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Abstract— The natural exponential function is widely used in 

modeling many engineering and scientific systems. It is also an 

integral part of many neural network activation function such as 

sigmoid, tanh, ELU, RBF etc. Dedicated hardware accelerator and 

processors are designed for faster execution of such applications. 

Such accelerators can immensely benefit from an optimal 

implementation of exponential function. This can be achieved for 

most applications with the knowledge that the exponential 

function for a negative domain (ℛ -) is more widely used than the 

positive domain (ℛ+). This paper presents an optimized 

implementation of exponential function for variable precision 

fixed point negative input. The implementation presented here 

significantly reduces the number of multipliers and adders. This is 

further optimized using mixed world-length implementation for 

the series expansion. The reduction in area and power 

consumption is more than 30% and 50% respectively over 

previous equivalent method. 

 
Index Terms—Digital integrated circuit, natural exponential, 

activation function, Gaussian function 

I. INTRODUCTION 

The natural exponential function is widely used in modeling 

many engineering and scientific systems such as: 

Decay: 𝑦 = 𝑦0𝑒−∝𝑡             𝑡 > 0 

Gaussian Distribution: 𝑦 = 𝑦0𝑒
−

(𝑥−𝜇)2

2𝜎2  

It is also a building block for many non-linear activation 

functions used in machine learning application [1]; such as: 

Sigmoid: 𝑦 =
1

1+𝑒−𝑥 = {

1

1+𝑒−|𝑥|          𝑥 ≥ 0

1 −
1

1+𝑒−|𝑥|     𝑥 < 0
  

tanh: 𝑦 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 = {

1−𝑒−2|𝑥|

1+𝑒−2|𝑥|    𝑥 ≥ 0

𝑒−2|𝑥|−1

𝑒−2|𝑥|+1
    𝑥 < 0

 

ELU: 𝑦 = {
𝑥                        𝑥 ≥ 0
∝ (𝑒𝑥 − 1)    𝑥 < 0

= {
𝑥                        𝑥 ≥ 0

∝ (𝑒−|𝑥| − 1)    𝑥 < 0
 

From above equations, it is clear that the exponential 

function for a negative real domain (ℛ -) is more widely used 

than the positive domain (ℛ +).  i.e., we actually use e-|x| more 

often than e-x. This is important as the function e-|x| provides 

more opportunities to optimize compared to the implementation 

of ex or e-x i.e., exponential function for the full domain of real 
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numbers.  It has nice properties, such as fast saturation, 

constrained range (e-|x| ≤ 1), which help in the optimization. 

Since, most application either satisfy the condition of negative 

domain requirement or can be manipulated mathematically to 

satisfy it; such an implementation is worth exploring. In this 

case, the hardware accelerators can be optimally designed with 

the support of e-x and then the application can be modified if 

needed to satisfy the constraint. 

Look up tables and polynomial approximation have been 

used for implementing exponential and many non-linear 

functions [2,3]. Either of these two methods used in standalone 

suffers from drawbacks as the hardware requirement increases 

significantly for higher accuracy; so, often a hybrid approach is 

used. There are many variations of this approach which are 

discussed in detail in next paragraphs. Other than these two 

methods, CORDIC [4] algorithm has also been used for 

computation of exponential functions [5]. CORDIC is an 

iterative algorithm and converges slowly. Pouyan et al. have 

used parabolic synthesis [6] method for fast approximation of 

exponential function. Parabolic synthesis method approximates 

a functions with multiplication of multiple sub-functions. These 

sub-functions are parabolic functions and can be computed in 

parallel. In their implementation, the parallel computation 

improved the speed of the operation. This implementation 

requires four sub-functions and requires large number of 

multipliers. 

The LUT, series expansion or hybrid method remains the 

most efficient and popular method for exponential 

implementation. Different flavors of these methods have been 

proposed in literature. Nilsson et al. [3] implemented the 

exponential function using 6th order Taylor series 

approximation around x=0.5. They optimized the circuit to 

remove an adder and a multiplier. The circuit supports 15-bit 

positive fractional numbers as the input. 

