
 

  

 

Aalborg Universitet

Mining Risk Factors in RFID Baggage Tracking Data

Ahmed, Tanvir; Calders, Toon; Pedersen, Torben Bach

Published in:
IEEE 16th International Conference on Mobile Data Management

DOI (link to publication from Publisher):
10.1109/MDM.2015.31

Publication date:
2015

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Ahmed, T., Calders, T., & Pedersen, T. B. (2015). Mining Risk Factors in RFID Baggage Tracking Data. In IEEE
16th International Conference on Mobile Data Management (Vol. 1, pp. 235-242). IEEE Computer Society
Press. https://doi.org/10.1109/MDM.2015.31

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 09, 2024

https://doi.org/10.1109/MDM.2015.31
https://vbn.aau.dk/en/publications/711203d9-4c74-418a-b6b8-a92957b14118
https://doi.org/10.1109/MDM.2015.31


Mining Risk Factors in RFID Baggage Tracking
Data

Tanvir Ahmed§,† Toon Calders†
†Université Libre de Bruxelles, Brussels, Belgium

Email: toon.calders@ulb.ac.be

Torben Bach Pedersen§
§Aalborg University, Aalborg, Denmark

Email: {tanvir, tbp}@cs.aau.dk

Abstract—Airport baggage management is a significant part
of the aviation industry. However, for several reasons every year
a vast number of bags are mishandled (e.g., left behind, send
to wrong flights, gets lost, etc.,) which costs a lot of money
to the aviation industry as well as creates inconvenience and
frustration to the passengers. To remedy these problems we
propose a detailed methodology for mining risk factors from
Radio Frequency Identification (RFID) baggage tracking data.
The factors should identify potential issues in the baggage
management. However, the baggage tracking data are low level
and not directly accessible for finding such factors. Moreover,
baggage tracking data are highly imbalanced, for example,
our experimental data, which is a large real-world data set
from the Scandinavian countries, contains only 0.8% mishandled
bags. This imbalance presents difficulties to most data mining
techniques. The paper presents detailed steps for pre-processing
the unprocessed raw tracking data for higher-level analysis
and handling the imbalance problem. We fragment the data
set based on a number of relevant factors and find the best
classifier for each of them. The paper reports on a comprehensive
experimental study with real RFID baggage tracking data and it
shows that the proposed methodology results in a strong classifier,
and can find interesting concrete patterns and reveal useful
insights of the data.

I. INTRODUCTION

Aviation industry suffers from enormous loss due to bag-
gage mishandling. A recent report [1] shows that in 2013,
3.13 billion passengers traveled by airlines and among them
around 21 M passengers and 21.8 M bags were affected by
baggage mishandling that costs 2.09 billion USD to the airline
industry. It also creates frustration to the passengers during
their vacation or business trips. Common baggage mishan-
dlings are: left behind at the origin airport, missed connecting
flight, bag loss, wrong bag destination, etc. A bag has to
follow several steps while traveling from the origin airport to
the final destination. The steps include check-in, screening,
sorting, loading, transfer at the transit airport, arrival, etc.
Mismanagement at any of these stages can be the reason
for the bag being mishandled. The use of Radio Frequency
Identification (RFID) in the baggage management system
enables to track a bag while passing through different stages
within an airport as well as across the airports. The massive
baggage tracking can be very useful for analyzing and finding
interesting patterns. Combining the tracking data with other
dimensions like route information, flights and punctuality, day
hours, week day, transit duration, etc., can reveal risk factors
that are responsible for baggage mishandling.

Data mining is the process of extracting interesting pat-
terns and knowledge from large data sets, and the acquired
knowledge can be used for predicting unknown labels of new
instances [10]. For example, from the baggage tracking data,
we may be interested in knowing, what is the probability that
a bag will be mishandled if it has 35 minutes transit time
at Copenhagen airport on Sunday morning? However, before
performing any data mining the data has to be well prepared
such that the gained knowledge is useful. In the baggage
tracking scenario, the generated huge volume tracking data are
very low level and not directly suitable for further analysis.
Therefore, relevant and important features need to be extracted
from the unprocessed raw tracking data. Furthermore, the
percentage of mishandled bags is very low (e.g., only 0.8%
in our experimental data set) as compared to the percentage
of correctly handled bags. It makes the data set highly im-
balanced. This imbalance problem in the data set makes the
mining process biased towards predicting that any bag will
be handled correctly by default and makes it difficult to learn
rules related to incorrectly handled bags. Thus, we need to
take special care of this issue to get the mining techniques to
work properly and to get patterns of higher quality.

