
A Novel Method for Scalable VLSI Implementation

of Hyperbolic Tangent Function
Mahesh Chandra

NXP Semiconductors, India

mahesh.chandra_1@nxp.com

Abstract—Hyperbolic tangent and Sigmoid functions are

used as non-linear activation units in the artificial and deep

neural networks. Since, these networks are computationally

expensive, customized accelerators are designed for achieving

the required performance at lower cost and power. The

activation function and MAC units are the key building blocks

of these neural networks. A low complexity and accurate

hardware implementation of the activation function is required

to meet the performance and area targets of such neural

network accelerators. Moreover, a scalable implementation is

required as the recent studies show that the DNNs may use

different precision in different layers. This paper presents a

novel method based on trigonometric expansion properties of

the hyperbolic function for hardware implementation which can

be easily tuned for different accuracy and precision

requirements.

Keywords—Neural network, Hyperbolic tangent, nonlinear

activation function, VLSI implementation

I. INTRODUCTION

Artificial neural networks (ANNs) have been used for
modeling the complex non-linear relationships between the
inputs and outputs in multiple applications. An ANN consists
of a layered network of the artificial neurons which compute
the weighted sum of multiple inputs and pass it through a non-
linear activation function. State of the art deep neural
networks (DNNs) have many such layers connected in feed
forward fashion. Using these feed-forward DNNs, state of the
art result has been achieved in various applications such as
object detection and classification. However, there is another
set of applications which requires the neural networks to
model the history or sequence such as the natural language
processing, classification of video sequences, and image
captioning etc. Recurrent neural networks (RNNs) and long
short-term memory (LSTM) have been used for such
applications. These neural networks continue to use tanh
activation function for its ability to handle vanishing gradients
and ease of computing gradient.

Since, these algorithms require huge computing resources;
there has been an effort to implement dedicated accelerators
to speed up the execution. Activation function is one of the
key building block required for the efficient hardware
accelerator. Experimental study has shown that the accuracy
of the activation function impacts the performance and the size
of the neural networks. Hyperbolic tangent function, being a
non-linear, function requires specific consideration for the
accuracy and area trade-off. This paper presents a novel
method for hardware implementation which can be easily
tuned for different accuracy requirements.

II. LITERATURE REVIEW

Tanh function, shown in figure 1, is a non-linear function
defined as:

tanh(x) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 (1)

Multiple implementations of hyperbolic tangent have been
published in literature ranging from the simplest step and
linear approximations to more complex interpolation
schemes. This section reviews some of these methods for tanh
implementation and discusses the motivation behind this
paper.

The simplest implementation is to store the values of the
function in a lookup table (LUT) and approximate the output
with the lookup table value for the nearest input. Since, the
function is non-uniform, it’s challenging to balance the
tradeoff between accuracy and area if the range is divided in
equal sub-ranges. To address this issue, range addressable
lookup table has been proposed by Leboeuf et al. [1]. The step
size is varied depending on the variability of the function to
reduce the size of LUT without impacting the accuracy.
Another variation of this method is to use a two-step LUT. The
first one with the coarse estimation and second one with the
finer estimation. Namin et al. use this method but instead of
an LUT, they use a combination of linear and saturation values
for coarse approximation [2].

Zamanlooy et al. take advantage of the tanh function being
an odd function and divide it in three ranges based on its basic
properties; pass region, processing region and saturation
region [3]. Then the hardware is optimized specific to the
regions. In the pass region, the data is simply shifted and in
the saturation region it is constant. In processing region, data
is mapped from the input by simple bit-level mapping (i.e. the
combinatorial logic).

The function value can be interpolated by piecewise linear
(PWL) interpolation to reduce the error. The function value is
stored in an LUT for known values and from these values, the
function is interpolated for intermediate input values [4].

Adnan et al. have approximated the tanh function by
Taylor series expansion [5]. The accuracy varies across the
range of the input and the function is more accurately

Fig. 1. tanh function and its piecewise linear approximation

computed for smaller values of inputs. Moreover, if the
number of terms in Taylor series are increased from three to
four, improvement is just 2x where the error was large while
it is 10x where the error was already small.

Abdelsalam et al. have used the DCT (discrete cosine
transform) interpolation filter (DCTIF) for tanh
approximation [6]. Like [3], they also divide the tanh function
in three regions and use DCTIF for approximation in
processing region. This method achieves higher accuracy than
any of the published methods. However, it requires huge
memory for storing the coefficients.

