
ProvidentHider: an Algorithm to Preserve Historical k-Anonymity in LBS

Sergio Mascetti Claudio Bettini
DICo

Università di Milano

X. Sean Wang
Department of CS

University of Vermont

Dario Freni
DICo

Università di Milano

Sushil Jajodia
CSIS

George Mason University

Abstract

One of the privacy threats recognized in the use of LBS is
represented by an adversary having information about the
presence of individuals in certain locations, and using this
information together with an (anonymous) LBS request to
re-identify the issuer of the request associating her to the
requested service. Several papers have proposed techniques
to prevent this, assuming that the use of the service is
considered sensitive. In this paper we investigate the more
general case in which the adversary is also able to recognize
traces of LBS requests by the same anonymous user, so
that the identification of the issuer of one request can lead
to the disclosure of the same user being in other possibly
sensitive locations at different times or using sensitive ser-
vices. Using the notion of “historical k-anonymity”, this
paper provides the first formalization of this class of privacy
threats. Through extensive experiments based on realistic
simulations, and runs of an optimal algorithm, we show
some negative results for the defenses based on spatial
generalization against these attacks under very conserva-
tive assumptions. Under more realistic location knowledge
assumptions, we propose two defense algorithms, based on
a strategy of changing and reusing of pseudo-identifiers,
whose correctness is formally proved. Our experiments show
that, among all the proposed algorithms, the ProvidentHider
algorithm is particularly effective in protecting privacy for
reasonably long sequences of requests.

1. Introduction

Location-based services (LBS) are foreseen to become
very popular, but studies indicate that many potential users
have serious concerns about the involved privacy threats.
These threats are due to the potential acquisition of LBS
requests by untrusted parties that may use the request data in
conjunction with external information to violate the privacy
of users. The location of the user and the current time,
contained in each LBS request, may play a different role
in different types of threats: a) privacy violations may
occur when an individual identity is associated with specific
location data which is considered sensitive, and b) privacy
violations may occur when location data, despite not being
sensitive, may be used, jointly with external information, to

identify an individual, hence revealing the specific service
being requested by that individual, which in this case is the
sensitive information. In case a) the identity of the user is
either considered explicitly given or possibly derivable, and
defense techniques are based on obfuscating the location
information (see e.g., [14]). In case b) the defenses are based
on anonymization techniques, which do not obfuscate the
sensitive information, but usually generalize quasi-identifier
values, including location, so that the group of potential
issuers has a given minimum cardinality [4], [8], [10], [11].

Most approaches have considered threats a) and b) only
in the snapshot case, i.e., when the attack is based on the
requests issued at the current time. In this paper we consider
threats of type b), but in the more realistic situation in which
the adversary may understand that a set of requests is issued
by the same (albeit anonymous) user. We call this historical
attack, since it involves the consideration of sequences of
requests issued at different times in the past. An adversary
may adopt a number of techniques to understand that two
or more requests are sent by the same user. For example,
if the requests are sent close in time, a form of spatio-
temporal reasoning may be effective to associate the requests
to the same user [1], [7]. Moreover, for accounting and/or
service personalization, a user request may contain a pseudo-
identifier (PID), analogous to cookies in traditional Internet
services. In this case, if an adversary obtains two requests
with the same PID, he can conclude that they have been
issued by the same (anonymous) user.

In the historical attack scenario, a new class of threats
can be identified. For example, suppose that requests r1 and
r2 were recognized as being issued by the same anonymous
user, and that user u happens to be identified as the issuer of
request r1; then, even if u may not be concerned about the
release of parameters in r1, the adversary is able to conclude
that u was in the location contained in r2 and that it was u
to request the specific service in r2. As first observed in [2],
this threat is not avoided by applying to r1 and r2, separately,
the defense techniques proposed for snapshot attacks.

A solution to historical attacks may be the use of recently
proposed privacy information retrieval techniques [5], since
by encrypting the location data, the adversary cannot exploit
background location knowledge. However, these techniques
still need to be extended to LBS based on queries other
than k-nn and more importantly there are several concerns

about their efficiency in real environments, especially when
moving resources are involved.

The use of spatio-temporal generalization functions to
defend from historical attacks has been first proposed in
[2], by considering specific patterns of locations as quasi-
identifiers, and generalizing the current request’s location in
order to preserve historical k-anonymity. A similar strategy,
considering single locations as quasi-identifiers, and progres-
sively applying spatial generalizations has been proposed in
[3] and [13]. The work in [3] also aims at preventing the
“outlier problem” arising when the generalization function
is assumed to be secret while it is actually known by the
adversary [10]. Since attacks and defenses are not suffi-
ciently formalized, it is unclear which privacy guarantees are
actually provided by the proposed technique. In particular,
since a user belonging to an anonymity set, can disappear
from the same set in subsequent generalizations of requests
by the same issuer, the solution does not seem to provide
anonymity under the assumptions considered in our paper.
The work in [13] proposes two generalization algorithms.
The first one, called plainKAA is a simple greedy algorithm
following a spatial generalization strategy analogous to the
one presented in [2]. However, as opposed to the algorithms
we propose in this paper, this defense may fail when the
generalization function is known to the adversary. The
second one is an optimization of the first, based on the
idea that, in the generalization of the requests, the users
that were not in the anonymity set of a previous request can
contribute to anonymity protection. It is unclear to us if this
optimization can really preserve anonymity.