In this paper, we propose a step by step methodology for
performing data mining tasks to find interesting patterns and
risk factors that are highly correlated with baggage mishan-
dling. We present the essential steps for extracting a set of
high-level features called FlightLeg Records for mining from
the unprocessed raw RFID baggage tracking data. We have
applied various classification techniques on the data set and
deal with the imbalance problem by applying several different
re-balancing techniques for finding the best predictive model.
We also fragment the data set based on some important factors
and learn specialized classification models for each fragment.
We have conducted a comprehensive experimental study with
a large amount of real-world RFID baggage tracking data
from a major industry initiative called the BagTrack project
(www.daisy.aau.dk/bagtrack). The data set has been collected
from several airports in the Scandinavian countries. The ex-
periment shows that fragmenting the data set helps to achieve
better models. We also analyze and report some interesting
patterns and risk factors that are discovered from the data set.
The proposed methodology and techniques can help the avi-
ation industry for examining baggage management problems
and ultimately improving the baggage handling quality.



The remainder of the paper is organized as follows. Section
2 presents the preliminaries including the problem statement.
Section 3 discusses the steps of the solution. Section 4 reports
the experimental results. Section 5 reviews related work.
Section 6 concludes and points to future work.

II. PRELIMINARIES

RFID-Based Baggage Handling In airport baggage man-
agement a bag has to go through different steps to go from
origin to final destination. Suppose that Nadia needs to travel
from Aalborg Airport (AAL) to Arlanda Airport (ARN) via
Copenhagen Airport (CPH). First, Nadia has to check-in and
handover her bag to the check-in desk staff. Then the staff
puts the bag on the conveyor belt for the automatic baggage
sortation system. After passing all the steps inside AAL, the
bag is loaded into the aircraft using belt loader for the targeted
flight. As the bag has to be transferred to ARN, upon arrival at
CPH it is shifted to the transfer system. After all the required
stages at CPH, the bag is loaded to the aircraft for its next
flight to ARN. After arriving at ARN, the bag is shifted to
arrival belt and finally Nadia collects the bag from the arrival
belt. During this journey, the bag has to go through up to 11
stages and there can be many baggage handlers handling the
bag at the different stages.

Fig. 1 shows an example of RFID reader deployment at
different locations of a baggage management system. An RFID
reader is deployed in a fixed location and the position of
the reader is recorded in the database. For example, reader1
in Fig. 1 corresponds to check-in1, reader6 corresponds to
Gateway-1 etc. The circles represent the RFID readers and
their activation ranges.

M

C
hu

te
 9

C
hu

te
 1

0
C

hu
te

 1
1

C
hu

te
 1

2

C
hute
5

C
hute 
6

C
hute 
7

C
hute 
8

C
hute
4

C
hute
3

C
hute
2

C
hu

te
 

13
C

hu
te

14
C

hu
te

15
C

hu
te

16

C
hute
1

L2 = Check-in 2 
conveyor

L1 = Check-in 1 conveyor

Sc
re

en
in

g 
M

ac
hi

ne

L4 = Sorter 1 conveyor
L5 = Sorter 2 conveyor

reader1

re
ad

er
3

re
ad

er
4

reader 5

reader2

Check
-in

Desks

Out Door Area

L9=Gateway 1

L10 = Gateway 2
reader6 reader7

Wagon

L8 = Arrival 1 
Conveyor re

ad
e

9

L11 = Belt Loader1

reader8 Wagon

L3
=S

cr
ee

ni
ng

C
on

ve
yo

r

Fig. 1: RFID reader deployment in airport baggage tracking [3]

At check-in, an RFID tag is attached to the bag. The tag
contains a small built in memory that stores bag information
including the bag identifier, flights, route legs, date of depar-
ture, etc. While passing different stages, whenever a bag enters
into a reader’s activation range, it is continuously detected by
the reader with a sampling rate which generates raw reading
records of the form: 〈BagID, Location, Time, {info}〉, meaning
that a reader at location Location detects a bag with ID BagID

at timestamp Time and the tag stores the information info.
Considering only location and time related information, some
examples of raw reading records are shown in Fig. 2a. In the
table, RID represents the reading identifier. As seen a bag can
have several readings at the same location and on the basis
of a single record, it is also not directly possible to compute
how long an object spent in a particular location. To overcome
these problems and prepare the data for further analysis we
convert the raw reading records into stay records [3].

