
Adaptive Query Routing on Distributed Context - The COSINE Framework ∗

Lukasz Juszczyk, Harald Psaier, Atif Manzoor, Schahram Dustdar
Distributed Systems Group, Information Systems Institute

Vienna University of Technology, Austria
{juszczyk,hpsaier,manzoor,dustdar}@infosys.tuwien.ac.at

Abstract

Context-awareness has become a desired key feature of
today’s mobile systems, yet, its realization still remains a
challenge. On the one hand, mobile computing provides
great potential for adaptations based on sensed contextual
information. On the other hand, the lack of dependability
in mobile networks hampers an efficient provision of this
information to requesting clients. In this paper we present
COSINE, a context management framework for mobile en-
vironments. COSINE has been developed on the principles
of peer-to-peer computing and establishes context sharing
infrastructures consisting of loosely coupled Web services.
The services represent modular entities of the applied con-
text model and manage the retrieval, aggregation, query,
and provision of context data. Clients access the distributed
information transparently via proxies and a self-adaptive
routing of queries provides increased fault-tolerance, which
is essential in mobile environments.

1 Introduction
Since context-awareness was introduced by Schilit et

al. in 1994 [16], it has been regarded as a key feature of sys-
tems operating in dynamic environments. Today, this com-
prises domains such as domotics [13], collaborative work-
ing environments [8], and many more [3] of which most
fall into the category of mobile and pervasive computing. A
particularly challenging domain is the support of emergency
teams that operate directly in the fields of disaster and are
being coordinated via portable computing devices capable
of wireless communication [5, 14]. In these teams, human
operators execute response processes in which maximum
effectiveness is of paramount importance, as it affects the
number of saved lives after natural disasters. Without doubt,
the execution of the processes can be significantly improved
by having up-to-date knowledge about the status of entities
within the crisis situation, such as human operators, vic-

∗This work is partially supported by the European Union through the
STREP Projects inContext (FP6-034718) and WORKPAD (FP6-034749).

tims, and infrastructure objects. Though, the unstable char-
acteristics of the established mobile ad-hoc networks make
it difficult to share this knowledge in a dependable manner.
Generally, disconnections and packet loss pose challenges
to any distributed system. However, these issues have a se-
vere impact on emergency response systems as the insta-
bility hampers the provision of important context informa-
tion and, therefore, hampers the execution of the response
processes. Such problems originating from the underlying
network cannot be fully overcome at a software level, but,
there are ways to mitigate their negative effects.

In this paper we present COSINE1, a service-oriented
framework for supporting context-awareness in mobile en-
vironments. Our solution is based on dynamically estab-
lished joint context structures composed of light-weight
Web services which provide modular entities of the dis-
tributed context data. The main contribution of COSINE is
the flexible handling of network dynamics and a transparent
dispatching of client requests to the services, which allows
to compensate temporal unavailabilities of context sources
by re-routing requests to replicating substitutes.

This paper is structured as follows. In Section 2 we il-
lustrate the motivation for our work. Section 3 explains the
concepts of COSINE. Section 4 deals with the open-source
prototype and the results of our experiments. In Sections 5
we compare our framework to existing works and we con-
clude this paper in Section 6.

2 Motivation
COSINE has been developed in the scope of the WORK-

PAD project [5] which deals with building an adaptive soft-
ware infrastructure for supporting collaborative work of
emergency teams. WORKPAD combines a back-end peer-
to-peer (P2P) community of inter-organizational hosts, pro-
viding advanced services for knowledge integration, with a
mobile front-end P2P community of operators working in
the fields of disasters. In the front-end, the operators es-
tablish mobile ad-hoc networks (MANETs) and execute re-
sponse processes which are coordinated in an adaptive man-

1COntext Sharing In uNreliable Environments

ner. The adaptivity is achieved by monitoring execution
states of the processes, by correlating them with dynamic
context data, and by taking action in case of deviations [7].
Apart from this automated self-adaptivity, context data is
used to support the workers by displaying the current situa-
tion (e.g., annotated objects in areas, location of team mem-
bers) on maps at their GIS clients [12]. In both cases, the
client application subscribes to relevant parts of the context
model and is notified when context data changes.