Rational interpolation methods have also been explored by
the researchers. Z. Hajduk [7] has discussed the hardware
implementation of tanh using Padé Approximant. Similalrly,
Lambert’s continuous fraction is also used for the rational
function approximation of hyperbolic tangent. [8]

It is evident from this short list that various
implementations have been published in the literature. Some
of them are too complex and require huge resources and may
be overkill for applications which work with fixed point data
such as deep learning. Even though, rational approximations
are computationally complex as they require a divider, they
are worth exploring for proper comparison. Newton-Raphson
method can be applied for the reciprocal computation to
implement the divider [9]. Moreover, there are methods for
fast oral calculation of various trigonometric and exponential
function such as the one published by Ron Doerfler [10]. This
method is quite interesting and can be applied to the hardware
implementations. This paper explores a hardware
implementation by adopting this method and making
necessary changes to make it hardware friendly.

III. METHOD OVERVIEW

This section discusses the method published by Ron
Doerfler for oral approximation of Hyperbolic tangent
function [10]. It basically consists of method of finding the
hyperbolic tangent value for sum of two angles given the value
of the function for two angles independently or if one of the
angles is very small.

Hyperbolic tangent for the addition of two angles is given
by:

tanh(𝑎 + 𝑏) =
tanh 𝑎+tanh 𝑏

1+tanh 𝑎 ×tanh 𝑏
 (2)

Given tanh value at a, and very small b, it can be
approximated as below:

tanh 𝑏 = 𝑏

tanh(𝑎 + 𝑏) =
tanh 𝑎 + 𝑏

1 + b× tanh 𝑎

tanh(𝑎 + 𝑏) = (tanh 𝑎 + 𝑏) × (1 − b × tanh 𝑎)

tanh(𝑎 + 𝑏) = tanh 𝑎 + 𝑏 × (1 − tanh2 𝑎) (3)

This approximation works well for small ‘b’. For larger
values of b, we can directly use equation (2). However, it
requires operations which are costly for hardware or software
implementation and difficult to parallelize. An alternative
representation, that simplifies these operations, is presented in
[10] and reproduced below.

Instead of working with tanh values, the author proposes
to work with a transformed value called as velocity factor (f),
and defined as:

𝑓𝑎 =
1+tanh 𝑎

1−tanh 𝑎
 (4)

To compute tanh from f, we can use following equation.

tanh 𝑎 =
𝑓𝑎−1

𝑓𝑎+1
 (5)

Given fa and fb, fa+b can be computed as:

𝑓𝑎+𝑏 =
1 + tanh(𝑎 + 𝑏)

1 − tanh(𝑎 + 𝑏)

𝑓𝑎+𝑏 =
1 +

tanh 𝑎 + tanh 𝑏
1 + 𝑡𝑎𝑛ℎ 𝑎 × tanh 𝑏

1 −
tanh 𝑎 + tanh 𝑏

1 + 𝑡𝑎𝑛ℎ 𝑎 × tanh 𝑏

𝑓𝑎+𝑏 =
1 + tanh 𝑎 + tanh 𝑏 + tanh 𝑎 × tanh 𝑏

1 − tanh 𝑎 − tanh 𝑏 + tanh 𝑎 × tanh 𝑏

𝑓𝑎+𝑏 =
(1 + tanh 𝑎) × (1 + tanh 𝑏)

(1 − tanh 𝑎) × (1 − tanh 𝑏)

𝑓𝑎+𝑏 = 𝑓𝑎 × 𝑓𝑏 (6)

Given this velocity factor for sum of angles, hyperbolic
function can be computed back using (5).

IV. HARDWARE IMPLEMENTATION

Since, tanh is an odd function, the main algorithm can be
implemented for positive values only. Main steps as shown in
figure 2, are sign detection, tanh value computation and sign
conversion. Computing tanh only for positive values
simplifies the hardware implementation; hence all the analysis
in subsequent sections considers the tanh computation for
positive input values only.

It has been shown that the inference using DNNs is less
sensitive to the quantization of the data (i.e. the precision); so,
the data is assumed to be organized as 16-bit or 8-bit fixed
point signed input to the tanh for the discussion in this paper.

f(x) = tanh(x)

x

abs (x)

tanh [abs(x)]

2’s Complement

sgn(x)

Sign Extension

Fig. 2 . Data Flow diagram for tanh function implementation

1 0

For 16-bit fixed point input data, we can consider 13-bit or
12-bit precision for fractional part. The range of the input data
in this case will be either (-4,4) or (-8,8) respectively.
However, for practical purposes, we can constrain the domain
to tanh-1[±(1-2-b)] where b is the number bits used to represent
the fractional part of tanh at the output. For 8, 12 and 16-bit
signed fixed-point representation with fractional only, the
corresponding domain is ±2.77 (±2.42), ±4.16 (±3.82) and
±5.55 (±5.20) respectively. Beyond this domain, the errors for
tanh is smaller than that can be represented by the least
significant bit and can be ignored. For the following
discussion, the maximum error is restricted to the lsb.