More generally, the main problem with the illustrated
related work is the lack of a formal model of the prob-
lem which makes it difficult to evaluate the correctness
of proposed solutions. This paper provides such a model,
and captures a more general class of attacks than the ones
previously considered. Indeed, in most related work on
anonymity in LBS (case b), it is implicitly or explicitly
assumed as a worst case that the adversary may have
complete location knowledge, i.e., in order to be safe in
the occasional situation in which the adversary knows about
the presence of a user in a location, it is assumed he always
may acquire from external sources the identities of users
in a given location. Clearly, in many scenarios, and for
certain types of adversaries, this assumption is excessively
conservative. For example, there are locations, as crowded
places in a city, public event locations, or busy streets for
which it is highly unlikely that all users can be identified
together with their precise position.

A more realistic assumption is for the adversary to have
partial location information like in the scenario described
and considered in a recent paper [12], in which the adversary
has background location knowledge about individuals only
in certain places (in that case shops where users make
purchases with the same identifying card). In order to model

this scenario we assume that the overall space can be
partitioned into areas where users are considered visible and
areas where they are considered not visible. This partitioning
can be based on very different considerations, including
statistical data and users’ input, and may be tuned to be
more or less conservative. Note that the very conservative
assumption used in most related work is captured in this
model as the partitioning considering the whole space as
visible.

With respect to considering partial location knowledge,
the recent work on trajectory anonymization [12] is the
most related; however, that work considers a given historical
sequence of locations for each individual and provides a
technique based on the suppression to publish the data,
preserving the anonymity even in the presence of partial
location knowledge. Our algorithm can be seen as doing a
similar task but using data generalization instead of suppres-
sion, and in an online way, i.e., by anonymizing each request
(like a point of the trajectory) as soon as it is produced. This
is clearly a more difficult task.

The major contributions of this paper are the following:
a) It presents the first formalization of historical attacks

and defenses under partial location knowledge;
b) By developing an optimal (yet impractical) algorithm,

it provides experimental evidence of the difficulty of
privacy protection through spatial generalization under
complete location knowledge;

c) It presents two defense algorithms and formally proves
their correctness with respect to an adversary having
partial location knowledge. Experimental results show
that the ProvidentHider algorithm, in particular, is
effective under partial knowledge for reasonably long
sequences of requests.

The rest of the paper is organized as follows. Section 2
formally characterizes privacy attacks. Section 3 illustrate
defense techniques, and Section 4 describes our experimen-
tal setting and illustrates the results. Section 5 concludes the
paper.

2. Formal modeling of historical k-anonymity

In [10], we proposed a formal framework to model LBS
privacy attacks and defenses for the snapshot case. The main
idea is that the safety of a defense technique can be formally
evaluated only if the context, i.e., the assumptions about the
adversary’s external knowledge, is explicitly stated. In this
section we first briefly present the formal framework and
then characterize the contexts that we will consider in this
paper.

As in the majority of related work, our reference scenario
includes a location-aware trusted server (LTS) that is aware
of the actual locations of all users. The LTS acts as a
proxy that filters and generalizes each user request before
forwarding it to the service provider (SP).

Each LBS request r is logically divided into three parts:
IDdata, STdata, and SSdata, containing user identifi-
cation data, location and time of the request, and other
service parameters, respectively. In the sequel, the spatial
and temporal components in STdata are denoted with
Sdata and Tdata, respectively. The LTS transforms each
original request r into a generalized request r′ by replacing
r.IDdata with a PID (pseudo-ID) and generalizing the
spatial component r.Sdata.

To formally define the generalization function, we use
R to denote the set of all the possible original requests
issued by the users to the LTS as well as all the possible
generalized requests that the LTS would forward to the SP.
We use issuer(r) to denote the user who actually issued the
request r. Note that issuer(r) is only known by the LTS,
and r does not necessarily contain the identity of issuer(r).
We use I to denote the set of all the users. A generalization
function can be simply defined as g : R→ R, such that the
only difference between r and g(r) is in their Sdata and
furthermore r.Sdata ∈ g(r).Sdata, i.e., the spatial region
of g(r) contains that of r.

Figure 1. Three users moving around

As an illustrative example, consider the three users mov-
ing around in Figure 1. At time t1, the user u1 issues
a request. The generalization function will first replace
u1’s identity with a PID, and then enlarge the location
information of the request to be the solid-line box shown
in the figure. The reason for this enlargement of the area is
to confuse any adversary as which user (u1 or u2) actually
issued the request, thus achieving so-called 2-anonymity for
u1’s request. In this case, u1’s privacy is protected at t1
by using an “anonymity set” of size 2 for the request. Two
questions arise: (1) What is the definition of anonymity set
for a generalized request? (2) How much privacy protection
does an anonymity set provide?

To answer these two questions, we have to assume the
knowledge used by the adversary. Such knowledge is called
context. Intuitively, when the adversary sees a generalized
request r′, the anonymity set for the request is the set of
users that can possibly issue the request under the specific
context C. That is,

ASC(r′) = {i ∈ I|under C, user i can possibly
issue a request that is generalized to r′}

Going back to Figure 1, we see that only u1 and u2 are
possible users to issue the request with the enlarged area
(i.e., the upper solid-line box) as we assume that the request
location is where the user actually is and is contained in
the generalized area. Obviously, ASC(r′) can be formalized
only when C is rigorously defined. In this section, we
formally define the context we consider in this paper and
the associated anonymity set.

The purpose of anonymity set is to render a request safe
from privacy breaches by fuzzifying as who actually has
issued the request. Intuitively, safety is measured by how
likely an adversary is able, in a context C, to recover the
identity of the issuer from a generalized request. For a
given generalized request r′ in R, this likelihood is formally
defined as a probabilistic distribution AttC(r′, i) over all the
individuals i ∈ I . The distribution AttC() is called an attack
under context C. An attack AttC associates with a proba-
bility a generalized request r′ to the user i = issuer(r′). If
this probability is beyond (or below, resp.) a given threshold,
then we say the request r′ is unsafe (or safe, resp.).

