
A Many-ported and Shared Memory Architecture
for High-Performance ADAS SoCs
Hao Luan

Horizon Robotics
Yu Yao

Horizon Robotics
Chang Huang

Horizon Robotics

Abstract—Increasing investment in computing technologies
and the advancements in silicon technology has fueled rapid
growth in advanced driver assistance systems (ADAS) and
corresponding SoC developments.
An ADAS SoC represents a heterogeneous architecture
that consists of CPUs, GPUs and artificial intelligence (AI)
accelerators. In order to guarantee its safety and reliability,
it must process massive amount of raw data collected from
multiple redundant sources such as high-definition video
cameras, Radars, and Lidars to recognize objects correctly and
to make the right decisions promptly. A domain specific memory
architecture is essential to achieve the above goals.
We present a shared memory architecture that enables high data
throughput among multiple parallel accesses native to the ADAS
applications. It also provides deterministic access latency with
proper isolation under the stringent real-time QoS constraints.
A prototype is built and analyzed. The results validate that the
proposed architecture provides close to 100% throughput for
both read and write accesses generated simultaneously by many
accessing masters with full injection rate. It can also provide
consistent QoS to the domain specific payloads while enabling
the scalability and modularity of the design.

Index Terms—ADAS, Shared Memory, Interconnect, heteroge-
neous, Many Core SoC

I. INTRODUCTION

Autonomous driving systems have attracted significant
interest recently. Many existing industry leaders, such as Tesla
[2], Nvidia [5], Mobileye and Huawei [4], and a few startups
such as Horizon Robotics, have invested a large amount of
capital and engineering power on developing ADAS SoCs.

There are six levels of automation defined by SAE
International [12], level 1 and 2 of automation are
mostly driving assistance, where the human driver still
handles a substantial portion of the driving tasks under
all conditions. Autonomous driving systems can take full
driving responsibility at level 3-5 of automation under certain
driving conditions, which are typically referred to as highly
autonomous vehicles (HAVs). Because HAVs represent the
future of autonomous driving systems, we focus on HAVs at
level 3-5 for the rest of this paper.

A typical SoC serves for HAVs consists of the following
processing pipelines and it should be able to complete it

The pre-print version of the same paper that will be presented in NoCs
2022.

under current traffic conditions with a latency of 100 ms at a
frequency of at least once every 100 ms or less [1]:

1) Object identification and tracking: The video captured
by cameras or other formats of raw data, such as data
sourced by Light Detection and Ranging (LIDAR) and
Radar [3], are streamed into both the object detection
engine to detect objects and the localization engine to
locate the vehicle in parallel. This step of processing is
often accomplished with various machine-learning (ML)
algorithms assisted by CPUs and other types of accel-
eration such as image cropping and Region of Interest
(ROI) identification. Massive data is collected real-time
and a large number of training data sets (thousands
of images) are also needed to infer and differentiate
among vehicles, common objects such as traffic signs,
pedestrians, and streets etc.

2) Fusion: The vehicle location and tracked objects are
projected into the same 3D-coordinate space by the
fusion engine, which is a processing step that combines
the prior results into an understandable result. Again, a
lot of heterogeneous processing occurs in this step, and
there is a lot of data sharing between this step and the
previous one.

3) Motion Planner: In this step, the processed and ana-
lyzed data is now consumed by the motion planner to
make operation decisions. The vehicle’s moving track
and projected paths are calculated and information such
as navigation data is correlated. Heavy computations
with a smaller and condensed data set is the charac-
teristic of this processing step compared to the other
steps.

4) Control and Decision: The last and most important
step in the entire flow. This step normally has the most
stringent safety requirements to make sure the action and
moving path are thoroughly checked and verified with
the redundant pool of computing resources. Reliability
is the key characteristic; however, it has the least amount
of data to handle and process.

To fulfill such a real-time pipeline, one can easily observe
that abundant ML and other heterogenous processing power
is undoubtably needed on silicon. An efficient and domain
specific shared memory architecture with the following char-
acteristics is also critical to keep all of them realizing at high
TOPS (Tera Operations Per Second) computing capacity:

ar
X

iv
:2

20
9.