Evidently, context-awareness is of high importance for
a disaster response system like WORKPAD. However, it
is difficult to achieve if one considers the dynamics of
MANETs [17]. The main problem is that distribution of
context data automatically implies that parts of the shared
data will be inaccessible if their hosting devices become
unavailable (of course, unless the share is fully replicated
which is, however, not feasible due to bandwidth con-
straints). As a consequence, WORKPAD requires the con-
text management system to cope with a volatile availability
of participants and, in addition, to detect changes in the en-
vironment quickly and to compensate failures, if possible.
Hence, the concepts of COSINE have been designed to ful-
fill the requirements in distributed context sharing with the
restrictions of MANETs. Usually, the requirements differ
significantly depending on the area of application, however,
for COSINE we have identified these:

• Context model-independence: The system must be cus-
tomizable to various application domains.

• Subscription & notification: In addition to querying, the
system must support subscription and notification.

• Context freshness: Context data must be propagated
quickly to requesting clients.

• Decentralization: A decentralized peer-to-peer ap-
proach is required, avoiding single points of failure.

• Location-transparency: Access to distributed context
must be transparent and the system must take care of
locating proper context sources.

• Fault-tolerance: A volatile availability of nodes must
not harm the operation of the context system.

3 COSINE
The COSINE framework provides a basis for context-

awareness in small to medium-scale mobile environments.
This comprises the storage and provision of XML con-
text data to peers, a modeling of the share’s structure in
XSD, and access to the distributed context data via the
XPath language. Moreover the framework provides a flexi-
ble handling of network dynamics, grounded on (a) decou-
pled service-oriented communication, (b) a flexible estab-
lishment P2P-based context structures, and (c) an adaptive
routing of query requests, which can compensate temporal
unavailability of context sources.

3.1 Service-oriented Context Sharing

Service-orientation provides various advantages to dis-
tributed systems which require high flexibility. The most
outstanding feature is the loose coupling between services
and clients, which reduces dependencies and allows clients
to bind dynamically to the ”best” service among equiva-
lent ones. This flexibility is especially useful in dynamic
environments where participants can appear and disappear
at any time and, therefore, dependencies must be kept low.
COSINE makes advantage of this to achieve tolerance on
a volatile availability of context providers and to be able to
invoke substitute services which provide replicated context.

For supporting these features, we have developed RES-
CUE [11], a service-oriented middleware for MANETs. In
RESCUE, nodes advertise their services and listen to ad-
vertisement messages of other peers. Knowledge about
the environment is stored and contains published descrip-
tions about all discovered services. Client applications can
search for services by either querying the database or by
placing subscriptions to be notified when matching services
become available or unavailable. Due to the active adver-
tisement protocol, the middleware can notify clients almost
immediately after the appearing of a service in the network.
Eventually, remote services can be invoked via persisted
asynchronous messages. In [11] we presented an evalua-
tion which stated that, due to an efficient discovery protocol,
RESCUE can usually detect changes in the environment in
less than 2 seconds while keeping network traffic low.

COSINE derives a significant part of its flexibility from
the RESCUE middleware. This comprises (a) increased
scalability, due to a light-weight and incremental discov-
ery protocol, (b) up-to-date awareness about services in the
environment, due to quick notifications, (c) increased com-
munication reliability, due to optimized invocations, and (d)
interoperability, due to SOAP Web service interfaces.

3.1.1 COSINE Web services

In COSINE, joint context shares are established by discov-
ering context services in the network, analyzing the type of
context data they provide, and incorporating them dynami-
cally into the structures of the shares. The type analysis is
performed by checking the service’s published descriptions
and interfaces. From the descriptions, the system deter-
mines the type of context data and the service’s designated
position inside the share’s structure (explained in the next
section). By checking which interfaces are provided by the
service, COSINE knows which interaction types it supports.
In general, services can be context providers, context con-
sumers, or both, as illustrated in Figure 1. At the provider
side, the sensor can support querying and subscription. At
the consumer side, context data can be updated directly or
come as a notification to a performed subscription. With
COSINE, we provide 3 basic types of services:

2

Sensor Service: Retrieves context data, such as GPS coor-
dinates or user generated data, from a (virtual) sensor
and provides it via a Web service interface.

Aggregator Service: Apart from sensor data extraction, this
type of service handles the aggregation of context into a
higher level structure, in order to support queries which
correlate multiple types of data. It analyzes the model
description to determine which context should be aggre-
gated and retrieves it from the providing services.

Context Management Service: The CMS keeps track of the
availability of context services. However, it does not
collect data but merely acts as a proxy, routing requests
to proper services. For this, it maintains an up-to-date
view on the context structure and compares it with the
used model. The CMS is running on every COSINE in-
stance and provides transparent access to the distributed
context share, hiding all complexity.