Partzsch et al. present a hybrid approach where LUT and 

series approximations are combined [7]. It supports signed real 

numbers in s16.15 format at the input. The input is divided in 

three parts, integer part, higher fractional (≥ 2-6) and lower 

fractional (<2-6). Final exponential is computed as 

multiplication of the exponential of each of these parts. LUTs 

are used for first two parts and 4th order Taylor series 

approximation is used for the last one. Saturation is used if the 
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output is more than 216 or less than 2-15. This corresponds to 

input values of 11.1 and -10.4 respective. The saturation helps 

in reducing the size of the LUTs. The integer and fractional 

LUTs have 23 and 64 entries respectively. For ease of hardware 

implementation the coefficients of the Taylor series are 

approximated as given below: 

𝑓(𝑞) = 1 + 𝑞 +
1

2
× 𝑞2 + C3 × 𝑞3 + C4 × 𝑞4          (1) 

Where C3 = 0.1666259765625, and C4 = 0.04296875. These 

have been approximated so that multipliers are replaced by few 

shifters and adders. 

Wu et al. have presented a scalable accuracy approximate 

implementation for exponential function [8]. They used cross-

layer optimization to select hardware friendly series 

approximation and replaced dividers by simple shift operations. 

These parameters are derived depending on the accuracy 

requirement.  

More recently, Kim et al. have presented template scaling 

method for the exponential implementation [9]. In this method, 

they store the template and the difference values in two LUTs 

and generate the final output by multiplying the two values 

depending on the input. This is a different presentation of the 

LUT implementation, wherein the input is divided in two parts 

and exponential value for each part is looked from the 

corresponding LUT and multiplied as in [7]. Since, this is based 

only on LUT, larger LUTs are required for higher precision. 

All these methods explore the exponential implementation 

for both positive and negative domain. As discussed above for 

most applications, we are interested only in negative domain. A 

neural network accelerator activation function typically 

requires only negative domain but requires large number of 

them for better throughput. So, an optimized circuit for negative 

domain is quite useful for such applications. This paper 

explores the optimized hardware implementation of variable 

precision e-x function.  

II. METHOD OVERVIEW 

A. Principle 

The exponential of sum of two numbers can be written as the 

product of exponential of the individual numbers i.e. 

 

𝑒𝑥+𝑦 = 𝑒𝑥 × 𝑒𝑦                                (2) 

Let’s consider an N-bit binary number a=bN-1bN-2..b1b0 with 

b0 being the least significant bit. Then, 

𝑎 = ∑ 𝑝𝑖 × 𝑏𝑖                                 (3) 

Where pi is the place value of ith bit. Note that pi depends on 

the precision P of the number a and given by 𝑝𝑖 = 2−𝑃 × 2𝑖. 

Now, we can write exponential of a as: 

𝑒−𝑎 = ∏ 𝑒−𝑝𝑖×𝑏𝑖                                (4) 

Using (4), we can compute the exponential of parts of the 

input number and multiply them to get the required value. 

Number of parts can be chosen depending on the choice of LUT 

depth and number of multipliers. Since, the e-x saturates quite 

fast, we can divide the input range into two parts: 

• Saturation Region: For a ≥16, output is saturated to 

exponential of (2-P-16), where P is the precision. 

• Non-saturation Region: Hybrid approach is adopted to 

compute the e-x in this region. Input a is further divided 

in two ranges: 

o For values > 1/8, LUTs are used for precise 

exponential values. This is further divided in 

two parts: 16 word deep LUT for integer part 

and 8 word LUT for fractional part. 

o For values ≤ 1/8, Taylor series approximation, 

which works quite well as can be seen from fig. 

1, is used for imprecise exponential 

computation.  

Thus for, non-saturation region, input a is split as given in (5) 

and exponential is computed as given in (6).  

𝑎 =  𝑎𝑝𝑟𝑒𝑐𝑖𝑠𝑒_1 + 𝑎𝑝𝑟𝑒𝑐𝑖𝑠𝑒_2 + 𝑎𝑖𝑚𝑝𝑟𝑒𝑐𝑖𝑠𝑒                (5) 

𝑒−𝑎 = 𝑒−𝑎𝑝𝑟𝑒𝑐𝑖𝑠𝑒_1 × 𝑒−𝑎𝑝𝑟𝑒𝑐𝑖𝑠𝑒_2 × 𝑒−𝑎𝑖𝑚𝑝𝑟𝑒𝑐𝑖𝑠𝑒         (6) 

Where, aprecise_1 is the integer part less than 16, aprecise_2 is the 

fractional part > 1/8, and aimprecise is the remainder. 