 

(a)  Raw Reading Table 
RID BagID Location Time
R1 B1 AAL.Chkin1 1 
R2 B1 AAL.Screen 4 
R3 B1 AAL.Screen 5 
R4 B1 AAL.sorter1 8 
R5 B1 AAL.sorter1 9 
R6 B1 AAL.Gate2 15 
R7 B1 AAL.BltLd1 21 
R8 B1 CPH.Trans1 70 
R9 B1 CPH.Tran1 72 
R10 B1 CPH.Sorter2 80 
R11 B1 CPH.Sorter2 90 
R12 B1 CPH.Sorter2 100 

(b)  Stay Records 

Rec
ID 

Bag
ID 

FromLoc ToLoc tstart tend Dur.

Rec1 B1 AAL.Chkin1 AAL.Screen 1 4 3 
Rec2 B1 AAL.Screen AAL.sorter1 4 8 4 
Rec3 B1 AAL.sorter1 AAL.Gate2 8 15 7 
Rec4 B1 AAL.Gate2 AAL.BeltLd1 15 21 6 
Rec5 B1 AAL.BltLd1 CPH.Tran1 21 70 49 
Rec6 B1 CPH.Trans1 CPH.Sorter2 70 80 10 
Rec7 B1 CPH.Sorter2 CPH.Sorter2 80 100 20 
 

 

(c)  FlightLeg Records 
Bag 
id 

From 
Airpt. 

To 
Airpt. 

Is 
Tran. 

Weekday Flight 
Time 

DurBef. 
Flight 

IsLongSt
ayFound 

Delay 
InArr. 

TotBag 
ThatHr 

Status 

B1 AAL CPH 0 Monday 9-10 25 0 NULL 86 OK
B1 CPH ARN 1 Monday 10-11 30 1 -5 70 Mishan.

Fig. 2: Example of getting stay records from raw records and
example of FlightLeg records

Stay Records A stay record is of the form:
StayRecord〈BagID, FromLocation, ToLocation, tstart, tend,
Duration, {StayInfo}〉 which represents that a bag with BagID
first appeared at FromLocation at time tstart and then first
appeared at the next location ToLocation at time tend. It took
Duration time to go from the reader at FromLocation to the
reader at ToLocation. The {StayInfo} represents a set of other
dimensional information related to the bag and to the transition
(e.g., bag status, next flight schedule, origin and destination
airports, and other flight-related information). For the final
location of a bag, a special stay record is stored where the
FromLocation and the ToLocation are same and the tstart and
tend represent the first and last times the bag appeared at that
location. The stay records compress the huge data volume of
raw readings and also enable to find abnormally long time
spans between locations that may lead to baggage mishandling.
Fig. 2b shows the stay records for the raw records of Fig. 2a.
In the table, RecID represents the stay record identifier. In
Fig. 2b, Rec1 represents that bag B1 had a transition from
AAL.Checkin-1 to AAL.Screening and it took 3 time units for
the transition. The bag first appeared at Checkin-1 at time
1 and then appeared at Screening at time 4. The stay records
mainly introduce a very important feature which is the duration
information. Nevertheless, it is still at a lower level for further
higher level analysis. We are more interested in a higher level
analysis like the baggage management performance at airport
level, weekday, hour of day, and other relevant factors. We take
the duration feature including some other dimensions from the
stay records and create a table called FlightLeg Records which
is described below.