05
73

1v
1

 [
cs

.A
R

]
 1

3
Se

p
20

22

• Big in size: DaDianNao [9], a ML supercomputer,
employs 36MB on-chip shared memory to accelerate
machine learning applications. Tesla’s full self-driving
(FSD) SoC uses two instances of neural-network accel-
erator (NNA), where each NNA has a 32 MB of on-chip
SRAM memory providing a high throughput data feed to
enable and sustain a total of 72 TOPS processing power
[2]. Huawei Ascend 901 SoC has two instances of 16 MB
on-chip shared memory to enable a 256 TOPS processing
power [4]. Therefore, a size of 32 MB of shared memory
can be assumed as the baseline to accelerate heterogenous
ADAS processing with a lot of ML involved.

• It is a many-ported and a parallel architecture: The data
is shared among many relevant heterogeneous processing
elements. It is always being accessed in parallel and to
provide high data throughput to all of them.

• Provides consistent access latency optimized for the
HAVs payloads [11]: the raw image data, LIDAR, Radar
data and the model data for ML processing are always
available in the range of KB or MB. Thus, the architecture
needs to fully utilize the bulky access nature of image
processing and neural networks from a buffer level access
as opposed to a single random byte or word access.

• Provides necessary isolation: special care must be taken
to provide sufficient isolation among the multiple parallel
data paths to comply ISO 26262 [7] requirements.

• Software friendly: it should not behave as yet another
conventional discrete memory on an SoC, where different
pieces of the memory manifests different access latency
and QoS. It needs to present to the software programmer
as a flat and uniform memory space with consistent access
latency across the entire memory space. This requirement
can significantly ease the efforts of software programming
and code management.

• Scalable: the same architecture can easily migrate from
generation to generation from both logical and physical
design perspectives and across multiple silicon manufac-
turing nodes.

The rest of the paper is organized as follows: Section II
analyzes the architectural challenges brought by the above
requirements, surveys related work, presents our architecture,
and describes the key technologies in detail. In Section III,
we share the implementation details and relevant results to
validate the effectiveness of our approach, while Section IV
summarizes our conclusions and findings.

II. RELATED WORK AND ARCHITECTURE

A. Related Work
SoC architectures based on the shared memory are the

preferred backbone for flexible and programmable solutions
in many application domains. Many-ported shared memory
architecture has been explored recently both in academic and
industrial settings.

Mesh-of-Trees (MoT) topology has shown that it can
provide a consistent throughput as high as 98% for up to 64

masters and memory modules [10]. MoT topology consists of
two phases: the routing phase and the arbitration phase. In the
routing phase, every level of fan-out routing trees dilutes the
traffic conflicts by half. This splitting process repeats as many
as log2N hops, where N is the number of masters. Hereafter,
the data paths are merged by two gradually in the arbitration
phase, which is also repeated in log2N hops and the total
data points are converge back to N number of memory
modules. The separation and isolation is well maintained in
the routing phase. The splitting process is also an effective
scheme to mediate memory access contentions. However, the
isolation among multiple accessing masters, which is highly
desirable in HAVs, is gradually lost in the arbitration phase.
Besides, the architecture dictates a flat structure. This makes
it harder to support modularity and scalability, which is very
much required in the engineering practice.

DaDianNao [9], which is a ML supercomputer, uses a Fat
Tree topology consisting of total 16 data tiles to provide a 36
MB shared memory at a 28 nm technology node. It is big in
capacity; however, the wires of the interconnect occupy half
of the die area of each tile due to congestion. The two-level
hierarchical structure is good to scale up the design but
the global resource sharing has an intrinsic NUMA nature,
depending on whether the producer and consumer of the data
are on the same level or not.

Kalray MPPA-256 [8], a manycore processor targets
real-time and embedded applications including ADAS. It has
a total of sixteen homogenous clusters, and each cluster has a
2 MB shared memory, which is shared by 17 identical VLIW
(Very Long Instruction Word) cores without cache coherency.
The shared memory comprises of 16 independent memory
banks. The memory banks are arranged in two sides (left and
right). The PEs are organized in 8 pairs. Each pair has two
memory buses (one for each side of memory group), which
can be utilized in parallel by the two cores. As illustrated in
[8], the interconnect topology employs two levels of crossbar
switches where the first arbitration is done between the two
cores in a pair, then the next level of arbitration is done
among all pairs. The topology reduces a full crossbar of 68
x 16 to two separate full crossbars of 17 x 8. It is effective
to reduce the overall number of wires, arbitration costs and
implementation complexity, and to enable a shared memory
of 2 MB with uniform memory access using a TSMC 28
nm HP process. However, the multi-level crossbars and
round robin arbitrations really throttle the overall throughput,
and the software/system engineers need to figure out how
to avoid the memory access conflicts among all the cores.
Secondly, the homogeneity of the PE and its physical shape
enables a perfect layout where all the PEs are sandwiched
between the memory banks located on the both sides [8].
This is something rarely available on an SoC consists of
many heterogenous PEs along the data path.