In some contexts, different users in ASC(r′) may have
different likelihood to issue r′ [10]. (By definition of gen-
eralization function, each user outside of ASC(r′) has 0
likelihood to be the issuer.) However, the context we study
in this paper does not provide discriminating information to
different users in ASC(r′) and hence the size of ASC(r′)
determines the degree of protection, with a greater size
providing better protection. This brings a special class of
attack, called “uniform attacks”. Formally, we say that an
attack is uniform if, for each request r′ and each pair of
users i, i′ in ASC(r′), AttC(r′, i) = AttC(r′, i′).

Under uniform attack, the size of the anonymity set
determines whether a request is safe or not. Formally, we
have,

Definition 1: Given a context C and a positive integer k,
a generalized request r′ is k-anonymous under context C if
|ASC(r′)| ≥ k.

Now given a threshold k and anonymity set ASC(r′),
the request r′ is safe if and only if ASC(r′) has at least
cardinality k.

We now formalize the situation shown in Figure 1. First of
all, as motivated in the introduction, we assume the overall
area (the area monitored by the LTS or the “world”) is
partitioned into a visible region Av and a hidden region Ah.
Intuitively, when the user i is in Av , the LTS will assume that
the adversary knows the exact location where she is, while,
when she is in Ah, the LTS assumes that the adversary only
knows she’s in Ah without any more information.1 Formally
speaking, we assume the following function, for each user

1. This model can be extended to further partitioning Ah into smaller
areas so that the adversary may know in which small area the user is in
but no other information. But this is beyond the scope of this paper.

i, is known to the adversary:

loci(t) =

{
exact location of i if i is in Av at time t

Ah otherwise

When Av is the whole area (and Ah is empty), then this
degenerates to one that assumes the adversary has the knowl-
edge of the whereabout of every user at all times. In previous
papers, we use context Cst to refer to the assumption that
Ah = ∅ and the adversary knows the loci(t) functions [10],
and this context has been explicitly or implicitly assumed
in most LBS anonymity research. When Ah 6= ∅ and the
adversary knows the loci(t) functions, we will call it context
Cpst, for partial spatiotemporal context.

The focus of this paper is on privacy defense against
request correlation. That is, we assume that the adversary
has the ability to deduce with some certainty that a set of
requests are issued by the same user. We now formalize this
situation. We say that a set of requests are linked to a request
r′, if, in a given context, it is possible for an adversary to
understand that all the requests in the set are issued by the
same user who issued r′. The ability of the adversary to link
requests is modeled through an L function that associates, to
each generalized request r′, the set of the linked generalized
requests, denoted L(r′).

In this paper we focus on sequences of requests identified
by PIDs, since this case, in addition to being of practical
interest by itself, can also be considered as a way to model
many possible techniques for correlating requests, like those
based on users’ spatio-temporal locations [6].

Indeed, we assume the adversary is only able to link each
generalized request with the requests issued with the same
PID in the past. Formally, the following linking function is
given:

Lpid(r′) = {r′′ ∈ R|r′′.IDdata = r′.IDdata}.

When both loci(t) and Lpid(r′) functions are known,
the adversary becomes more powerful than when he knows
loci(t) alone. Consider Figure 1 again. (For simplicity,
assume the area in the figure is in the visible region Av .)
When u1 issues another generalized request r′ at time
t2, the shaded box would give the request 2-anonymity if
the adversary only knows loci(t) function. However, when
Lpid(r′) is also known, this new request is linked to the
request u1 issued at t1, that is, the adversary can figure
out these two requests are issued by the same user. Now
by using loci(t1) and loci(t2), the only possible users who
may have issued first request are u1 and u2, and the only
possible users who may have issued the second request are
u1 and u3. Since the two requests must be from the same
user, the adversary can conclude that u1 is the issuer. Hence,
the shaded box does not provide 2-anonymity anymore.

Therefore, considering the history of previous requests,
we will need to revise our notion of anonymity set. Indeed,

the anonymity set for a generalized request r′ should only
include the users who could have possibly issued all the
requests that r′ is linked to. That is, the historical anonymity
set of a request r′ under context C is:

ASC(r′) = {i ∈ I|under C, user i can possibly have issued
requests that have been generalized to the requests in L(r′)}

This is a more general notion than the ASC(r′) previously
given, which can be viewed as when L(r′) = {r′} for all r′.
For simplicity, we will abuse the notation and we will mean
historical anonymity set whenever we use ASC(r′) unless
otherwise specified.

In the above example, u3 cannot have issued the first
request, while u2 cannot have issued the second request. On
the contrary, u1 has possibly issued both requests and hence
the historical anonymity set only contains u1. One way to
fix the problem shown in the above example is to generalize
the second request to the lower dashed-line box. In this
way, u2 may still possibly issue the (altered) request and
hence the historical anonymity set for the (altered) request
has two users in it, namely u1 and u2, providing historical
2-anonymity. We will discuss such a strategy in the next
section. Another way is through “unlinking”, i.e., breaking
the possibility for an adversary to track request sequences
by the same user. Unlinking methods have been proposed
in the literature to contrast specific linking techniques (see,
e.g., [1]). As we already observed, the use of PIDs can be
perceived as an abstraction to the specific linking techniques;
analogously we consider the change of the PID from one
request to another from the same user as an abstraction of
specific unlinking methods. An important consideration is
that unlinking decreases the quality of service because it
prevents the SP from providing a personalized service due
to PID changes. Therefore, it is desirable for a defense to
limit the number of PIDs used for each issuer.