FlightLeg Records The attributes and their descriptions



TABLE I: Description of the attributes of FlightLeg records

No. Name (Data Type) Description
1 FromAirport (Sym-

bolic)
Departure airport of the corresponding flight

2 ToAirport
(Symbolic)

Destination airport of the corresponding
flight

3 IsTransit (Boolean) A Boolean value representing whether it is a
transit bag or not for the corresponding flight

4 Weekday (Symbolic) Weekday of the corresponding flight
5 FlightTimeHour

(Symbolic)
Departure hour of the corresponding flight

6 DurationBeforeFlight
(Integer)

Available time (in minutes) for the bag to
catch the flight

7 IsLongerStayFound
(Boolean)

If any stay duration between readers at the
FromAirport is longer than expected then it
is true, otherwise it is false

8 DelayInArrival (In-
teger)

Delay in arrival (in minutes) of the arrival
flight for the transit bag

9 TotalBagInThatHour
(Integer)

Total number of bags read during the depar-
ture hour of the flight at FromAirport

10 Status (Symbolic) Status of the bag i.e., ’OK’ or ’Mishandled’

of the FlightLegRecords table are shown in Table I. For
each flight of a bag we have one instance in the FlightLe-
gRecords table. It captures some important features extracted
from the Stay Records like {IsTransit, DurationBeforeFlight,
IsLongerStayFound, TotalBagInThatHour, Status}. The way of
calculating the value of DurationBeforeFlight varies based on
whether the record belongs to transit or not (see description
of IsTransit column). For a non-transit record, it is calculated
from the first reading time of the bag at check-in and the
actual departure time of the flight. Conversely, for a transit
record, it is calculated from the actual flight arrival time at
the FromAirport and actual departure time of the next flight
to the ToAirport. The DurationBeforeFlight attribute is useful
to see the effect on baggage mishandling due to the operating
duration before departure. The value of IsLongerStayFound is
determined by comparing the movement of baggage between
readers at FromAirport. For each distinct transition between a
pair of locations in the Stay Records, the bags that followed
the top 5% longest durations are considered as longer than
expected. The value of DelayInArrival is calculated from the
actual and scheduled arrival times of the flight in the transit
airport (i.e., FromAirport is a transit airport). For the non-
transit records DelayInArrival is NULL. The status of the
bag indicates whether the bag was mishandled or not in
the FromAirport. The status of a bag is extracted from the
reading records of the bag at the readers at FromAirport, flight
timing, route information, etc. If a bag has any reading in
the FromAirport after the corresponding flight departure time,
then the bag is considered as left behind. Conversely, if a bag
has any reading from an airport which is not in its planned
route, then it is considered as wrong destination. Fig. 2c shows
an example of the content of FlightLegRecords. We use the
FlightLegRecords table for our further analysis.

Problem Statement Our primary goal is to find interesting
patterns and identify risk factors that are correlated to bag-
gage mishandling and ideally indicate appropriate corrective
actions. We want to find bags with higher probability of being

mishandled.
Definition 1 (Risk Score). Given a set of FlightLeg records

F and an instance f∈F , the risk score r ∈ R is the probability
estimate (PE) score for the instance f being Mishandled.

Definition 2 (Rank). Given a set of FlightLeg records F
with assigned risk scores, the rank of a record f ∈ F is the
position of f in the list of F sorted by risk in descending order,
i.e., the record with the highest risk score is ranked first.

We are interested in finding the best predictive model that
can produce correct risk scores and the most accurate ranking
of our data set.

III. SOLUTION

For producing a risk score as well as a ranking we take
the help of a classification algorithm. In order to find a risk
score, the system has to learn from a set of training records
and assign a risk score to each test example. We use the
Status attribute of the FlightLegRecords as the class column.
However, in our data set around only 0.8% of the records
belongs to ’Mishandled (MH)’ and the remaining 99.2% of the
records belongs to ’OK’. With such an imbalanced distribution
between the classes, the learning process gets biased towards
predicting OK for almost all the instances by default and
frequently misclassifies the MH instances. This is because a
classifier tries to make the classification rules more general
and considers the MH records as noise and discards the MH
records. As a result, this imbalance problem should be handled
wisely to overcome poor quality results otherwise produced
by the classifier. It is also essential to choose an appropriate
classification algorithm which will provide a good quality
result for the given data set. To achieve the intended quality
results from the raw baggage tracking data, we follow some
essential steps. The steps of our solution are given in Fig. 3
and discussed in the following.