A distributed and modular architecture is presented and

studied in [6] to mainly optimize the real-time payloads for
the wireless applications while it tries to reduce the inter-
connect area at the same time. The architecture supports 32
masters with a size of 16MB of shared memory, which is
implemented on a 16nm technology node. The architecture
employs multi-level low index switches to further reduce the
wire complexity and arbitration costs that natively exists in
many-ported interconnect and manages to confine the inter-
connect area to be less than 30% of the total area. The
hierarchical and modular approach is effective to make the
overall architecture more scalable and easier to implement.
The distributed approach can help to mediate memory access
contentions and is also effective to mediate the Non-Uniform
Memory Access (NUMA) effects. However, the divide and
conquer approach taken to optimize interconnect area cannot
satisfy the isolation requirement since it has merged the traffic
from multiple parallel accessing masters right at the beginning
of the data path.

B. Architectural Challenges and Considerations

Based on the analyses of the available architectures, the
interconnect and its topology is the key factor that drives
overall performance for a many-ported shared memory with
a big capacity. To meet the ADAS requirements outlined in
section I, important parameters such as how to connect many
master ports to the sea of the memory instances, how to route,
and to arbitrate the traffic generated by the parallel accessing
masters need to be considered. Here is the summary of the
challenges:

1) The size matters: A shared memory with a size of 32 MB
or above normally consists of at least half a thousand to
multiple thousand pieces of physical memory instances
depending on the density and isolation requirements.
The physical layout is very memory dominant and the
Non-Uniform Memory Access (NUMA) effect is even
worse with the growth of the size and the number
of memory instances. Therefore, the physical imple-
mentation difficulties should be an important factor to
consider.

2) Mediation of the memory access contention: Sharing
by nature brings in access contentions among multiple
parallel accesses generated by many heterogenous pro-
cessing elements. The interconnect, memory grouping
and memory address mapping all need to be considered
together to reach an efficient and cost-effective architec-
ture.

3) Isolation and sharing are a pair of contradicting re-
quirements: The contents of the memory need to be
shared as much as possible to keep it local, and reduce
the power of data movement. However, the accessing
data paths from the accessing masters also need to be
kept isolated as much as possible to avoid unnecessary
interference, which may be required after the ASIL
allocation pursuant to ISO 26262 [7].

C. The Domain Specific Memory Architecture

Fig. 1 shows the overall architecture. It is a distributed and
hierarchical one, which is applicable from both logical and
physical design perspective. A symmetric logical and physical
partition is employed to increase the scalability and ease of
implementation. The interconnect between the masters and
the sea of memory instances is comprehended by a multiple
level recursive splitting and distributing structure. Just for
simplicity, a two-level split and dispatching structure is shown
to explain the concepts of the architecture. The bigger the size
of shared memory, the more levels can be used to increase
the parallelism. Therefore, less memory access contentions
can be achieved along with more parallelism enabled by this
multi-level splitting process.