There is one more assumption that is often explicitly or
implicitly assumed. That is, it is important to assume that the
adversary may know the generalization function g itself [8],
[10]. This follows a prevalent practice in security research.
As we proved in [10], many defense algorithms proposed in
the literature do not provide k-anonymity correctly if g is
also assumed. Note that to assume that the adversary knows
g is analogous to consider the “reciprocity” problem [8] and
prevents the “outlier problem” [10].

To summarize, we have the following.
Definition 2: Context CH is one in which we assume the

adversary knows the following functions: loci(t), LPID(r′),
and g(r).

When constraints are made to the three functions in CH ,
we have more restricted contexts. Two of them are:
• Context Cpst+g is CH but assuming LPID(r′) = {r′}

for all r′, i.e., no linking is possible.
• Context Cst+g is Cpst+g but assuming Ah = ∅, i.e., all

locations are visible.

Before formally presenting the historical anonymity set
under CH , we define a function o(), such that o(r′, i)
denotes the original request r (i.e., not generalized) that
could be issued by user i from loci(r′.Tdata), at the time
r′.Tdata and with service specific data r′.SSdata, i.e.,
exactly the same as for r′. In other words, o(r′, i) is a request
that is exactly the same as r′ except that the location of the
request is changed to the actual location of i at the request
time. The following is immediate:

ASCH
(r′) = {i ∈ I|∀r′′ ∈ Lpid(r′)g(o(r′′, i)) = r′′}

Now historical k-anonymity is defined as follows.
Definition 3: Given a generalized request r′ and a posi-

tive integer k, if |ASCH
(r′)| ≥ k, we say r′ is historically

k-anonymous under context CH .
The simplicity of the above definition hides rather com-

plex details. Indeed, the specification of the anonymity set
for a given request depends on the generalization function g.
In this paper we use generalization functions with a specific
property named segregation: A segregated generalization
function (1) does not generalize (i.e., leave intact) any re-
quest that is issued from a hidden location, and (2) computes
the generalization of the requests issued from a visible
location only considering the locations of the other visible
users. The rational for this special family is the following:
If a user’s location is not known to the adversary (i.e., it
is hidden), then we will assume that any adversary cannot
tell her apart from other hidden users (at the time), and
the generalization of her requests does not usually help to
significantly increase the size of the anonymity set. Here, we
are tacitly assuming that there are many more hidden users
than visible users at any given time, as we believe this is a
realistic assumption.

Operation (2) above may appear unintuitive. Why do we
only consider other visible users? This is to avoid a possible
problem that we call “inversion attack”. Indeed, consider the
following example. Let r′ be a generalized request issued
from user u1 that is issued from a visible position. Assume
the generalized region of r′ includes the location of only
one other user, say u2, to provide 2-anonymity. Assume u2

is in a hidden location, and also issues a request. Since this
u2’s request is from a hidden location, no generalization is
done (due to operation 1 above). When the adversary sees
these two requests, with the knowledge of g() function, it
is clear that request r′ is issued by a user whose location is
visible and this user is not u2. Since no other visible users
are in the generalized region of r′, r′ has to be issued by
u1.

With the above assumptions of the generalization func-
tion, we may rewrite our historical anonymity set as fol-
lows. Let r′ be a generalized request, and g a segregated
generalization function. The historical anonymity set of r′

in context CH is:

ASCH
(r′) = {i ∈ I|∀r′′ ∈ Lpid(r′)

((r′′.Sdata ∈ Ah ∧ loci(r′′.Tdata) ∈ Ah) ∨
(r′′.Sdata 6∈ Ah ∧ g(o(r′′, i)) = r′′))}.

Intuitively, under context CH , since we assume segregated
generalization functions, the anonymity set of a generalized
request r′ is given in two cases when considering all the
past request r′′ that are linked to r′: (1) if the location of
the issuing user was hidden at the time when her request r′′

was issued, then everyone in the anonymity set must also
be hidden at the same time. (2) if the location of the issuing
user was visible at the time when her request r′′ was issued,
then everyone in the anonymity set must be visible at the
same time and everyone could have issued a request that
generalizes r′′ with generalization function g.

3. Defense algorithms

In this section we describe two generalization algorithms
we developed to protect historical k-anonymity. To evaluate
the correctness of the proposed solutions, we formally define
what we mean by a defense algorithm.

Definition 4: An algorithm is a defense algorithm in a
context CH if, for each original LBS request and anonymity
threshold k provided as input, it returns as output either a
request r′ that is historically k-anonymous under that context
or the value null.

An important parameter in the evaluation of the general-
ization algorithms is the size of the generalized areas. Since
an LBS request may become useless if the generalized area
is too large, we introduce a new parameter, called Pmax,
that indicates the maximum perimeter that the generalized
area can have. The algorithms presented in this section are
designed to always generate requests with perimeter not
larger than Pmax. When it is not possible to generalize a
request into a historically k-anonymous one with perimeter
not larger than Pmax and the same PID of a previous
request, unlinking is performed. If the generalized request
has perimeter larger than Pmax, even after unlinking, then
our choice is to suppress the original request. In terms of
user interface this may imply the notification to the issuer
that the required level of privacy cannot be guaranteed.