These services constitute the grounding of COSINE by pro-
viding basic functionality for managing and accessing con-
text data. The sensor and aggregator services are provided
as abstract classes which can extended with customized
functionality. It is possible to extend the infrastructure with
additional types of services which, however, must imple-
ment the corresponding Web service interfaces.

3.2 Establishment of a Modular Context Share

COSINE must cope with a volatile availability of nodes,
must detect changes quickly, and must incorporate new
context services to and remove unavailable ones from the
share’s structure. The maintenance of the structure re-
quires the knowledge of the relationships between the con-
text types, which is referred to as a context model. As out-
lined in [4], numerous context models have been proposed,
ranging from primitive ones, e.g., based on name-value tu-
ples, to highly expressive but complex ones, e.g., based on
ontologies. However, as COSINE was required to be built
upon well-accepted standards, it was obvious to model the
context structure in XSD and to represent the shared data
as a (virtual) XML document which can be queried with
XPath. Even though this implies restricted reasoning ca-
pabilities, compared to more sophisticated models, such as
ontology-based ones, we followed the directive of keeping
things simple and we underline the convenience for devel-
opers of using XML-based standards with rich tool support.

The context model itself consists of definitions of con-
text types. Relationships between them are specified either
directly via the tree structure of XML (parent-child relation)
or via references inside the context data. For identification,
each context type has a contextID element and the follow-
ing snippet shows a simple instance of a worker’s contextID.
It contains the UUID of the service providing the worker’s
context and of its parent in the hierarchy, which might be a
team context service aggregating its workers’ context.

M
on

ito
re

d
O

bj
ec

ts
M

on
ito

re
d

O
bj

ec
ts

 Context Aggregator Web Service

Context
Store

Subscription
HandlerSubscription

Client
Model

Analyzer

 Web Service Middleware
Discovery Advertisment Provision

Sensor Web Service

Query
Handler

Subscription
Handler

Context
Store

Context
Extractor

Web Service Middleware
Advertisment Provision

 Context Management Web Service

Model
Analyzer

Subscription
Handler

Router
Module

Context
Tree

Analyzer

Subscription
Client

 Web Service Middleware
Discovery Advertisment Provision

Query
Handler

Query
Handler

Query
Client

Context flow

Module usage

Client for invoking other services

Context
Aggregator

Context
Extractor

M
on

ito
re

d
O

bj
ec

ts

M
on

ito
r

ed
O

bj
ec

ts

M
on

ito
r

ed
O

bj
ec

ts
G

U
Is

Context Update
WS Interface

Context Query
WS Interface

Context Subscription
WS Interface

Context Notification
(Subscription Callback)

WS Interface

Figure 1: COSINE Web Services

<con t e x t ID f i r s tName ="Joe" l a s tName="thePlumber" . . .
uu id ="bc97a9f0-84..." be longsTo="b63ceca0-84..." />

During the initialization of a context service, which pro-
vides context data of a specific type, COSINE analyzes an-
notations inside the type definition and populates the con-
textID fields accordingly. For example, a model designer
can make COSINE auto-generate values, such as UUIDs,
or he/she can force the user to enter data manually (e.g., his
name). Furthermore, he/she can instruct COSINE to set up
relationships automatically, e.g., binding a GPS sensor ser-
vice to the local worker service, or let the user choose, for
instance if a worker must be bound to one of the detected
team services in the network. Eventually, the initialized ser-
vice publishes its description, including the contextID field,
via the RESCUE middleware and this way announces its

3

presence and the type of provided context data. These an-
nouncements are monitored and analyzed by all remote CO-
SINE instances and their consumer services.

The aggregator services process them as illustrated in the
following algorithm. If the announced service is verified to
be a designated child of it, the aggregator starts retrieving
its context data and merging it into its own model. (Due to
space constraints we have omitted the merging algorithm.)

NEWCONTEXTSERVICEDETECTED @ AGGREGATOR(service)
1 belongsTo← service.getContextID().getBelongsTo()
2 if ctxModel.isChildOf(service, this) and
3 belongsTo = this.getUUID()
4 then if service.supportsSubscription()
5 then subscriptionClient.subscribe(service)
6 else if service.supportsQuery()
7 then queryClient.retrieve(service)

In contrast to the aggregator services, the CMS only ob-
serves the environment and maintains an view on the share,
in order to know whereto route incoming requests.