The splitting and dispatching is carried out in a recursive

SRAM Array Group

Level 1

Split & dispatching

Level 1

Split & dispatching

Level 1

Split & dispatching

Level 0

Split & dispatching

Level 0

Split & dispatching

Level 0

Split & dispatching

SRAM Array Group SRAM Array Group

X Masters

N groups

X Masters

Cluster

SRAM Array Group

Level 1

Split & dispatching

Level 1

Split & dispatching

Level 1

Split & dispatching

SRAM Array Group SRAM Array Group

X Masters

N groups

Cluster

M Clusters

SRAM Array Group

Level 1

Split & dispatching

Level 1

Split & dispatching

Level 1

Split & dispatching

SRAM Array Group SRAM Array Group

X Masters

N groups

Cluster

SRAM Array Group

Level 1

Split & dispatching

Level 1

Split & dispatching

Level 1

Split & dispatching

SRAM Array Group SRAM Array Group

X Masters

N groups

Cluster

Master

I/O

channel

Master

I/O

channel

Master

I/O

channel

Master

I/O

channel

Master

I/O

channel

Master

I/O

channel

Fig. 1. The Architectural View of the Proposed Shared Memory Controller

manner. Split by four, eight or even sixteen can be considered
based on the shortest burst size among most frequently used
burst sizes. For example, if burst four, eight and sixteen
are the frequently used burst sizes on an SoC, A split-by-
four structure is recommended. A recursive split-by-four
architecture is shown in Fig. 2 to explain the splitting and
dispatching scheme due to the popularity of this combination
on today’s SoCs.
The following summarizes the rules to split and distribute a
multi-beat read command and write data inside the proposed
architecture:

1) Disassemble any multi-beat read requests and write data,
then spread them across four clusters once they enter the
shared memory

2) Further introduce the next level of randomization so the
multiple beats within a linear access go to a different
SRAM array, to make sure it lands in a different memory

0 4

C 8

D 9

5 1

F 7

3 B

2 6

E A

Cluster 0 Cluster 1

Cluster 2 Cluster 3

Fig. 2. Structural and Fractal Randomization Applied at Inter and Intra Cluster
Level

bank to avoid access conflict inside a cluster and an
SRAM array

For example, if a burst four read command or write data
is issued to the shared memory, every cluster gets one of
the write data or read command beat as indicated by 0, 1,
2, 3 shown in different color. If a burst eight or sixteen
read command or write data is issued to the shared memory,
each cluster gets two or four beats of the read command or
write data as shown in Fig. 2 and they are guaranteed to
fall in different SRAM arrays by applying the rules above.
Enough randomization and whitening effects are introduced
by applying the rules; the NUMA effect can be mediated
significantly by averaging the individual beat access within a
burst to achieve a consistent access latency to all multi-beat
read and write accesses. The above mechanisms successfully
address architectural challenge No.1 and No.2.
The micro-architecture of an SRAM array is shown in Fig.3.

At the input of an SRAM array, all the single or multi-beat
burst transactions have been split into single beat transactions
in the previous split and dispatching structure, matching the
data width of the SRAM instances inside. The dispatching
logic decodes and routes the beat transactions to K logic
banks based on the programmed addressing scheme. The
arrangement of the memory instances is the direct reflection
of the address scheme, which is the area where the grouping
of the sea of the memory can be organized in a way to address
the multiple requirements of ADAS applications. Schemes
such as interleaving or hashing etc., are helpful to increase the
access parallelism of the logic banks when multiple masters
try to access the same address range at the same time. The
memory instances are grouped in a two-dimensional manner
with a goal to further increase the parallelism to reduce the
access collisions while maintain access isolation to some
extent. Within an SRAM logic bank, the memory instances
are sliced by regions. The two-dimensional arrangement
completes a linear memory space by many vertical layers
where each layer is realized by the sub-banks fall in the same
region across multiple memory banks.

Dispatching Dispatching Dispatching
X Masters

A
rb

it
ra

ti
o

n

SRAM in

Address

Range0

A
rb

it
ra

ti
o
n

SRAM in

Address

RangeY-1

Y SubBanks

SRAM

Logic

Bank

A
rb

it
ra

ti
o

n

SRAM in

Address

Range0

A
rb

it
ra

ti
o

n

SRAM in

Address

RangeY-1

Y SubBanks

SRAM

Logic

Bank

A
rb

it
ra

ti
o
n

SRAM in

Address

Range0

A
rb

it
ra

ti
o

n

SRAM in

Address

RangeY-1

Y SubBanks

SRAM

Logic

Bank

K Banks

Fig. 3. The Micro-Architecture of the SRAM Array

For each logic bank, depending on the function safety and
isolation requirement, the SRAM instances are separated into
different sub-banks where each sub-bank has its independent
arbitration logic. Together with each master’s independent
data path before the arbitration, this architecture can provide
complete separation for two masters accessing different
sub-banks. Please note if there isn’t any isolation required
among multiple regions inside a memory logic bank, one
arbitration logic should be sufficient for the whole bank.