A. Hardware Implementation of Published Method

The manipulations described in (3)-(6) make the hardware
implementation less complex compared to direct computation
using (2). For example, if there is an n-bit integer N
represented as bn-1bn-2..b2b1b0 in binary, then velocity factor fN
can be computed as:

𝑓𝑁 = ∏ 𝑓2𝑏𝑘×𝑘
𝑛−1
𝑘=0 (7)

Once 𝑓𝑁 is known, tanh can be computed using (5).

For hardware implementation, shown in figure 3, velocity
factors can be stored in registers for the numbers which are the
power of two and more than a threshold (e.g. 2-7). Equations
(7) and (5) are used to compute the tanh value for the sum of
stored numbers. For the addition smaller than threshold,
equation (3) can be used for compensating the error. The value
of this threshold affects the accuracy of the approximation and
the number of registers required for storing velocity factors.
The simplest implementation using this method for s3.12
input requires 10 registers storing the tanh velocity factor (fa)
value for 2k (-7 ≤ k ≤ 2), and 9 multipliers (one for each bit).

The implementation requires a division operation which
can be implemented by multiplying numerator with the
reciprocal of denominator. Newton Raphson method can be
used along with some data manipulation techniques for
computing reciprocal [11]. The data manipulation is required
to bring the denominator in the range of (0.5,1) required by
the method. Newton Raphson method iteratively refines the
initial guess x0 for reciprocal of a number ‘b’ using equation

(8). The high-level block diagram for Newton Raphson
method for computing reciprocal is shown in figure 4.

𝑥𝑖+1 = 𝑥𝑖 × (2 − 𝑏 × 𝑥𝑖) (8)

B. Architectural Improvements for Scalable Hardware

Implementation

1) Removing the last stage multiplier
The equation (3) used in original approximation and

shown in dotted rectangular block in figure 3, has two main
problems; one, it introduces error and two, it requires two
multipliers in the last stage. We can get rid of this and instead
use (7) for computing velocity factor for all bit positions
instead of only some MSBs. It makes the tanh computation
highly accurate and the error is introduced only because of the
precision of the numbers and arithmetic. So, for our
implementation trials we can make this modification i.e. store
the velocity factor for all bit positions and no approximation.
This also requires additional multipliers for computing (7);
however, this can be optimized by hardware manipulations
and is discussed later.

2) Velocity Factor Range and Precision
For 16-bit fixed point data in s3.12 format, the velocity

factor range is [1.0004884,54.59815]. It requires at least 6.11
bits to represent it. This dynamic range is a function of the
input precision and range and hence makes the scalability a bit
difficult to handle. It would be nice to have the fractional range
that can be represented as 0.N and select N based on the input
and output precision. Fortunately, such a representation is
possible by reworking the algebraic manipulations.

Instead of storing tanh values in the LUTs, redefine the
velocity factor f as:

𝑓𝑎 =
1−tanh 𝑎

1+tanh 𝑎
 (9)

To compute tanh from f, we can use following equation.

tanh 𝑎 =
1−𝑓𝑎

1+𝑓𝑎
 (10)

There is no change for computing fa+b; and given fa and fb,
(6) can be used for this purpose. Using this method, the fa is
always in the range of (0,1) and makes the implementation
more friendly to the scaling.

This has another advantage in the implementation of the
division logic using the Newton Raphson method. The
Newton Raphson method works well if the operand is in the
range of (0.5,1). Since,

𝑓𝑎 ∈ (0,1) ⇒ (1 + 𝑓𝑎) ∈ (1,2) ⇒
(1+𝑓𝑎)

2
∈ (0.5,1) (11)

So, a single right shift brings the denominator in the
required range.

𝑓𝑥 − 1

𝑓𝑥 + 1
 abs

(x)

bits(5:0]

Fig. 3. High level Block diagram for tanh commputation using published

method for input represneted in s3.12 format

1

bit 15

f4

bit 14

f2

bit 6

f1/128

1

1

1

1

1

0

0

0

fx

Error Term

[b×(1-tanh2x)]

×

+

×

×

-

1

Fig. 4. High level block diagram of iterative Newton Raphson

method for reciprocal computation

LUT
 Iterative

Unit

b

Iterative

Unit

Iterative Unit

×

x0

 x
1

x

k

x
n-1

x

n

×

2’s

Comp.