NEWCONTEXTSERVICEDETECTED @ CMS(service)
1 belongsTo← service.getContextID().getBelongsTo()
2 parent← ctxTree.lookupUUID(belongsTo)
3 if parent �= null
4 then if ctxModel.isChildOf(service, parent)
5 then appendChild(parent, service)
6 else orphanList.add(service)
7 orphans← orphanList.getBelongingTo(service)
8 for each o in orphans
9 do if ctxModel.isChildOf(service, parent)

10 then appendChild(service, o)
11 orphanList.remove(o)

By applying these algorithms, COSINE establishes dis-
tributed structures, such as the one shown in Figure 2(a)
in which links symbolize context aggregation and the CMS
acts as a proxy for requests. The flexibility of this approach
becomes evident if one considers the ability of the RESCUE
middleware to detect changes in the network almost at real-
time [11], which allows COSINE to react quickly to failures
by adapting routes of requests.

3.3 Adaptive Query Routing

The usage of aggregator services has also a positive ef-
fect on the availability of data, as retrieved context is auto-
matically replicated at the aggregators. This makes it pos-
sible to access desired context, even in case of unavailabil-
ity of the original source. For providing this feature, CO-
SINE expects clients to direct requests (query, subscription)
to the local CMS instance which has an up-to-date view
on the current structure of the context share and, in combi-
nation with the knowledge of the context model, knows to
which services it can dispatch the request. Furthermore, due
to acting as a proxy and being able to analyze the context

Worker’s Device

WorkerDevice
Battery

Location

Object

Victim

Worker’s Device

WorkerDevice
Battery

Location

Victim

C
M
S

Leader’s Device

LeaderDevice

Battery

Location
Team

AreaTask
C
M
S

C
M
S

Sensor
Web Service

Aggregator
Web Service

User-input
Web Service

(a) Initial routing on context tree

Worker’s Device

WorkerDevice
Battery

Location

Object

Victim

Worker’s Device

WorkerDevice
Battery

Location

Victim

C
M
S

C
M
S

(b) Adapted routing after disconnection of leader

Figure 2: Dynamic routing of requests

flow, the CMS uses pluggable rating modules for calculat-
ing the quality of the services, in order to optimize the dis-
patching, e.g., by preferring close-by nodes or ones which
deliver context data of higher freshness. For every incom-
ing request, the CMS creates a set of possible routings (di-
rect context providers for requested data and their aggre-
gating/replicating services), selects the best rated one, and
dispatches the request to the services.

INITIALROUTING(request)
1 routes← getDirectSrc(ctxTree, ctxModel, request)
2 routes.add(getAggregators(ctxTree,ctxModel, routes))
3 for each r in routes
4 do for each s in r.serviceSet
5 do for each p in ratingP lugins
6 do r.costs← r.costs + p.getCosts(s)
7 best← routingWithMinCosts(routings)
8 for each s in best.serviceSet
9 do query ← transformQueryString(request,s)

10 if request.isSubscription()
11 then subscriptionClient.subscribe(s, query)
12 else queryClient.retrieve(s, query)
13 forwardResponsesTo(request.client)

In case of a change in the context structure (relevant con-
text services appear or old ones disappear), the algorithm is

4

rerun, in order to determine if a different route is required,
and the dispatching of the request is adapted, if needed.

The following scenario demonstrates a re-routing of a re-
quest caused by changes in the environment. In Figure 2(a),
a client on the first worker’s device initiates a subscrip-
tion about the location of all medics via the XPath request
’/Team[contextID/@teamName=’Medics’]/Worker//
Location’. The CMS analyzes the string for referenced
context types and determines which currently available
provider services are able to process this request. By
correlating potential sources with their ratings, the CMS
decides to route the subscription to the Team service of
the leader, which has all location data aggregated and con-
tinuously updated. Additionally, it forwards all incoming
notifications back to the requesting client. Yet, shortly after,
a connection loss of the leader makes all his/her services
unavailable (see Figure 2(b)), which is detected by the
CMS. The CMS analyzes the new structure of the share and
decides to split the request and to route it to the Location
sensor services of the individual workers, which are known
to belong to the desired team. Consequently, it transforms
the XPath request to ’/Location’, subscribes with it at
the Location services of the workers, and forwards the
notifications again to the client. The client is kept unaware
of the performed re-routing to substitute services, as the
adaptation is performed transparently.