With the replication of the arbitration logic, the data path
from one accessing master to a memory region can be totally
isolated with that of another accessing master accessing a
different memory region. This scheme addresses challenge
No.3 and provides the fundamental support to satisfy the
ASIL-B requirement defined by ISO 26262 [7] along with
other safety mechanisms such as ECC (Error Correcting
Code) and time-out on the command and data. One may
achieve ASIL-D results by leveraging system and software
algorithms to compare and validate two ASIL-B data from
two independent sources together [7]. The number of the logic
banks in an SRAM array, how many sub-banks in a logic
bank and the number of the accessing masters supported are
cost sensitive to the total area and power consumption of the
architecture. Therefore, these three important parameters need
to be examined properly to achieve a good function/cost ratio.

III. IMPLEMENTATION, RESULTS AND CORRELATIONS
WITH THE ARCHITECTURE

Multiple configurations have been studied in this architec-
tural exploration. One prototype with the following configura-
tions has been validated end-to-end from RTL simulations all
the way to the physical design sign-off.

1) A shared memory with a size of 32 MB consists of over
half an thousand instances of physical memory

2) Sixteen accessing masters with 256 bit read and write
data width employing AXI 5 protocol with read data
chunking supported

3) Two levels of splitting and distributing by four structures
are employed to complete the interconnect of the shared
memory:

• Sixteen memory banks inside each SRAM array
• The shared memory has an outstanding capability

of 8 commands right at every master port interface
and an extra buffer worth of storing 64 splitting and
dispatching beats

• The interconnect network, which is represented by
the two levels of splitting and distributing structure,
runs at 1GHz

• All memory instances run at 500 MHz
To correlate with the overall architecture shown in Fig. 1, the
above configuration can be summarized as: X = 16,M =
4, N = 4, and each cluster has 8 MB of physical memory.

A. Simulation Results

In order to fully examine and validate the effectiveness of
the proposed architecture, traffic is injected together using
various number of the parallel accessing ports combined
with different traffic patterns per accessing port. Each port
is injected with 10, 000 read or write transactions in the
simulation window. The throughput per port, the average
read and write access latency for burst transfer and bulk data
transfer performance are analyzed. Fig. 4 shows the read
and write performance with different numbers of parallel
accessing masters ranging from one to sixteen. Each of the
accessing master issues random read and write requests with
random address (256bit aligned) at the same time with a
100% injection rate.

Fig. 4 clearly shows that even if the accessing master
numbers vary from one to sixteen, the throughput per
accessing port is stable for both the read and write transfers.
The actual port throughput is around 96% for the read
traffic and is around 99% for the write traffic. The port
throughput does drop along with the addition of the accessing
masters. However, the proposed architecture demonstrates
a strong resilience to sustain the heavier traffic and only
drops about 0.01 percentage point for the read and about
0.46 percentage point for the write throughout the whole
range. This result is equal or better than that of MoT [10]
topology but with a much coarser level of splitting and
distributing structure, which directly translates to the cost
saving of the implementation while keeping the scalability
and modularity. The average read and write latency show
the similar robustness on the same settings. Even though the
maximum access latency degrading when more accessing
masters are added, the average read latency stays almost
the same, and the average write latency degrades just a few
cycles. It validates that the multiple levels of splitting and
distributing structure have fully randomized the read and
write traffic so the NUMA effect can be tamed properly to

provide consistent QoS. The results are better than those of
[6] with a much simpler architecture.

Similar results can be obtained if a traffic consists of random
burst four transactions, burst eight and even a combined traffic
with three different burst lengths. Only the results based on
burst sixteen traffic are shown just to avoid repeating the
similar results.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 16

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
in

g
le

 T
ra

n
sa

ct
io

n
 L

a
te

n
cy

 (
C

y
cl

e)

Number Of Masters Accessing TogetherM
a

st
er

 A
v
er

a
g

e
B

a
n

d
w

id
th

 U
ti

li
za

ti
o
n

Read/Write Performance Against Number Of Masters

Rd Average Throughput Wr Average Throughput

Rd Max Latency(cycle) Rd Average Latency(cycle)

Wr Max Latency(cycle) Wr Average Latency(cycle)

Fig. 4. The Read and Write Performance with Different Number of Masters

32 32 32 32 32 32 32 32 32

57 57 57 57 57 57 57 57 57

20

30

40

50

60

70

80

0

5000

10000

15000

20000

25000

30000

35000

Rd single

burst

Rd 4K Rd 8K Rd 16K Rd 64K Rd 128K Rd 256K Rd 512K Rd 1M Wr single

burst

Wr 4K Wr 8K Wr 16K Wr 64K Wr 128K Wr 256K Wr 512K Wr 1M

T
h

e
 S

im
u

la
ti

o
n

 R
e
s
u

lt
s
 v

s
 I

d
e
a
l

L
a

te
n

c
y
 D

if
fe

r
e
n

c
e
 (

C
y
c
le

)

