same problem of ensuring consistency 
between controller design and its implementation. 
Toward this, “Breaking Silos to Guarantee Control 
Stability with Communication over Ethernet TSN,” by 
Mahfouzi et al., presents a codesign approach to imple-
ment distributed controllers on an Ethernet network.

The next or sixth article by de Chamisso et al., titled 
“Lifelong Exploratory Navigation: An Architecture 
for Safer Mobile Robots,” proposes a layered archi-
tecture for robotics, with contract-based interfaces 
between these layers. The different layers of such an 
architecture are capable of autonomous adaptation 
in response to new environments. The next article, 
“Hardware Virtualization and Task Allocation for Plug-
and-Play Automotive Systems,” by Lin et al., addresses 
the complexity of automotive in-vehicle architectures 
by proposing a hardware virtualization layer using an 
OS hypervisor. This not only enables hardware-inde-
pendent software development, but also allows plug-
and-play features. Finally, “The AXIOM Project: IoT on 

Heterogeneous Embedded Platforms,” by Filgueras 
et al., describes an IoT node that is low-power while 
still offering high performance. It describes the hard-
ware architecture of this node, along with its software 
development flow, and two use cases.

These eight articles cover a diverse range of 
topics on the cross-layer design of CPS. We believe 
that the readers will find them interesting and gain 
new insights into this evolving area. We thank all 
those who submitted their research on this special 
issue. We also thank all the reviewers, the EiC, Jörg 
Henkel, and Sara Dailey, without whose help this 
special issue would not have been possible.� 

Samarjit Chakraborty is a William R. Kenan, 
Jr. Distinguished Professor with the Department 
of Computer Science, University of North Carolina 
at Chapel Hill, Chapel Hill, NC, USA. His research 
interests include all aspects of designing hardware 
and software for embedded systems. Chakraborty 
has a PhD from ETH Zürich, Switzerland (2003). 

Jian-Jia Chen is a Professor with the Department 
of Informatics, Technical University of Dortmund, 
Germany. His research interests include real-time 
systems, embedded systems, power/energy-aware 
designs, and distributed computing. Chen has a 
PhD from National Taiwan University, Taipei, Taiwan.

Anuradha Annaswamy is the Founder and the 
Director of the Active-Adaptive Control Laboratory 
with the Department of Mechanical Engineering, 
Massachusetts Institute of Technology (MIT), 
Cambridge, MA, USA, and is currently serving as 
the President of Control Systems Society (CSS). Her 
research interests span adaptive control theory and its 
applications to aerospace, automotive, and propulsion 
systems as well as cyber–physical systems such as 
smart grids, smart cities, and smart infrastructures. 
She is a Fellow of IEEE and IFAC.

Devendra Rai works at Bosch, Germany. His 
research interests include software architectures 
for automotive embedded systems, and in-vehicle 
architectures focusing on multi- and many-core 
processors. Rai has a PhD from ETH Zürich, 
Switzerland (2015).

 Direct questions and comments about this article 
to Samarjit Chakraborty, Department of Computer 
Science, University of North Carolina at Chapel Hill, 
Chapel Hill, NC, USA; samarjit@cs.unc.edu.


