
Dessy: demonstrating mobile search and
synchronization

Eemil Lagerspetz, Sasu Tarkoma
Helsinki Institute for Information Technology HIIT

University of Helsinki
P.O. Box 68 FI-00014 University of Helsinki, Finland

Email: firstname.lastname@hiit.fi

Tancred Lindholm
Helsinki Institute for Information Technology HIIT

Aalto University
P.O. Box 5400 FI-02150 Espoo, Finland

Email: tancred.lindholm@hiit.fi

Abstract—The storage capacity of smartphones has reached
tens of gigabytes, while the search functionality remains simple.
We have designed a search and synchronization framework
for mobile devices, called Dessy. Dessy has been designed with
mobility and device constraints in mind. It requires only MIDP
2.0 Mobile Java with FileConnection support, and Java 1.5 on
desktop machines. This paper demonstrates the application in
practice, using multiple devices and synchronizing files between
a desktop computer, a laptop, smartphones, and the Internet.
Smartphones and laptops are able to search for files hosted on
other devices as well as on the Internet. Unnecessary search
operations are avoided using Bloom filters.

I. INTRODUCTION AND BACKGROUND AND RELATED
WORK

The storage capacity of smartphones is growing, while
file search functionality on mobile platforms remains simple.
Existing desktop search software allows searching the content
of files on desktop computers, but not mobile platforms. Con-
straints such as limited battery life, CPU power and memory
constraints pose additional challenges to the design of software
on mobile platforms. Indexing the file system on the mobile
phone may not be practical. Desktop search refers to finding
local files without iterating the file system, in reasonable time,
and by at least their content in addition to their names. This
can be accomplished by use of an index. Recently, Copernic
Desktop Search1 enabled searching the desktop’s files from a
web page, allowing mobile devices to search them.

In order for a desktop search and synchronization system to
gain acceptance on smartphones, energy awareness is required.
In addition to ease of use, such an application must conserve
energy by using communication hardware, persistent storage
and the CPU sparingly. This paper demonstrates the Dessy
search and synchronization framework for mobile devices,
such as smartphones and PDAs. Our system is called Dessy.
Dessy finds files by their content, metadata, and context
information. It enables searching for files on the local file
system, remote computers, and the Internet. Dessy supports
remote searching and index synchronization. This offloads the
indexing and crawling task from the mobile device to a more
capable machine. Dessy uses Bloom filters to avoid searches
that would return no results for both local and remote searches.

1http://www.copernic.com/

The modular architecture of the system allows disabling
energy–hungry parts of the system on different platforms.

To allow access to the user’s data on other devices, file
synchronization can be used. The user may synchronize files
as they are required on the phone. This mitigates the storage
space gap between the desktop and the smartphone. By
syncronization, we mean bidirectional file synchronization.
Changes at either end of the synchronization are to be prop-
agated to the other, possibly causing change reconciliation.
After a final version has been agreed on, both ends will have
the same final version.

The following use–case illustrates Dessy. Mr. Smith is
commuting, and reading a computer science article, Dessy:
Towards Flexible Mobile Desktop Search, on his smartphone.
The article refers to another article, titled A three-way merge
for XML documents, by Mr. Lindholm. Mr. Smith decides that
he should read A three-way merge for XML documents to ob-
tain a proper understanding of Dessy: Towards Flexible Mobile
Desktop Search. Mr. Smith may have the article already on his
computer, so he decides to use Dessy to search for it, instead
of an Internet search engine. After all, Dessy can also search
the Internet. To find A three-way merge for XML documents,
Mr. Smith types the search terms three-way merge for
XML documents and author:Lindholm into Dessy, and
clicks Search. Dessy reports that there are no local results
on the smartphone, and none on Mr. Smith’s computer either.
However, Dessy shows promising results via the Internet:
the result description contains the title, A three-way merge
for XML documents and the name Lindholm. So, Mr. Smith
chooses Synchronize on the Internet search result, and A
three-way merge for XML documents is downloaded to the
smartphone. Mr. Smith then opens it in his PDF reader and
proceeds to read it.