B. Hardware Oriented Approximations in Series Expansion  

The least significant bits, of the fractional part of input a, are 

used for the series approximation circuit. 3rd order Taylor series 

approximation for e-x as given by (7) and re-written as (8). 

𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2!
−

𝑥3

3!
+ ⋯                      (7) 

𝑒−𝑥 = 1 − 𝑥(1 −
𝑥

2
 (1 −

𝑥

3
))                     (8) 

Series approximation given in (8) can be approximated for 

simpler hardware implementation. The last term which requires 

a divide by 3 operation can be approximated as given in (9), so 

1a. Absolute Error 1b. Accuracy in number of fractional bits 

Fig. 1. Maximum absolute error and accuracy (Y-axis) plotted as function of the range 
of the input as power of 2 (X-axis) for different number of terms in approximation 

(linear (2 terms), quadratic (3 terms) etc.). For this plot, accuracy is defined as how 

many (most significant) bits are always correctly computed using series expansion.  

Fig. 2. Absolute error comparison on original and 

hardware friendly coefficient of cubic term 
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that it can be implemented using shift and add. 

𝑒−𝑥 = 1 − 𝑥(1 −
𝑥

2
 (1 −

2.5𝑥

8
))                  (9) 

The absolute error introduced by this approximation for 16-

bit precision is 1.04x10-5 which is less than one ulp (unit in last 

place or equivalently, bit) as shown in fig. 2. 

Note here that Partzsch et al. [7] also implemented the 

exponential function in similar manner and approximated this 

divider with a shift and add logic. However, their logic was 

more complex probably because they opted for higher accuracy. 

For 16-bit precision, the absolute error in e-x approximation 

using Partzsch [7] and this method is less than 1 ulp. One thing 

to note here is that their implementation works for both the ex 

and e-x, so, that may have driven the requirement for higher 

accuracy. Thus, the idea for this comparison here is only to 

illustrate that more optimization can be done if we are only 

interested in e-x. However, as we’ll see later on, this 

implementation was adapted only for negative domain for 

comparison with this work. 

III. HARDWARE IMPLEMENTATION 

The implementation has three main blocks; operand splitter, 

exponential computation for individual parts and final stage of 

multipliers. The high level block diagram is shown in fig. 3. 

  

A. Operand Splitter  

Operand splitter partitions the input operand depending on 

the configured precision and range, and sends them to the 

corresponding computation logic, i.e. LUT or series 

approximation. Its functioning is explained below in detail. 

Let a=bNbN-1…b1b0 be the input binary number and let P be 

the precision. So, bP-1…b1b0 is the fractional part of the number 

and bNbN-1…bP-1bP is the integer part of the number a. Then the 

number a is divided in four parts by the operand splitter as 

follows: 

• Saturation part asat =  bNbN-1…bP+5bP+4 

• Integer LUT part aprecise_1 =  bP+3bP+2bP+1bP 

• Fractional LUT part aprecise_2 =  bP-1bP-2bP-3 

• Residual part aimprecise =  bP-4bP-5bP-6....b1b0 

The output is saturated if asat is non-zero.  For saturation, 

maximum value is assigned to the remaining three parts and 

normal processing is followed. Note that this logic can be 

implemented as simple combinatorial logic in hardware. 

B. Series Approximation 

Though, the series approximation (9) is already optimized by 

removing a divider; another approximation can be used to 

further optimize the hardware implementation. The subtractor 

in (9) is a 2’s complement operation as x is a fractional number 

and subtracting a fractional number from ‘1’ is equivalent to 2’s 

complement operation. For low-cost and imprecise hardware 

implementation, We can approximate it  with 1’s complement 

which is simply bitwise ‘not’ operation. This simplifies the 

equation as: 

𝑒−𝑥 = ~(𝑥 ∗ ~ ((𝑥 ≫ 1) ∗ (~(𝑥 ≫ 4 + 𝑥 ≫ 2))))  (10) 

where ~ is bitwise ‘not’ operator, and >> is the right shift 

operator. 

The circuit diagram for series approximation using 1’s 

complement arithmetic is shown in fig. 4. This significantly 

reduces the hardware cost as the adders between different terms 

are fully removed now. 