3.1. A structured approach

As illustrated in Figure 2, the generalization algorithms
we propose are logically structured into procedures such
that each one provides protection against a different piece
of adversary’s knowledge. We say that the procedures that
provide protection against the same piece of adversary
knowledge belong to the same level. The overall idea is that
adversary’s knowledge can restrict the set of possible issuers
of the request. Then, starting from the set I of all users, one

procedure for each level restricts the set of possible users.
At the third level the generalized request can be eventually
generated.

Procedure:
HistoryHider

Procedure:
SnapshotPST

Procedure:
Grid

Procedure:
ProvidentPartition

I r'

AS r'

AS
r' r'

AS

Level 1

Level 2

Level 3

Defense Algorithm:
GreedyHider

Defense Algorithm:
ProvidentHider

Figure 2. Three-levels logical structure of the general-
ization algorithm.

At the first level, the problem of request linking is
addressed. We propose the procedure HistoryHider that pro-
vides to the next levels a set of user that are indistinguishable
from the issuer i if history of past requests issued by i is
considered as well as the context.

At the second level, the problem of partial knowledge
is considered. The procedure SnapshotPST distinguishes
between users that are currently in a visible location from
those that are in a hidden location and, if the issuer is in a
visible location, provides to the next level the subset of the
users received from the previous level that are visible.

The third level addresses the problem of computing the
generalization. In this case we propose two solutions: Grid
and ProvidentPartition. The former is derived from an
existing defense algorithm in context Cst+g [10] while the
latter is specifically designed to improve the performance
in the historical case in terms of the total number of PIDs
used to generalize a set of request, and the average number
of requests that a user can issue before a change of the PID
is required.

In this paper, we call GreedyHider the defense algo-
rithm in context CH that adopts HistoryHider, SnapshotPST
and Grid, while we call ProvidentHider the defense al-
gorithm composed by HistoryHider, SnapshotPST and
ProvidentPartition.

3.2. Hiding history of past request

Procedure 1 shows the pseudo code for the HistoryHider
procedure. The input is an original request r that is to
be generalized, the set R′ of generalized requests already
issued by issuer(r), the anonymity parameter k and the

value Pmax. The output is a generalized request r′ that
is historical k-anonymous and that has perimeter of the
generalized region not larger than Pmax if the procedure
can find one, null otherwise.

HistoryHider first tries to use a PID that has already been
used in previous requests (Lines 2 to 10). To this aim, for
each pid used in any of the requests in R′, the procedure
computes the last, in temporal order, request rl issued with
IDdata = pid. Then, variable AS is assigned to store the
anonymity set, in context CH , of rl. In order to efficiently
compute AS, we store an anonymity set associated to each
PID. Each time a request r′ is issued, we update the value
of the anonymity set associated to r′.IDdata with the
anonymity set of r′. With this solution, the computation
of AS (Line 4) is performed by simply retrieving the
anonymity set associated to pid.

Variable AS is then used as a parameter for the second-
level procedure called SnapshotPST that searches for a
possible anonymity set to generalize r among the users
in AS. If SnapshotPST can compute a safe generalization
with perimeter not larger than Pmax, then it returns a
request, otherwise it returns null. Hence, if the result r′

of SnapshotPST is not null, then r′ is a k-anonymous
generalization of r with perimeter not larger than Pmax and
it is returned.

If a result cannot be found for any pid used in the requests
in R′, then HistoryHider creates a new PID. Function
SnapshotPST is called again using the entire set of user
I as the last parameter. Intuitively this means that, since
HistoryHider is going to unlink, then the knowledge of Lpid

will not help the adversary to restrict the set of possible
issuers and hence the entire set of users can be used. If the
result of SnapshotPST is different from null, then a new
PID is assigned to r′.IDdata and the request is returned.
Otherwise, the input request is suppressed and the algorithm
returns null.

The correctness of the procedure is proven by Theorem 1.
Theorem 1: HistoryHider is a defense algorithm in con-

text CH .

3.3. Distinguishing users in visible and hidden lo-
cations

Procedures at level two receive a set I ′ of users from
level one and have to distinguish, in this set, the users that
are in a visible location from those that are in a hidden
one. This is the main idea of the SnapshotPST procedure
(Procedure 2). The procedure takes in input an original
request r to be generalized, the anonymity parameter k,
a value Pmax and the set I ′ of users among which the
anonymity set of the generalization of r should be computed.
The output is analogous to HistoryHider.

The “segregated” approach of the algorithms we design
is implemented by this procedure. Indeed, SnapshotPST

Procedure 1 HistoryHider
Input: an original request r, a set R′ of generalized requests
issued by issuer(r), a positive integer k, a value Pmax.
Output: null or a generalized request r′ such that r′ is
historical k-anonymous and Perimeter(r′.Sdata) ≤ Pmax.
Method:

1: PIDS =
⋃

r′∈R′ r′.IDdata // PIDs of prev. reqs
2: for all (pid ∈ PIDS) do
3: rl = the last, in temporal order, request of R′ with

IDdata = pid
4: AS = ASCH

(rl)
5: r′ = SnapshotPST (r, k, Pmax, AS) // level 2
6: if (r′ 6= null) then
7: r′.IDdata = pid
8: return r′

9: end if
10: end for
11: r′ = SnapshotPST (r, k, Pmax, I) // Unlink
12: if (r′ 6= null) then
13: r′.IDdata = create a new PID
14: end if
15: return r′

generalizes the location of the requests issued from visible
locations only; If a request is issued from a hidden location,
SnapshotPST only checks if the number of users in I ′ that
are in a hidden location is smaller than k. If this is the case,
the original request is suppressed. Otherwise, the algorithm
returns the request without generalizing user location (Lines
2 to 5). On the contrary, if the request is issued from a visible
location, variable I ′′ is assigned to the set of users in I ′ that
are in a visible location. I ′′ is then used as a parameter of
the procedure that operates at the third level (Line 8). The
result of the third level procedure is then returned.