Dessy searches are executed in multiple, user–defined lo-
cations. Possible locations include the phone running Dessy,
remote desktop machines, and Internet search sites, such as
Google. All resulting files can be synchronized; remote Dessy
hosts synchronize files bidirectionally with the phone, while
files on Internet hosts are downloaded if they have changed
since last synchronization. Dessy provides an interface for
locating files for both users and applications. Dessy uses the
Syxaw file synchronizer with XML-awareness [1] to synchro-



nize found files. Syxaw is designed for limited devices, and
follows an efficient synchronization protocol that reduces the
number of network round-trips required for synchronization.
Syxaw enables separate synchronization of file metadata and
data, useful for index synchronization. It also provides Dessy
with unique file identifiers suitable for efficient index metadata
storage. Dessy is able to find files by their names, content,
user-assigned tags, metadata, and context information, such as
EXIF data of JPG files, author, subject, and keywords of PDF
files, and so forth. Search results can be synchronized when
connectivity is available.

Dessy differs from most desktop search software in being
mobile. Dessy can be used on desktop computers, MIDP 2.02

/ CLDC 1.13 smartphones, and Java Foundation Profile PDAs.
While the MIDP 2.0 / CLDC 1.1 is very widespread among
mobile handsets, in terms of desktop search, the platform is
very limited. It does not allow accessing files in any way. The
JSR 75 PDA optional packages for J2ME provide a very basic
stream–based method for file access4. The JSR 75 API is used
in Dessy.

The open–source Tracker project5 allows searching for con-
tacts and multimedia files on the Nokia N900 mobile platform.
Further search options will be added in future releases of the
Maemo (to be MeeGo) platform.

Existing desktop search software for desktop computers
includes systems such as Apple’s Spotlight6, the Tracker
project, Google Desktop7, Microsoft’s SiS [2], and Windows
Search8.

To provide users with an easy to use search and synchro-
nization system, one needs to study the users and how they
use search and synchronization applications. Searching for
local files is in principle similar to searching for documents
on the Internet. The subject of searching the Web has been
increasingly studied recently. In [3] and [4], the distribution of
Internet search queries was analyzed. In both studies, queries
consisted of 2.3 and 2.7 words on average for phones and
PDAs, respectively. The latter study suggests that mobile users
spend 56 – 63 seconds inputting a query on a mobile phone,
and 27 – 35 seconds on a PDA. It also noted that users
rarely look beyond the first page of results. Based on this,
an application that displays a concise list of ranked results
from multiple locations, together with content snippets would
probably be appropriate for most users. For example Google
displays results with snippets; it shows a few sentences from
each result web page, and a thumbnail picture for image
results.

Desktop search has also been examined using virtual di-
rectories [5] and directory namespaces [6]. Dessy uses virtual
directory paths to represent queries.

2http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html
3http://jcp.org/aboutJava/communityprocess/final/jsr139
4JSR 75, http://jcp.org/aboutJava/communityprocess/final/jsr075
5http://projects.gnome.org/tracker/
6http://www.apple.com/macosx/features/spotlight/
7http://desktop.google.com
8http://www.microsoft.com/windows/products/winfamily/desktopsearch

Fig. 1. A screenshot of Dessy running on the Nokia N900.

Fig. 2. A view of Dessy search and synchronization.

Synchronization systems for mobile devices have been de-
veloped [7]–[9]. These use operation shipping, which may not
be practical for everyday users. The SyncML synchronization
protocol [10] has mostly been used for personal information
synchronization.

A lot of software has been developed for gathering context
data on mobile platforms. Dessy could easily be coupled with,
e.g. the BeTelGeuse [11] data–gathering software. A camera
application combined with Dessy and BeTelGeuse could tag
new photos with the current context variable values, such as
the current location, nearby Bluetooth devices, and calendar
events. The photos could later be synchronized to the user’s
desktop computer, Google Picasa, Flickr, and other cloud
services using Dessy.

II. DEMO SCENARIO

The Dessy search and synchronization framework runs on
smartphones, PDAs and laptop and desktop computers. It can
also connect to various online services. In effect, Dessy can
use cloud–based indexes to help maintain a user’s personal
file space. In the demonstration scenario, the Dessy system
runs on smartphones, a laptop, and a desktop machine. It will
also search the Internet via Google. Figure 1 shows the Dessy
GUI running on a N900 smartphone. The top of the interface
contains a search bar used to search all connected sources.
The connection and synchronization options are accessible



Fig. 3. a dessy search and synchronization scenario.

from the menu bar. The left side of the interface shows
the properties and values of metadata that correspond to the
currently selected file on the right side, if any. The text field
below allows adding custom metadata, or tags, to local files.
Finally, The statusbar at the bottom shows recent events.