  

C. Effect of multiplier and LUT precision on accuracy 

The accuracy is also affected by the precision of the 

multipliers and the LUTs, other than the two approximation 

discussed above. Fig. 5 show the maximum absolute error 

(MAE), in ulps, for some combination of the precision and 

arithmetic choices. The X and Y axis are used for multiplier 

precision and MAE respectively. For a given multiplier 

precision, error is plotted for different LUT precision and 

arithmetic choices (1’s complement or 2’s complement) as 

shown by the legend in the fig. 5. The legend shows LUT 

precision followed by arithmetic choice; for example, “10,1’s” 

means that LUT precision is 10-bit and 1’s complement 

arithmetic is used for subtractors. 

Note that as we increase the precision of multipliers or LUTs, 

the accuracy improves. The accuracy is dropped when 

subtractors are approximated by the 1’s complement as shown 

by the inner bars, in lighter color, in the bar chart in fig. 5. 

However, it is possible to keep the error close to 1 ulp with 1’s 

complement circuit. The advantage of 1’s complement circuit 

is that the subtractors are replaced by simple inverters, so logic 

area is greatly reduced. 

D. Implementation Results 

It is evident from the discussion so far that this design 

requires four multipliers and one adder along with other 

combinatorial logic. Compared to this design, [7] requires 10 

multipliers and four adders. This, reduction in number of 

multipliers, results in significant improvement of key 

performance parameters i.e. power, latency and area. For 

Fig. 3. Top level block diagram of exponential function 
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example, this design can compute the function in one cycle 

against the 6 cycles required by [7]. This comparison may not 

be totally fair given that original design was intended for the 

both positive and negative domain and for a greater accuracy. 

So, the method, proposed in [7], was re-implemented using the 

same coefficients but reduced number of terms (3 terms instead 

of four in original paper). Moreover, the 1’s complement 

arithmetic was used along with identical precision and LUT 

organization. The results were now compared with this 

modified implementation of [7]. 

This design and modified Partzsch et al. [7] designs were 

synthesized using 16nm library for the quality of results. The 

target was 16-bit precision implementation with the error close 

to 1 ulp. The configuration used is 17-bit precision for both 

multiplier and LUT and 1’s complement arithmetic. The area 

gain for this implementation is 7.48% while the power 

reduction is 27.72% at 500MHz.  

E. Accuracy of Derived Functions 

TABLE I 

MAXIMUM ABSOLUTE ERROR FOR DERIVED FUNCTIONS 

Function 

Multiplier and LUT 

precision = 17 

Multiplier and LUT 

precision = 19 

# Ulps # Ulps 

Gaussian 
2.61e-05 1.71 1.20e-05 0.77 

Sigmoid 
2.47e-05 1.62 5.45e-06 0.36 

Hyperbolic Tangent 
4.65e-05 3.04 1.01e-05 0.66 

Table I captures the accuracy of Gaussian and some 

activation functions derived from e-x implemented using this 

approximation. For the LUT and multiplier precision of 17 and 

1’s complement arithmetic, the accuracy loss is less than 2 ulps 

for Gaussian and sigmoid functions while it is close to 3 ulps 

for tanh. However, if we increase the multiplier and LUT 

precision to 19, the accuracy is within 1 ulp for all of them. So, 

these approximations can be used for such applications. 

IV. VARIABLE WORD-LENGTH IMPLEMENTATION 

The implementation discussed above assumes same word 

length for all the terms of the series expansion. However, the 

quality of results can be improved by selecting optimal world 

length for different terms as discussed in this section. 

F. Dependence of Number of terms on Range and Accuracy 

It is well known that higher number of terms in series 

expansion are required to improve the accuracy. More terms are 

required as the range of the series approximation is increased. 

Fig. 1 plots the MAE for different ranges for series 

approximation. Note that the X-axis is the log2 of the range in 

these plots. Fig 1a and 1b represent the same data in two 

different ways for ease of illustration. Fig 1a presents the 

maximum absolute error while fig. 1b presents the accuracy in 

number of fractional bits. Fig. 1b can be directly used to 

approximate the range for which the results of a particular series 

approximation are within the fixed point representation used. 

For example, for aimprecise < 2-8, linear, quadratic and cubic 

approximations are accurate upto 17, 26 and 36 bits 

respectively after the decimal point. 

G. Variable Precision Mathematics 

Since, exponential value for aimprecise is computed by series 

approximation and rest by look-up tables; the data presented in 

fig 1 can be used to find the best partitioning for area trade-offs. 

We can also hypothesize that the additional terms in series 

approximation are required due to the increased range; so, it 

should be possible to reduce the precision for higher power 

terms. So, instead of having fixed world-length for each term, 

we can have variable word lengths. This will result in the 

reduction of area and power. 