1/b

3) Reducing Number of Multipliers in Computing

Velocity Factor
We can also reduce the number of multipliers by using

LUTs instead of registers for storing velocity factors. Instead
of storing values of velocity factors for a single place value,
we can store the velocity factor corresponding to combination
of them. For example, we can combine two bits and store the
values as given by table I. This reduces number of multipliers
at the cost of LUT which store constant values and can be
optimized. If we store LUT entries for four bits together,
number of multipliers reduced to 3 for s3.12 representation at
the cost of 4 LUTs each storing 16 velocity factor values.

TABLE I. MULTI-BIT LOOKUP FOR VELOCITY FACTORS

Bits Value

00 1.0

01 Velocity factor corresponding to lsb

10 Velocity factor corresponding to msb

11 Multiplication of velocity factors corresponding to
lsb and msb

 Using LUTs in this way adds new challenges. Since,
velocity factor values are fractions, their multiplication results
in even smaller numbers and requires higher number of bits to
represent them and preserve the precision. If we simply
combine them in increasing order e.g. LUT0 storing the
velocity factors for 2-12, 2-11, 2-10, 2-9; then, the problem is
accentuated. Instead, we can combine the bit positions
differently depending on magnitude to reduce the impact; for
example, LUT0 can store the velocity factors for 2-12, 2-5, 2-4,
22. What this means for hardware is that instead of using bits
{x3, x2, x1, x0} as address for LUT0, we chose{ x15, x8, x7, x0}
bits as the address for LUT0. With this scheme of addressing,
18-bit precision is enough for the 1-bit error on the output.
Note that the bit shuffling doesn’t add any hardware cost.

4) Adder, Subtractor and Divider
The last stage of the tanh computation requires a subtractor

(1-fx), an adder (1+ fx) and a divider ((1- fx)/(1+ fx)). The
divider can be implemented using three-stage Newton
Raphson method and a multiplier. Since, fx is in the range
(0,1), adding one is simply bit concatenation (i.e. suffix) for
hardware and no real adder is required. The subtractor is a 2’s
complement logic and can be approximated by 1’s
complement without introducing much error as discussed
later.

5) Putting Together
These optimizations result in significantly simpler

hardware architecture as shown in fig. 5.

V. IMPLEMENTATION RESULTS

The method discussed above is highly accurate method
and the error is introduced due to precision and few
approximations such as Newton Raphson for reciprocal
computation and 1’s complement for subtraction instead of 2’s
complement. The Table II summarizes the error introduced
due to these approximations for s3.12 input and s.15 output.
The precision of LUTs and multipliers is kept at 18 and 16 bits
respectively. It’s evident from the table that Newton Raphson
method with 1’s complement subtraction gives as good
accuracy as real divider. Similarly, using 1’s complement for
(1-fx) computation drops the accuracy marginally to 5.87x10-5
from 4.32x10-5.

TABLE II. ERROR ANALYSIS FOR ARITHMETIC APPROXIMATIONS

No. of Newton Raphson Iteration

Stages

Subtractor Max Error

0 (Floating Point Divider followed by
fixed point conversion for reference)

- 4.44x10-5

2 1’s 2.77x10-4

2 2’s 2.56x10-4

3 1’s 4.32x10-5

3 2’s 4.44x10-5

A reusable RTL code was written using Verilog HDL and
synthesized for PPA (power, performance and area) trade-off
analysis. The precision of input and output can be controlled
by parameters selecting the bit width of LUTs and multipliers
etc. The PPA trade-offs require multiple pipelined designs.
The performance for different pipeline stages and 16- and 8-
bit input are given in table III and IV.

TABLE III. SUMMARY OF RESULTS FOR DIFFERENT FLAVOURS OF

TANH IMPLEMENTATION FOR S3.12 INPUT AND S.15 OUTPUT

Cells Latency

(Clocks)

Area

(um2)

Leakage

Power

(uW)

Max

Frequency

(MHz)

Logic

Levels

SVT 1 3748.28 4.20 188 135

LVT 1 2600.34 119.33 302 111

SVT 2 3400.43 3.53 258 95

LVT 2 3367.16 180.67 511 86

SVT 7 3688.98 3.92 1176 25

LVT 7 3147.68 146.67 2134 17

TABLE IV. SUMMARY OF RESULTS FOR DIFFERENT FLAVOURS OF

TANH IMPLEMENTATION FOR S3.5 INPUT AND S.7 OUTPUT

Cells Latency

(Clocks)