Note that, if we assume to be in the conservative case
in which every location is considered visible (i.e., Ah =
∅), the SnapshotPST procedure simply calls the third-level
procedure passing, as argument, the same set I ′ received as
input.

The correctness of the procedure is proven by Theorem 2.
Theorem 2: Let r be an original request, k a positive

integer, Pmax a value, I ′ a set of user and
r′ = SnapshotPST (r, k, Pmax, I ′). If r′ 6= null, then

|ASCpst+g
(r′) ∩ I ′| ≥ k

3.4. Computing the spatial generalization

The aim of the procedures at the third level is to compute
a spatial region that has perimeter not larger than Pmax

and that includes the locations of at least k users in the
set I ′ received as input. As discussed in Section 1, several
algorithms have been proposed in the litterature to solve

Procedure 2 SnapshotPST
Input: an original request r, a positive integer k, a value
Pmax, a set of users I ′.
Output: null or a generalized request r′ that is safe
against AttCpst+g with anonymity threshold k and such that
Perimeter(r′.Sdata) ≤ Pmax.
Method:

1: if (r.Sdata ∈ Ah) then // issuer(r) is hidden
2: AS = {i ∈ I ′ s.t. loci(r.Tdata) ∈ Ah}
3: if (|AS| < k) then return null
4: r′ = r
5: r′.IDdata = null
6: else // issuer(r) is visible
7: AS = {i ∈ I ′ s.t. loci(r.Tdata) ∈ Av}
8: r′ = ProvidentPartition(r, k, Pmax, AS)

9: // in alternative, r′ = Grid(r, k, Pmax, AS)
10: end if
11: return r′

this problem with the aim of minimizing the size of the
generalized region. We modified the Grid algorithm we
proposed in [10] to serve as a third-level procedure.

The Grid algorithm was originally designed to minimize
the perimeter of the generalized request, and it has been
shown that it achieves good performance with respect to this
metric [10]. To obtain this result, the Grid algorithm includes
in the anonymity set of the generalized request as few users
as possible, given that this number is not smaller than k. As
a consequence, when the algorithm is used as a procedure in
the computation of historical k-anonymity, the first request
issued with a given PID from a visible location tends to have
a small perimeter and to have few users in its anonymity set.
As a consequence, when successive requests are issued, it is
unlikely to find, in this anonymity set, a sufficient number
of users with whom the new anonymity set can be created.
Indeed, the GreedyHider algorithm has the problem that, if
the PID is not changed, while the area of the first request
issued from a visible location is usually small, the area of
the successive requests tends to grow quickly, since the users
in the anonymity set, which are in close spatial proximity at
the time of the first request, may move in different directions
or may move to an hidden location. As we shall see in the
experimental results, even for large values of Pmax, with
the GreedyHider algorithm, only few requests can be issued
before the perimeter of the generalized area becomes larger
than Pmax.

In order to address this problem, we developed a different
third-level procedure called ProvidentPartition. The idea of
the partition is that, when a request r is to be generalized,
an anonymity set is computed which is larger than the one
that would be required to include k users. Indeed, the aim
of the algorithm is to keep the anonymity set as large as

possible so that, when successive requests arrive, the users
that moved away from the issuer can be removed from
the anonymity set. In practice, the algorithm computes a
generalized area that includes as many users as possible
while having a perimeter smaller than Pmax.

The computation of ProvidentPartition, shown in Pro-
cedure 3, is inspired by the Hilbert Cloak algorithm [8].
Users are totally ordered according to their locations (at time
r.Tdata) along the Hilbert space filling curve. Then, they
are partitioned into blocks that are constructed considering
the users one by one (Lines 5 to 12). The idea is to include
in each block as many users as possible until the area of
the minimum bounding rectangle that covers the locations
of the users in the block is smaller than Pmax. However,
each block should also contain at least k users and hence
a user is always added to a block that contains less than k
users (Line 5).

The computation described above can lead to the case in
which the last block has less than k users. To ensure that
each block has at least cardinality k, the algorithm takes the
missing users from previous block (Lines 13 to 26). In more
details, the blocks are processed one by one from the last
one to the first one. At each iteration, the current block B
takes, from its predecessor, k − |B| users, i.e., the number
of users that are required by B to have cardinality equal
to k (Lines 22 to 25). Iteration terminates when the first
block is reached or when the current block has more than k
users, since all its previous blocks are guaranteed to contain
at least k users. If the first block is reached, the first block
is deleted and its users are added to the second one.

The correctness of the procedure is proven by Theorem 3.
Theorem 3: Let r be an original request, k a positive

integer, Pmax a value, I ′ a set of user and
r′ = ProvidentPartition(r, k, Pmax, I ′). If r′ 6= null,
then

|ASCst+g
(r′) ∩ I ′| ≥ k

4. Case studies and simulation results

In this section, we present the results of an extensive
experimental evaluation of the algorithms presented in Sec-
tions 3. The main goal of our algorithms is to guarantee user
privacy while providing a high service quality. This means
that we want to allow the issuer to use the same PID for
as many requests as possible so that the SP can provide a
personalized service. Therefore, we want to minimize the
number of different PIDs while maintaining the perimeter
of each generalized area below the threshold Pmax.