4 Prototype and First Experiments

The COSINE prototype has been developed for Java ME
and it reuses several open-source libraries for XML process-
ing and SOAP communication. We believe that our frame-
work will be also useful outside the scope of the WORK-
PAD project and, therefore, we have released the prototype
under the GNU Lesser General Public License and provide
it at our Web site [2].

For the first evaluation of COSINE, we have concen-
trated on measuring the average freshness of context data
(how much time elapses until new context is propagated to
a requesting client) depending on network dynamics. In
general, the freshness depends on the connectivity of the
participants and on how context is propagated. The effect
of connectivity is obvious as disconnections cause delays.
However, the propagation strategy is subject to trade-offs.
On the one hand, notifications should be sent out immedi-
ately to achieve an optimal freshness, which, on the other
hand, causes message showers and high network traffic. In
our current approach, we handle this problem by adapting
notification intervals depending on the sensor activity and
combine multiple notifications into single messages.

In our experiments we simulated a MANET of workers
performing random movements which affected the overall
connectivity among them. We specified the field size, the
workers wireless range, and speed and direction of their

0%

20%

40%

60%

80%

100%

60 80 100 120 140 160 180 200

Field Size

C
o

n
n

ec
ti

vi
ty

0
0,2
0,4
0,6
0,8
1
1,2
1,4

R
e-

ro
u

ti
n

g
 F

re
q

.

Avg Connectivity (%)
Re-routing Frequency (per min)

(a) Re-routing frequency and connectivity depending on field size

0
10
20
30
40
50
60
70

10%20%30%40%50%60%70%80%90%100%

Connectivity

N
o

ti
fi

ca
ti

o
n

 D
el

ay

0
0,2
0,4
0,6
0,8

1
1,2
1,4

R
e-

ro
u

ti
n

g
 F

re
q

.

Notification Delay (seconds)
Re-routing Frequency (per min)

(b) Notification delay and re-routing freq. depending on connectivity

Figure 3: Experiment Results

movements. A connection between two worker’s devices
was regarded as established if they were either within di-
rect wireless range or were interconnected via forwarding
nodes. On top on this testbed, we set up a small-scale en-
vironment of 5 workers establishing an extended version
of the share depicted in Figure 2(a) and placed subscrip-
tions about their locations. Each round was conducted with
a fixed wireless range (50m) but with a different field size
(60-200m) in order to achieve a varying connectivity among
the workers.The CMS routed the requests either to the Lo-
cation sensors of the workers and/or to the Team service
which was aggregating the worker’s context.

Figure 3(a) shows the effect of a growing field size on
the connectivity and, consequently, on the frequency (per
minute) of necessary re-routings of the subscriptions. Ob-
viously, the connectivity was shrinking because the work-
ers had more space to move and more likely lost connec-
tions. However, regarding the frequency of re-routings,
which were performed to pick the best-rated context sources
among the available ones, it becomes well visible that it fol-
lowed a gamma distribution. This is due to the fact that
a wider field reduces continuously the frequency of other
workers joining ones connectivity range and, therefore, re-
duces the number of options to choose from. Figure 3(b),
on the other hand, illustrates the results directly from the
perspective of a decreasing connectivity. In this case, the
re-routing frequency follows a beta distribution, as adapta-
tions are not necessary on 100% (perfect availability) and
not possible on 0% connectivity (isolation). Moreover, the
notification delay follows an exponential distribution, due
to the lowering probability of finding context sources at all.

Altogether, we want to point out the low notification de-

5

lay (high freshness). We believe that a delay of less than 5
seconds for networks with an average connectivity of 40%
is a good result. This is mainly achieved due to the quick
change notifications from the RESCUE middleware and the
failure-compensating routing mechanism of COSINE. De-
tailed scalability tests, determining the limits of the CO-
SINE approach, will be subject to future evaluations.

5 Related Work

Various middleware projects, such as the Context Toolkit
[15], RCSM [18], and SOCAM [9] have been developed
for supporting context-aware applications. Similar to CO-
SINE, they manage sensor access through APIs, support
distributed sharing of context data, and reasoning on this
data. However, they use centralized discovery facilities for
finding context sources. This approach is acceptable in en-
vironments, such as smart homes, which are rather static,
however, is not reasonable in MANETs.

The CORTEX project [1] deals with co-operating mobile
context-aware software components, called sentient objects.
For this purpose a middleware was developed, which han-
dles flexibly the retrieval and fusion of context data from
surrounding sensors. In contrast to COSINE, the middle-
ware does not provide any means for compensating failures
caused by a volatile availability of context sources.