B
u

lk
 T

r
a

n
s
fe

r
 L

a
te

n
c
y

 (
C

y
c
le

)

Data Size (Byte) Data Size(Byte)

Bulk Data Read Bulk Data Write

Ideal The Simulation Results Read Differentce Write Difference

Fig. 5. The Read and Write Latencies with Different Size of Payloads

To better mimic the real traffic patterns on an ADAS SoC,
the second simulation is created to test the performance of
bulk data transfers. This simulation is done with sixteen
masters reading and writing bulk data at the same time
from each and every accessing master in parallel. And all
accessing memory spaces don’t have any overlap to comply
the isolation requirement.

As shown in Fig. 5, the “Ideal” number is calculated with
100% data bus utilization. The number of cycles to transfer
such an amount of data can be calculated as the size of the
transfer payload divided by the size of the data width of the
bus interface. For example, it takes 4∗1024

32 = 128 cycles to
transfer a 4 KB data in an ideal condition. It clearly shows that
after the initial datapath pipeline latency, which is thirty-two
cycles for the read, is incurred in the first burst, there isn’t any

more extra latency introduced. It proves that the actual data
throughput is close to 100% for the bulk data read. The bulk
write also has a similar result that close to 100% utilization
rate is achieved after first write is completed. Just as shown
in Table I, a bigger average read latency is observed in Fig.4
because the number of outstanding commands is set to 16
per master port, which is slightly bigger than the maximum
number of outstanding commands set for the burst 16 traffic
by design, to achieve the highest throughput. However, the
average read access latency is settled at 36 cycles once the
number of read outstanding command is reduced to one. The
average latency of the writes is more consistent compared with
that of reads because the write data is always current and the
splitting buffer is deep enough to take in enough beats and
remove bubbles between the multiple writes.
One of the heaviest traces is then picked to further stress

TABLE I
THE LATENCY WITH DIFFERENT NUMBER OF OUTSTANDING

Setting Number of Read
Ports

Number of Out-
standing/Port

Stable Average
Read Latency

1 16 16 222
2 16 1 36

the architecture. This is one of the traces obtained from our
earlier version of SoC. In this trace, every master has a 2MB
memory space reserved for its read and write accesses. Each
of the master 0 to 7 runs with memory traffic from an in-
house single shot detection network, the size of data ranges
from less than 4 KB to around 260 KB; each of the master 8
to 15 reads and writes with ROIs based on a 1080p YUV422
image where each ROI clips at 2 MB if it is bigger. The
setup is to mimic that eight PEs run in parallel to process
the images from up to eight cameras and all the masters read
and write the data per defined in the traces. Fig. 6 shows the
read latencies fluctuate a bit more in ML features and weights
than in the image data. This is because a different sub-region
of the feature might be read in a different layer’s processing.
The feature access pattern of repetitively accessing a portion
of a line then a jump to the next line leads to more bank
access conflicts. The access pattern of the image data is to
continuously access across the full ROI one line after another.
Also, shorter burst lengths such as burst four or eight are used
by the PEs instead of burst sixteen, which is consistently used
by the data transfer of image data. These two contribute to
the differences in average read latency between the two types
of traffic. Other than the above, the overall throughput is still
close to 100%, which is no different from random generated
data simulations, so are the latency and throughput for the
writes.
More results obtained from traces with less access intensity are
omitted since the overall results are slightly better with almost
the same throughput as shown in Fig. 6 and 7. The results
correlate well with the architectural analysis that the longer the
burst, the better randomization, the easier a consistent access
latency and throughput can be achieved.