The equation (9) can be partitioned in cubic term Tc, square 

term Ts and linear term Tl as: 

𝑇𝑐 = 1 − 2.5 ×
𝑥

8
                                    (11a) 

𝑇𝑠 = 1 − 𝑇𝑐 ×
𝑥

2
                                      (11b) 

𝑇𝑙 = 1 − 𝑥 × 𝑇𝑠 = 𝑒−𝑥                           (11c) 

The precision for Tl term is same as that for the output. 

However, the precision for Tc and Ts can be kept smaller 

(coarse). The table II presents the accuracy of the 

approximation for different combinations of the precision for Tc 

(Cubic term) in rows and Ts (square term) in columns. It can be 

observed that the accuracy doesn’t improve beyond a point by 

increasing the precision of the cubic term. For example, for 16-

bit precision and error requirement within 1 ulp, all the 

configurations in shaded region in Table II are equivalent and 

11 and 8-bit precisions are enough for square and cubic terms 

respectively.   

Fig. 5. Impact of multiplier, LUT and arithmetic choices on accuracy for different precision requiremements. The figure presents analysis for 

.8,.12 and .16 output requirement. The horizontal axis shows the precision used for multipliers. The legends represent the LUT precision 

(first element) and arithmetic choice (2nd element). 
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TABLE II 

ACCURACY OF EXP(-X) APPROXIMATION (IN NUMBER OF BITS AFTER 

DECIMAL POINT) FOR DIFFERENT PRECISION CHOICES OF CUBIC AND SQUARE 

TERMS FOR AN INPUT RANGE OF (0-16) AND PRECISION OF 2-16 

Cubic 

Term 

Precision 

Square Term Precision 

10 11 12 13 14 15 16 

5 13 13 13 13 13 13 13 

6 14 14 14 14 13 13 13 

7 14 14 14 14 14 14 14 

8 14 15 15 14 14 14 14 

9 14 15 15 15 15 15 15 

10 14 15 15 15 15 15 15 

11 14 15 15 15 15 15 15 

12 14 15 15 15 15 15 15 

13-16 14 15 15 15 15 15 15 

H. Hardware Implementation Results 

The quality of results for the variable precision 

implementation is compared with the constant word-length 

implementation and modified Partzsch [7]. The LUT and linear 

multipliers precision are kept same for all and only square and 

cubic term precision is changed to 11 and 8 respectively, for 

variable word length implementation. The improvement in area 

and power is 25.83%, 38.62% with respect to constant word 

length implementation and 31.38% and 55.63% with respect to 

[7] at 500MHz.  

This implementation is also compared with similar 

implementation published in literature. The published designs 

were optimized for fair comparison with this implementation 

and in each case, the computation is done in single cycle. Table 

III compares the implementation results for best performance 

(timing) implementation using SVT and LVT cells 

respectively. It is very clear that the variable word-length 

implementation achieves the best results. 

V. CONCLUSION 

Machine learning and signal processing applications mostly 

require exponential for negative input range which can be 

exploited for optimized logic design. This paper presents couple 

of simple approximations and optimizations that can be used for 

better implementation such as achieving higher speed or lower 

power consumption. Such an implementation can be used for 

designing accelerators for these applications. Furthermore, this 

circuit can also be used to compute exponential for both 

positive and negative domain if accuracy requirement is not 

very high by using a reciprocal unit at the output of this logic. 
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TABLE III 
IMPLEMENTATION RESULTS AND COMPARISON WITH STATE OF THE ART 

Implementation 
Input 

Range 

Maximum Absolute 

Error 

(ulps) 

Using SVT cells only  

(Low Power) 

Using LVT cells only  

(High Speed) 

Area 

(um2) 

Delay 

(ps) 

Power 

(nW) 

Area 

(um2) 

Delay 

(ps) 

Power 

(nW) 

Nilsson et al. [3] [0-1] 1 1758 2528 5492 1688 1686 95503 

Partzsch et al. [7] Full (≥0) 1 1567 1615 4556 1597 1062 88001 

Wu et al [8] [0-1] 4 1335 2060 4226 1277 1380 74056 

This (Fixed WL) Full (≥0) 1 1543 1425 4674 1520 953 84474 

This (Variable WL) Full (≥0) 1 1247 1266 4060 1197 855 69226 

 