Solar [6] is a sophisticated context management infras-
tructure for pervasive environments. It establishes P2P
structures based on distributed hash tables and uses super
peers for managing groups of context providers. Similar
to COSINE, it supports aggregation, subscription, and dis-
patching of requests. Solar’s focus lies on scalability, which
is a in important aspect, however, the authors claim that sys-
tem is not suited to dynamic environments.

The last related project is the PACE middleware [10] pro-
viding context aggregation, quality of context evaluation,
and a simpler form of fault-tolerance relying on flexible dis-
covery of context sources and a loose coupling among the
components. COSINE, however, provides additional redun-
dancy of context sources and due to the adaptive routing of
requests is able to compensate faults to some extent.

6 Conclusion

In this paper we have presented the concepts of COSINE,
a context sharing framework for mobile environments. Our
work has been focused on handling challenges inherent in
mobile communication and on providing a higher level of
reliability to distributed context sharing. We have mitigated
the impacts of volatile dependability inside MANETs by
using decoupled service-oriented computing, by establish-
ing flexible peer-to-peer structures of context providers, and
by applying a self-adaptive routing of requests for compen-
sating faults. In spite of the complex management of such
infrastructures, COSINE allows a convenient usage of its

features by hiding all complexity from the clients and by
providing transparent access to the distributed context data.

References
[1] CORTEX Web site. http://cortex.di.fc.ul.pt.
[2] COSINE Prototype Web site. http://www.infosys.

tuwien.ac.at/prototypes/cosine.
[3] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on

context-aware systems. IJAHUC, 2(4):263–277, 2007.
[4] C. Bolchini, C. Curino, E. Quintarelli, F. A. Schreiber, and

L. Tanca. A data-oriented survey of context models. SIG-
MOD Record, 36(4):19–26, 2007.

[5] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, G. Vet-
ere, B. Salvatore, Dustdar, L. Juszczyk, A. Manzoor, and H.-
L. Truong. Pervasive software environments for supporting
disaster responses. IEEE Internet Computing, 12(1):26–37,
2008.

[6] G. Chen, M. Li, and D. Kotz. Data-centric middleware for
context-aware pervasive computing. Pervasive and Mobile
Computing, 4(2):216–253, April 2008.

[7] M. de Leoni, M. Mecella, and G. D. Giacomo. Highly dy-
namic adaptation in process management systems through
execution monitoring. In BPM, volume 4714 of LNCS,
pages 182–197. Springer, 2007.

[8] D. Ejigu, V.-M. Scuturici, and L. Brunie. Coca: A collabo-
rative context-aware service platform for pervasive comput-
ing. In ITNG, pages 297–302. IEEE, 2007.

[9] T. Gu, H. K. Pung, and D. Zhang. A service-oriented mid-
dleware for building context-aware services. J. Network and
Computer Applications, 28(1):1–18, 2005.

[10] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubra-
maniam. Middleware for distributed context-aware systems.
In OTM, volume 3760 of LNCS, pages 846–863. Springer,
2005.

[11] L. Juszczyk and S. Dustdar. A middleware for service-
oriented communication in mobile disaster response envi-
ronments. In MPAC, pages 37–42. ACM, 2008.

[12] A. Marrella, R. Russo, A. Capata, M. Bortenschlager, and
H. Rieser. A geo-based application for the management of
mobile agents during crisis situations. In ISCRAM, 2008.

[13] F. Mastrogiovanni, A. Scalmato, A. Sgorbissa, and R. Zac-
caria. An integrated approach to context specification and
recognition in smart homes. In ICOST, volume 5120 of
LNCS, pages 26–33. Springer, 2008.

[14] M. Portmann and A. A. Pirzada. Wireless mesh networks
for public safety and crisis management applications. IEEE
Internet Computing, 12(1):18–25, 2008.

[15] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit:
Aiding the development of context-enabled applications. In
CHI, pages 434–441, 1999.

[16] B. Schilit, N. Adams, and R. Want. Context-aware comput-
ing applications. In Workshop on Mobile Computing Sys-
tems and Applications, pages 85–90. IEEE, 1994.

[17] A. P. Snow, U. Varshney, and A. D. Malloy. Reliability and
survivability of wireless and mobile networks. IEEE Com-
puter, 33(7):49–55, 2000.

[18] S. S. Yau, D. Huang, H. Gong, and S. Seth. Development
and runtime support for situation-aware application soft-
ware in ubiquitous computing environments. In COMPSAC,
pages 452–457. IEEE, 2004.

6