Tests were performed using simulation data. Users’ loca-
tions were generated by the Siafu context simulator [9] that
was set to simulate movements of 10, 000 individuals. The
total area of the map is about 15 km2. The resulting average
density of users per km2 is about 660. The simulation is
designed to reproduce the movements of individuals for 10

Procedure 3 ProvidentPartition
Input: an original request r, a positive integer k, a value
Pmax, a set of users I ′.
Output: null or a generalized request r′ such that r′ is k-
anonymous in context Cst+g and Perimeter(r′.Sdata) ≤
Pmax.
Method:

1: if |I ′| < k then return null
2: H = users of I ′ ordered according to Hilbert index
3: part = ∅ // List of blocks
4: B = ∅ // Current bucket
5: for all (u ∈ H) do
6: if (|B| < k OR Perimeter(MBR(B ∪ {u})) ≤

Pmax) then
7: B = B ∪ {u}
8: else
9: part = part ∪ {B}

10: B = {u}
11: end if
12: end for
13: part = part ∪ {B}
14: for all (B ∈ part from last to first) do
15: if (|B| ≥ k) then break
16: if (B is the first block in part) then joint the first

two blocks into a single one
17: else move k− |B| users from the block preceding B

to B
18: end for
19: B is the block of part that contains issuer(r)
20: if (Perimeter(MBR(B)) > Pmax then return null
21: r′ = r; r′.IDdata = null; r′.Sdata = MBR(B)
22: return r′

consecutive business days; During each day, a user moves
to her office in the morning, come back to her house after
work hours, and then possibly goes to entertainment places
during the evening or in the night. The time in which each
movement starts is randomly chosen in a time range. For
example, users goes to work between 7am and 9am.

We record users’ positions every 10 minutes and generate
a request by randomly choosing a time instant at which
a user position is recorded. During the generation of the
requests, the probability of choosing each time instant is
not uniform; The intuition is that it is more likely that a
user issues a request during the day than late in the night.

In our tests we consider two scenarios about the possible
areas where the adversary knows users’ locations.

S1 Under the context CH but Ah = ∅, users are visible in
every location.

S2 Under the context CH with Ah 6= ∅, a user is in a
visible location when she is located in her workplace.

Case S2 is motivated by the fact that, when a user is in

her workplace it is more likely that the association between
her identity and her location is known. For example, an
employer is likely to know this association. At the same
time, a user does not necessarily need to be moving to be
interested in LBS. For example, the user may like to be
notified by proximity services, even while being at work,
about sales or events in nearby shops, restaurants or cultural
centers.

Considering that each user works on average 8 hours per
day, the adversary is aware of her location 30% of the time.
In addition to the assumption about the areas where users are
visible, three main parameters affects each test: i) the value
of k (default = 20); ii) the number of requests issued by each
user in 10 days (default = 30); iii) the Pmax value (default =
1000m). In the experiments, the values of Pmax vary from
200m to 1000m. Note that a perimeter of 200m corresponds
to a square with area of 2500m2, while a perimeter of
1000m corresponds to a square with area of 1/16km2. We
consider a request whose perimeter of the region associated
is under 200m adequate for services that require very high
precision. Nonetheless, for many other services a value of
Pmax of 1000 may not significantly affect the quality of
service.

The results presented in this section are obtained as the
average computed for 100 users.

The first set of experiments we present is intended to
measure how many consecutive requests can be issued by
the same user without changing the PID or suppressing a
request in scenario S1. In order to evaluate how effective any
practical algorithms can be, we designed the OptimalLength
algorithm that, given a set of original request, computes the
generalization, among all the possible ones, that maximizes
the number of successive historical k-anonymous requests,
that can be issued without changing the PID, without sup-
pressing a request and with a generalized region not larger
than Pmax. OptimalLength has two main differences with
respect to GreedyHider and ProvidentHider. First, the input
of the algorithm is the complete sequence of requests for a
given user, while GreedyHider and ProvidentHider receive a
single request each time. In a sense, OptimalLength “knows
the future”, and therefore it can compute the generalization
knowing where the issuer, as well as the other users, will
be located in the future. The second difference is that the
OptimalLength algorithm computes a defense function under
the assumption that g is not known to the adversary, as we
only require a large intersection of the anonymity sets for
the requests in the trace.

In Figure 3(a) we show the results of our tests. It can be
noticed that, also for small values of k, on average, using
both ProvidentHider and GreedyHider, only few requests
can be issued before unlinking or suppressing is necessary.
However, our results shows that this is unavoidable for any
practical algorithm. Indeed, also with the OptimalLength
algorithm, that computes an upper bound for this metric,

only about 3.5 consecutive requests can be issued, on
average, with k = 20.

The second set of experiments measures how many
PIDs and suppressed requests are necessary to generalize
a set of requests. In this set of tests we do not include
OptimalLength because it is not designed to reuse the PIDs.
In Figure 3(b) we show the impact of Pmax on this metric.
For small values of this parameter (200m), in scenario S1,
both ProvidentHider and GreedyHider suppress most of the
requests. On the contrary, in scenario S2, ProvidentHider
can generalize the requests suppressing only few of them
(0.2, on average) and using a limited number of PIDs (2.2,
on average) while GreedyHider still suppresses most of the
requests. For larger values of Pmax, the performances of
the two algorithm improves, but ProvidentHider is always
significantly better than GreedyHider. It should be noticed
that, even for a Pmax = 1000m, in the scenario S1, using
the ProvidentHider about 7.5 PIDs are required out of 30
requests. This means that, with our experimental settings,
the quality of the service would be strongly affected. On the
contrary, in scenario S2, ProvidentHider uses about 2 PIDs
which means that the algorithm is able to use, in most cases,
one PID for requests issued from hidden locations and one
for requests issued from visible locations.