Area

(um2)

Leakage

Power

(uW)

Max

Frequency

(MHz)

Logic

Levels

SVT 1 764.37 0.81 254 97

LVT 1 568.99 24.19 303 95

SVT 2 885.29 0.99 364 74

LVT 2 877.82 51.67 715 70

SVT 7 995.60 1.08 1532 14

LVT 7 934.82 49.04 2985 13

x

Fig. 5. High level Block diagram of optimized HW for tanh computation

fx

LUT0

LUT0

LUT0

LUT0

×

×

×

×

LUT

addr

gen

tanh

(x)

(1-f
x
)>>1

Newton

Raphson

(1+f
x
)>>1

As discussed earlier, PWL and Taylor series expansion are
quite popular for non-linear function implementation.
However, they suffer from lack of scalability as the LUT size
or number of terms must change as the accuracy requirement
changes. DCT interpolation technique offers high accuracy
but it requires huge memory for storing coefficients [6]. Other
high accuracy implementations, such as using Padé
approximants and CORDIC have higher latencies [7].

VI. CONCLUSION

This paper presents the hardware implementation of a
highly accurate method for tanh computation. Though, the
method itself is error free as against the series approximation
or the PWL; the limited precision and reciprocal
approximation introduce some error. The implementation
presented here offers a highly accurate and scalable circuit for
tanh computation.

REFERENCES

[1] K. Leboeuf, A. H. Namin, R. Muscedere, H. Wu and M. Ahmadi, "High
Speed VLSI Implementation of the Hyperbolic Tangent Sigmoid
Function," 2008 Third International Conference on Convergence and
Hybrid Information Technology, Busan, 2008

[2] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu and M. Ahmadi,
“Efficient hardware implementation of the hyperbolic tangent sigmoid
function,” IEEE Int. Symp. on Circuits and Systems, 2009

[3] B. Zamanlooy, M. Mirhassani, “Efficient VLSI Implementation of
Neural Networks With Hyperbolic Tangent Activation Function”,
IEEE Trans. on VLSI system, 22(1), 2014

[4] C-W. Lin and J-S. Wang, “A digital circuit design of hyperbolic
tangent sigmoid function for neural networks”, IEEE International
Symposium on Circuits and Systems (ISCAS), 2008

[5] F. H. Adnan, M. F. O. Mahmud and W. F. H. Abdullah, "Hyperbolic
tangent activation function integrated circuit implementation for
perceptrons," 2012 IEEE Student Conference on Research and
Development (SCOReD), Pulau Pinang, 2012

[6] A. M. Abdelsalam, J. M. P. Langlois, F. Cheriet, “A Configurable
FPGA Implementation of the Tanh Function using DCT Interpolation”,
2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines

[7] Z. Hajduk, “Hardware implementation of hyperbolic tangent and
sigmoid activation functions” Bulletin of the Polish Academy of
Sciences Technical Sciences 66(5), 2018

[8] Weisstein, Eric W. "Hyperbolic Tangent." From MathWorld--A
Wolfram Web Resource, online (accessed 13th Februray 2020)

[9] E. Weisstein, “Newton’s method”, online (accessed 13th Februray
2020)

[10] Ron Doerfler, “Fast Approximation of the Tangent, Hyperbolic
Tangent, Exponential and Logarithmic Functions”, 2007, online
(accessed 13th Februray 2020)

[11] P. Kornerup, J. M. Muller, “Choosing Starting Values for Newton-
Raphson Computation of Reciprocals, Square-Roots and Square-Root
Reciprocals”, RR-4687, INRIA, 2003

http://mathworld.wolfram.com/HyperbolicTangent.html
http://mathworld.wolfram.com/HyperbolicTangent.html
http://mathworld.wolfram.com/HyperbolicTangent.html
http://mathworld.wolfram.com/NewtonsMethod.html
http://mathworld.wolfram.com/NewtonsMethod.html
http://mathworld.wolfram.com/NewtonsMethod.html
http://www.myreckonings.com/Dead_Reckoning/Online/Materials/Fast_Approximation_of_Elementary_Functions.pdf
http://www.myreckonings.com/Dead_Reckoning/Online/Materials/Fast_Approximation_of_Elementary_Functions.pdf
http://www.myreckonings.com/Dead_Reckoning/Online/Materials/Fast_Approximation_of_Elementary_Functions.pdf