Data 
Fragmentation

Raw 
reading 
records

Convert to 
Stay 

records

Generate
FlightLeg 

records

Data 
Preparation

Apply mining 
techniques and 
build models

Find best 
model for each 

fragment

Mining Process

Analyze 
and

Interpret 
the 

patterns

Experiment 
and Analysis

Re-sample the 
training set for 

handling 
imbalance 
problem

Fragment 
the data set

Generate 
Training 

and test set 
for each 
fragment

Fig. 3: Outline of the steps

A. Data Preparation

Before applying any data mining technique and finding
patterns, we need to pre-process the source data and select
and construct relevant features. In this step, the raw baggage
tracking records are converted into Stay records and then into
the FlightLegRecords. The structure of the tables and steps of
preparing such tables were already described in section II.



B. Data Fragmentation
Fragments The baggage management problem varies based

on different important factors like whether the bag is in the
transit airport or not, the duration of the transit, etc. Based
on some important factors we have divided the data set into
5 fragments and applied data mining algorithms on each of
the fragments for finding patterns specific to each fragment.
Moreover, as the data set is imbalanced, the fragmentation
allows examining the imbalance problems for specialized
cases. Fig. 4 shows the different fragments of our data set,
and the numbers inside the square bracket show the number of
records and mishandling rate for the corresponding fragment
in our experimental data. The combined records (CR) contain
all the records of FlightLegRecords table. CR is divided into
transit records (TR) and non-transit records (NTR). To see
the effect of transit duration on the baggage mishandling rate,
we have drawn Fig. 5. It shows that almost all the bags
(80-100 %) are mishandled when the transit duration is ≤31
(minutes). Based on transit duration, we have divided the
TR into two different fragments. Transit records containing
DurationBeforeFlight≤31 belong to fragment Shorter Transit
Records (STR) and other transit records belong to fragment
Longer Transit Records (LTR). Both of these fragments help
to analyze the shorter and longer transit baggage separately.

Combined records (CR) 
[874 K, 99.2% OK]

Transit records (TR) 
[202K, 97.32% OK]

Non-transit records (NTR) 
[672 K, 99.77% OK]

Shorter transit records (STR) 
[3 K, 24.66% OK]

Longer transit records (LTR) 
[199K, 98.44% OK]

Fig. 4: Fragments of the data set

0
10
20
30
40
50
60
70
80
90

100

-45 -30 -15 0 15 30 45 60 75 90 105 120 135 150 165 180

M
is

ha
nd

le
d 

R
ec

or
ds

 (%
)

Transit Duration (Minutes)

Fig. 5: Mishandling rate with change in transit duration

Training and test set Before applying data mining tech-
niques, we have to prepare the training and test data sets. For
each of the discussed fragments, we have one partition for
training or learning (P1), and another partition for testing (P2).
Strategies for obtaining the training and test sets are explained
further in the experimental evaluation section.

C. Mining Process
Handling imbalanced data by re-sampling As discussed

earlier, that the data set is highly imbalanced and learning

directly from the data set will produce very poor quality
patterns. To remedy these imbalance problems, we use 2
different kinds of sampling for the training data set (P1):
Undersampling technique (US): in this technique a subset of
P1 is created by randomly deleting OK records until we reach
equal number of records with class OK and class MH.
Oversampling technique (OS): in this technique a superset of
P1 is created by copying some instances or generating new
instances of MH records until we obtain an equal number of
records for class OK and MH. We use Synthetic Minority
Over-sampling Technique (SMOTE) [6] for getting OS data.

Mining Techniques We apply Decision Tree (DT), Naive
Bayes classifier (NB), KNN classifier (KNN), Linear regression
(LIR), Logistics regression (LOR), and Support vector machine
(SVM) on the training set P1 of the combined records CR with
the sampling strategies discussed above. We also do the same
directly to P1 without re-sampling (WS). Then we use different
types of measures (discussed in the next paragraph) for finding
the classification and sampling techniques that provide the best
model for our data set. Then the chosen techniques are used
for generating models for the remaining fragments. Note that
we have deliberately chosen not to consider association rules
mining technique to find out rules based on confidence and
support scores, since this is an unsupervised technique, while
our problem is supervised. We are only interested in modeling
our target variable w.r.t. the other variables. In some sense,
decision tree induction can be considered as a form of rule
induction; every path from the root to a leaf actually represents
an association rule.

Finding the best technique In general, a confusion matrix
as shown in Table II is used for assessing the performance of a
classifier. The confusion matrix shows how many test records
are correctly and incorrectly classified for both positive and
negative classes.