In Figure 3(c) we show the impact of k on the number
of PIDs and suppressed requests. Again, we can notice
that ProvidentHider has better performance with respect to
GreedyHider. In addition, while the performance of the two
algorithm is affected by the value of k in scenario S1, in
scenario S2 no significant difference can be observed for
different values of k.

5. Conclusions and future works

In this paper, we studied privacy defense algorithms under
a realistic assumption that user requests may be correlated.
When a prevalent conservative assumption is used in which
the adversary knows the locations of all users at all times,
this correlation renders privacy very difficult to preserve
using spatial generalization techniques without severely de-
grading the usability. This paper proposed a relaxation of
this assumption, formally modeled it and showed via case
studies and simulations that a useful defense can be applied
in some situations. Future work includes considering also
correlation among requests issued by different users, as well
as extensions to our framework considering approximate
knowledge by the adversary.

Acknowledgments

This work was partially supported by National Science
Foundation under grants CT-0716567, CT-0627493, CT-
0716575, IIS-0430165 and IIS-0430402, by Air Force Office
of Scientific Research under grant FA9550-07-1-0527 and by

0

1

2

3

4

5

6

10 15 20

#
of

co
ns

ec
ut

iv
e

re
qs

k

OptimalLength
ProvidentHider

GreedyHider

(a) Average number of consecutive requests with
same PID. scenario S1. 30 requests in 10 days.

0

5

10

15

20

25

200 600 1000

#
of

PI
D

s
an

d
su

pp
re

ss
ed

re
qs

Pmax

S1-ProvidentHider
S1-GreedyHider

S2-ProvidentHider
S2-GreedyHider

suppressed

(b) Average number of PIDs and suppressed
requests. 30 requests in 10 days, k = 20.

0

5

10

15

20

10 15 20

#
of

PI
D

s
an

d
su

pp
re

ss
ed

re
qs

k

S1-ProvidentHider
S1-GreedyHider

S2-ProvidentHider
S2-GreedyHider

suppressed

(c) Average number of PIDs and suppressed re-
quests. 30 requests in 10 days, Pmax = 1000m.

Figure 3. Experimental results.

Italian MIUR under grants PRIN-2007F9437X and InterLink
II04C0EC1D.

References

[1] Alastair R. Beresford and Frank Stajano. Mix zones: User
privacy in location-aware services. In Proc. of the 2nd Annual
Conference on Pervasive Computing and Communications.
IEEE Computer Society, 2004.

[2] Claudio Bettini, X. Sean Wang, and Sushil Jajodia. Protecting
privacy against location-based personal identification. In
Proc. of the 2nd VLDB workshop on Secure Data Manage-
ment, volume 3674 of LNCS, pages 185–199. Springer, 2005.

[3] Chi-Yin Chow and Mohamed Mokbel. Enabling private
continuous queries for revealed user locations. In Proc. of
the 10th International Symposium on Spatial and Temporal
Databases. Springer, 2007.

[4] Bugra Gedik and Ling Liu. Protecting location privacy with
personalized k-anonymity: Architecture and algorithms. IEEE
Transactions on Mobile Computing, 7(1):1–18, 2008.

[5] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus
Shahabi, and Kian-Lee Tan. Private queries in location
based services: Anonymizers are not necessary. In Proc. of
SIGMOD. ACM Press, 2008.

[6] Marco Gruteser and Baik Hoh. On the anonymity of periodic
location samples. In Security in Pervasive Computing, volume
3450 of LNCS, pages 179–192, 2005.

[7] Baik Hoh, Marco Gruteser, Ryan Herring, Jeff Ban, Daniel
Work, Juan Carlos Herrera, Alexandre M. Bayen, Murali
Annavaram, and Quinn Jacobson. Virtual trip lines for
distributed privacy-preserving traffic monitoring. In Proc. of
the 6th International Conference on Mobile Systems. ACM,
2008.

[8] Panos Kalnis, Gabriel Ghinita, Kyriakos Mouratidis, and
Dimitris Papadias. Preventing location-based identity infer-
ence in anonymous spatial queries. IEEE Transactions on
Knowledge and Data Engineering, 19(12):1719–1733, 2007.

[9] Miquel Martin and Petteri Nurmi. A generic large scale
simulator for ubiquitous computing. In Proc. of the 3rd
Conference on Mobile and Ubiquitous Systems: Networks and
Services. IEEE Computer Society, 2006.

[10] Sergio Mascetti, Claudio Bettini, Dario Freni, and X. Sean
Wang. Spatial generalization algorithms for LBS privacy
preservation. Journal of Location Based Services, 2(1), 2008.

[11] Mohamed F. Mokbel, Chi-Yin Chow, and Walid G. Aref. The
new Casper: query processing for location services without
compromising privacy. In Proc. of the 32nd International
Conference on Very Large Data Bases, pages 763–774. VLDB
Endowment, 2006.

[12] Manolis Terrovitis and Nikos Mamoulis. Privacy preserva-
tion in the publication of trajectories. In Proc. of the 9th
International Conference on Mobile Data Management. IEEE
Computer Society, 2008.

[13] Toby Xu and Ying Cai. Location anonymity in continuous
location-based services. In Proc. of ACM International
Symposium on Advances in Geographic Information Systems.
ACM Press, 2007.

[14] Man Lung Yiu, Christian S. Jensen, Xuegang Huang, and
Hua Lu. Spacetwist: Managing the trade-offs among location
privacy, query performance, and query accuracy in mobile
services. In Proc. of the 24th International Conference on
Data Engineering. IEEE Computer Society, 2008.