100

150

200

250

300

350

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5.0 us 15.0 us 25.0 us 35.0 us 45.0 us 55.0 us 65.0 us 75.0 us 85.0 us 95.0 us 105.0 us 115.0 us 125.0 us 135.0 us 145.0 us 155.0 us

S
in

g
le

 T
r
a

n
s
a

c
ti

o
n

 L
a

te
n

c
y

 (
C

y
c
le

)

S
in

g
le

 M
a

s
te

r
 A

v
e
r
a

g
e
 B

a
n

d
w

id
th

 U
ti

li
z
a

ti
o

n

Simulation Time

Read Performance with ADAS Traces

M0-throughput M1-throughput M2-throughput M3-throughput M4-throughput M5-throughput M6-throughput M7-throughput

M8-throughput M9-throughput M10-throughput M11-throughput M12-throughput M13-throughput M14-throughput M15-throughput

M0-latency M1--latency M2-latency M3-latency M4-latency M5-latency M6-latency M7-latency

M8-latency M9-latency M10-latency M11-latency M12-latency M13-latency M14-latency M15-latency

Fig. 6. The Read Performance with Different ML and ADAS Traces

B. Physical Design Results

The architecture has gone through the entire physical
design sign-off flow using a TSMC 7nm technology library.
As shown in the purple region in Fig. 8, the modularity and
hierarchical concept enabled by the architecture makes it
very easy to realize such a big design using either Synopsys
or Cadence EDA tools. The physical design can take a
hierarchical approach that once one cluster is implemented
as a hard macro, four clusters are ready to be integrated with
proper tie-offs and can be timing closed and signed off in
the next higher level even in parallel with a short turnaround
time.

The NUMA aware architecture enables a much smoother
timing closure to otherwise challenging timing paths to
memory macros. All the memory macros can run at half
speed as that of the interconnect because the randomization
of the data return can easily absorb a slightly longer timing
path segment to the SRAM macros. This enables us to select
SVT (Standard Vt) SRAM macros with higher density and
good aspect ratios. The relaxation of the timing on SRAM
leads to a 8% dynamic power reduction and about 11%
leakage reduction for the entire SRAM macros. It also leads
to less congestion in layout where one can only see few and

20

30

40

50

60

70

80

90

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5.0 us 15.0 us 25.0 us 35.0 us 45.0 us 55.0 us 65.0 us 75.0 us 85.0 us 95.0 us 105.0 us 115.0 us 125.0 us 135.0 us 145.0 us 155.0 us

S
in

g
le

 T
r
a

n
s
a

c
ti

o
n

 L
a

te
n

c
y

 (
C

y
c
le

)

S
in

g
le

 M
a

s
te

r
 A

v
e
r
a

g
e
 B

a
n

d
w

id
th

 U
ti

li
z
a

ti
o

n

Simulation Time

Write Performance with ADAS Traces

M0-throughput M1-throughput M2-throughput M3-throughput M4-throughput M5-throughput M6-throughput M7-throughput

M8-throughput M9-throughput M10-throughput M11-throughput M12-throughput M13-throughput M14-throughput M15-throughput

M0-latency M1--latency M2-latency M3-latency M4-latency M5-latency M6-latency M7-latency

M8-latency M9-latency M10-latency M11-latency M12-latency M13-latency M14-latency M15-latency

Fig. 7. The Write Performance with Different ML and ADAS Traces

Fig. 8. A Snapshot of One Timing Closed Physical Layout

tiny red regions (which indicates high congested area) in the
timing closed layout shown in Fig. 8.

The physical layout is similar to paper layout shown in
Fig.1 but all the IOs from all accessing masters are split into
two groups and arrive from the center openings on the east
and west sides. The architecture enables flexible assignment
the I/Os to comply top level SoC routing and connection
needs. The overall utilization of the silicon area is improved
because of the removal I/Os on the north and south sides.
One step further, the I/Os can be pushed further toward to
the center with two benefits: one is to shorten the timing
paths from the I/Os to the memory interconnect; second, it
can also spare some areas at the center of the two edges to
accommodate some top level SoC routings. The two level of
splitting and merging structure strikes a good balance of the
performance and wire density for such a wire and memory
dominant architecture, the total area comes slightly under 30
mm2 with roughly less than 36% area for the interconnect
logic. The utilization inside each cluster is around 40%
and the utilization in the top level is around 35% for the
non-SRAM macro area. This is better than the result reported
in [6], which low radix switches are used for the interconnect
to improve utilization.