TABLE II: Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Typically the performance of a classifier is evalu-
ated by its predictive accuracy defined by, Accuracy =
(TP+TN)/(TP+FP+TN+FN). However, for an imbalanced data
set the predictive accuracy is not an appropriate measure. For
example, in our case an accuracy of 99% does not make
sense, as it may misclassify all the examples as OK (neg-
ative) regardless of whether a record belongs to Mishandled
(positive) or not. Here actually the classifier is 99% accurate in
predicting the negative instances and 0% accurate in predicting
the positive instances.

In an information retrieval system, precision is the measure
which represents the relevance of the retrieved results, whereas
recall represents the coverage of the relevant instances in the
result. Precision is calculated as, Precision = TP/(TP+FP),
and recall (also known as TP rate) is calculated as, Recall =
TP/( TP + FN). A precision-recall (PR) curve is a good way



to visualize the precision for a given recall. The points of a
PR curve are calculated based on the generated scores of the
classifier. The scores are sorted in descending order and each
score is considered as a threshold for calculating the value of
the precision and recall to draw a point in the PR curve.

The receiver operating characteristic (ROC) curve [14] is a
well-known visualization of the performance of a ranker. The
X-axis of an ROC curve represents false positive rate (FP rate
= FP/(FP + TN)) and the Y-axis represents true positive rate
(TP rate). So, it shows the trade-off between the TP rate and
FP rate. The Area Under the ROC Curve (AUC) is a popular
measure for evaluating the quality of ranking produced by a
classifier [15]. The maximum value of an AUC can be 1 and
it means that all the positive examples are placed in the top in
the ranking. A classifier with AUC = 0.5 represents a random
classifier that randomly guesses the classes.

In our cases, we consider two classes ’OK’ and ’Mishan-
dled’ for classification and consider ’Mishandled’ as the posi-
tive class. In our scenario, misclassifying a Mishandled bag as
OK (false negative) is more severe than misclassifying an OK
bag as Mishandled. As such we are specifically interested in
algorithms with a high recall on the Mishandled bags rather
than in merely optimizing the accuracy of the classifier. In our
case, we use the AUC as the main measure for choosing the
model that provides the best ranking. We use precision-recall
curves for finding which threshold provides higher precision
for a good amount of recall.

IV. EXPERIMENTAL EVALUATION

We use KNIME V2.9.2 (www.knime.org) for modeling our
experimental work flows, applying data mining algorithms,
producing and visualizing the results obtained from our data
set. For preparing the data set from the source data we use
different kinds of SQL queries and C# programs.

We use real RFID-based baggage tracking data, collected
from 13 different airports with a total of 124 RFID readers
deployed. There are 196 M raw reading records for 1.4 M bags
collected for the period from January 1, 2012 until December
2, 2013. In the original data set there are a lot of incom-
plete and erroneous records, e.g., missing flight and route
information, unusual reading time, reading from unknown
readers, etc. It creates problems while extracting different
information about a bag like transit information, status at
different stages, delay in departure and arrival, flight time
hour, etc. As a relatively clean data set is an essential part for
data mining, the problematic bags with the above mentioned
incomplete information are filtered out during conversion into
stay records, leaving us with 728K bags with 2.68 M stay
records. Among these bags, some bags have stay records only
in the arrival airports, which do not create any instances in the
FlightLegRecords table. Finally, after converting stay records
into FlightLeg records we have 671,712 bags with 874,347
flight leg records for mining. Among them only 0.8% of the
records belongs to the class Mishandled (MH), the remaining
99.2 % belongs to the class OK. For each fragment, the total
number of records and percentages of OK are shown in Fig. 4.

Among the fragments, only STR contains a higher number of
MH records than OK records. In the rest of this section, we
will show how different classification algorithms (discussed in
Section III-C) perform on the combined records with different
kinds of re-sampling techniques. Then we will identify the best
classification and sampling technique and discuss the obtained
patterns and analysis results from the data.