Figure 2 shows a high–level view of a Dessy search and
synchronization exchange. In the demonstration scenario, the
device that initiates the search and synchronization operations
is in the role of the Dessy device on the right side, while
the other endpoint is either a remote device running Dessy
or an HTTP server. Bidirectional synchronization is enabled
between two Dessy instances. With HTTP servers, files are
fully downloaded, but only if the target file is newer than
the local copy. Searches in the Internet are conducted through
Google. Remote and local device searches are handled by
Dessy. Remote and local device searches that would have no
results are avoided using a Bloom filter.

The scenario depicted in Figure 3 demonstrates Dessy. In
the Figure, the smartphones on the right side synchronize
files with the Cloud. In our demonstration, the devices will
download files from the Internet, using the Dessy Internet
search interface. The rightmost device in the Figure will
synchronize its files with the one beside it, which will in turn
synchronize files with the third smartphone from the right.
The two leftmost smartphones will not synchronize with each
other directly, but will synchronize their files with a desktop
machine. The desktop machine also receives files from the
Internet and lets the two smartphones synchronize those files
when they see fit.

REFERENCES

[1] T. Lindholm, J. Kangasharju, and S. Tarkoma, “Syxaw: Data
synchronization middleware for the mobile web,” Mobile Networks and
Applications, vol. 14, no. 5, pp. 661–676, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11036-008-0146-1

[2] E. Cutrell, S. T. Dumais, and J. Teevan, “Searching to eliminate personal
information management,” Communications of the ACM, vol. 49, no. 1,
pp. 58–64, Jan. 2006.

[3] J. Yi, F. Maghoul, and J. Pedersen, “Deciphering mobile search patterns:
a study of yahoo! mobile search queries,” in The Seventeenth World Wide
Web Conference, Apr. 2008, pp. 257–266.

[4] M. Kamvar and S. Baluja, “A large scale study of wireless search behav-
ior: Google mobile search,” in Proceedings of the SIGCHI conference
on Human Factors in computing systems, R. E. Grinter, T. Rodden, P. M.
Aoki, E. Cutrell, R. Jeffries, and G. M. Olson, Eds. ACM Press, Apr.
2006, pp. 701–709.

[5] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. James W. O’Toole,
“Semantic file systems,” in SOSP ’91: Proceedings of the thirteenth
ACM symposium on Operating systems principles. ACM Press, 1991,
pp. 16–25.

[6] C. K. Hess and R. H. Campbell, “An application of a context-aware file
system,” in CHI ’03 extended abstracts on Human factors in computing
systems, G. Cockton and P. Korhonen, Eds., Apr. 2003, pp. 339–352.

[7] H. Mei and J. Lukkien, “A remote personal device management frame-
work based on syncml dm specifications,” in MDM ’05: Proceedings
of the 6th international conference on Mobile data management. New
York, NY, USA: ACM, 2005, pp. 185–191.

[8] Y.-W. Lee, K.-S. Leung, and M. Satyanarayanan, “Operation shipping
for mobile file systems,” IEEE Transactions on Computers, vol. 51,
no. 12, pp. 1410–1422, Dec. 2002.

[9] T.-Y. Chang, A. Velayutham, and R. Sivakumar, “Mimic: raw activity
shipping for file synchronization in mobile file systems,” in Mobisys
2004 Workshop on Context Awareness, June 2004, pp. 165–176.

[10] SyncML Sync Protocol, version 1.1, SyncML Initiative, Feb.
2002. [Online]. Available: http://www.syncml.org/docs/syncml sync
protocol v11 20020215.pdf

[11] J. Kukkonen, E. Lagerspetz, P. Nurmi, and M. Andersson, “BeTelGeuse:
A Platform for Gathering and Processing Situational Data,” IEEE
Pervasive Computing, vol. 8, no. 2, pp. 49–56, 2009.