IV. CONCLUSION

We present a new shared memory architecture target to
high performance ADAS SoCs. The results show it can
provide close to 100% throughput in both read and write for
ML accelerations and ADAS related raw data processing.
It realizes consistent QoS for the domain specific payloads
and it represents a big and flat memory space with necessary
isolation complied to ISO 26262 [7], which significantly
simplifies the software programming and code management
effort. It has a native modular architecture; it can scale up
and out with a much smoother and easier implementation
flow as demonstrated in section III. All of the positive results

lead to the successful adoptions of this architecture into our
production SoCs that target to HAVs.
Moving forward, we actively investigate to further improving
the consistency of the access latency, leveraging the scalable
architecture to support even more shared memory and master
access ports with 3D integration and Chiplet techniques.

ACKNOWLEDGMENT

The authors thank the production team of Horizon Robotics
to provide relevant data to compare and analyze the benefits
of this work. Special thanks to Horizon Robotics’ SoC design,
functional verification and physical design teams. This work
is impossible without their outstanding supports in RTL
coding, functional simulation and physical design.

REFERENCES

[1] S. Lin et al., ”The Architectural Implications of Autonomous
Driving: Constraints and Acceleration”. 2018, Proceedings of the
Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems. Associa-
tion for Computing Machinery, New York, NY, USA, 751–766.
DOI:https://doi.org/10.1145/3173162.3173191

[2] E. Talpes et al., ”Compute Solution for Tesla’s Full Self-Driving
Computer,” in IEEE Micro, vol. 40, no. 2, pp. 25-35, 1 March-April
2020, doi: 10.1109/MM.2020.2975764.

[3] V. K. Kukkala, J. Tunnell, S. Pasricha and T. Bradley, ”Advanced Driver-
Assistance Systems: A Path Toward Autonomous Vehicles,” in IEEE
Consumer Electronics Magazine, vol. 7, no. 5, pp. 18-25, Sept. 2018,
doi: 10.1109/MCE.2018.2828440.

[4] H. Liao, J. Tu, J. Xia and X. Zhou, ”DaVinci: A Scalable Architecture
for Neural Network Computing,” 2019 IEEE Hot Chips 31 Symposium
(HCS), 2019, pp. 1-44, doi: 10.1109/HOTCHIPS.2019.8875654.

[5] Nvidia, ”NVIDIA Unveils NVIDIA DRIVE Atlan, an AI Data Center
on Wheels for Next-Gen Autonomous Vehicles”, [Online]. Available:
https://nvidianews.nvidia.com/news/nvidia-unveils-nvidia-drive-atlan-an-
ai-data-center-on-wheels-fornext-gen-autonomous-vehicles

[6] H. Luan and A. Gatherer, ”Combinatorics and Geometry for the
Many-ported, Distributed and Shared Memory Architecture,” 2020 14th
IEEE/ACM International Symposium on Networks-on-Chip (NOCS),
2020, pp. 1-6, doi: 10.1109/NOCS50636.2020.9241708.

[7] ISO26262, [Online], Available: https://www.iso.org/standard/68383.html
[8] B. D. de Dinechin, D. van Amstel, M. Poulhiès and G. Lager, ”Time-

critical computing on a single-chip massively parallel processor,” 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2014, pp. 1-6, doi: 10.7873/DATE.2014.110.

[9] Y. Chen et al., ”DaDianNao: A Machine-Learning Supercomputer,” 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
2014, pp. 609-622, doi: 10.1109/MICRO.2014.58.

[10] A. O. Balkan, G. Qu and U. Vishkin, ”A Mesh-of-Trees Interconnection
Network for Single-Chip Parallel Processing,” IEEE 17th International
Conference on Application-specific Systems, Architectures and Proces-
sors (ASAP’06), 2006, pp. 73-80, doi: 10.1109/ASAP.2006.6.

[11] N. Capodieci, P. Burgio, R. Cavicchioli, I. S. Olmedo, M. Solieri and
M. Bertogna, ”Real-Time Requirements for ADAS Platforms Featuring
Shared Memory Hierarchies,” in IEEE Design & Test, vol. 39, no. 1,
pp. 35-41, Feb. 2022, doi: 10.1109/MDAT.2020.3013828.

[12] SAE International, ”Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems”, [Online], Available:
https://www.sae.org/standards/content/

	I Introduction
	II Related Work and Architecture
	II-A Related Work
	II-B Architectural Challenges and Considerations
	II-C The Domain Specific Memory Architecture

	III Implementation, Results and Correlations with the Architecture
	III-A Simulation Results
	III-B Physical Design Results

	IV Conclusion
	References