For the Decision Tree Induction, the C4.5 algorithm is used
with the Gini index quality measure and the MDL pruning
method. To reduce the number of branches, the minimum
number of records per node is set to 100. For the KNN clas-
sifier, we tried with K=5 and K=7. As in both of the cases the
results were similar, we finally report for K=7. Before applying
KNN, linear regression, logistics regression, and SVM the
structure of the input data table is changed as these algorithms
do not work with categorical attributes. In these cases, we
convert each value of a categorical attribute into a separate
column and put Boolean 0 or 1 accordingly. An example of
such conversion for Fig. 2c is shown in Table III. For the
linear regression and the logistics regression, the attributes
with continuous values are normalized into the [0;1] interval.
In our data set all the FromAirports are within the Schengen
territory (http://en.wikipedia.org/wiki/Schengen_Area) and a
person traveling within this territory does not require any spe-
cial passport control. Unlike FromAirports we have too many
values in the ToAirport column which creates many branches
in the decision tree and for other classification algorithms this
column become useless. To make the ToAirport column useful
and make the learned pattern interesting we categorized the
ToAirports into three types: Domestic, Schengen, and Others.

TABLE III: Converting string values into columns of Fig. 2c

AAL CPH IsTransit Monday 9-10 10-11 ....
1 0 0 1 1 0 ...
0 1 1 1 0 1 ...

In our experiments, we split the available data into a training
and a test set based on the date of the record. All records before
15- May-2013 were included in the training set (P1) [Total:
615K, OK: 99.2%] and all records from that date or later were
added to the test set (P2) [Total: 259K, OK: 99.18%]. The
reason we did not rely on a standard cross-validation approach
is because there exist dependencies between the bags. Bags
that were on the same plane are more likely to have similar
properties, as well as a similar class label. Therefore spreading
bags of the same flight over both the training and test set may
cause a biased estimation of the performance due to overfitting.
By dividing the data based on date, we can guarantee that the
training set and the test set are independent, and we get an
unbiased estimate of the performance of the mined models.

Overall from Table IV in all the cases we can see that
the AUCs are better than a random classifier predicting by
default class OK for every bag. It shows that the re-balancing
technique (i.e., WS, US, and OS) has a high impact on the
AUCs of some classifiers, whereas it has almost no effect
for the Naive Bayes classifier. It shows that the decision tree



TABLE IV: The table below lists the AUCs with the different
types of classification algorithms and re-balancing/re-sampling
techniques for the combined records (CR)

Re-sampling DT NB KNN LOR LIR
WS 0.88 0.83 0.71 0.82 0.78
US 0.87 0.83 0.79 0.85 0.79
OS 0.81 0.83 0.78 0.83 0.74

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

CUSM to CR
CWSM to CR
COSM to CR

Fig. 6: Precision-recall curves for CWSM, CUSM, and COSM
tested on the test set of the combined records (CR)

produces the highest AUC compared to all the other classifiers.
The AUCs produced by the over-sampling (OS) technique
shows that it is not helping to produce a better ranking in our
data set. The performance of over-sampling is unpredictable
given that without knowing the precise process that generated
the data, it is hard to generate good synthetic examples. During
our experiments, we found that the SVM learning process
did not produce any results within a reasonable time (several
days). So, we do not report any AUC with SVM. As the
decision tree produces the highest AUC (i.e., the best ranking),
we consider it as the best classifier for our scenario. For
our further experiments, we will only use the decision tree
without re-sampling (WS) and with US for producing other
models. We call the model generated by the decision tree
without re-sampling (WS) the Combined Without-sampling
Model (CWSM), with US the Combined Under-sampling
Model (CUSM), and with OS the Combined Over-sampling
Model (COSM). Fig. 6 shows the precision-recall (PR) curves
for CWSM, CUSM, and COSM when applied to the CR. It
shows that CWSM produces the best PR curve that always
gives a higher precision for the different values of recall
compared to the other two models. It shows that for 50%
recall, we can get 34% precision. It means that the ranking
produced by the decision tree contains 35% of the actual MH
records among the top 50% predicted MH records.

After finding the best classification algorithm and short
listing the re-balancing techniques we conduct further ex-
periments on the different fragments. We learn decision tree
models for NTR, TR, STR, and LTR without re-balancing (WS)
and respectively they are called:
• Non-transit Without-sampling Model (NTWSM)
• Transit Without-sampling Model (TWSM)
• Shorter Transit Without-sampling Model (STWSM)
• Longer Transit Without-sampling Model (LTWSM)

TABLE V: AUCs for models built from different fragments
and testing on relevant fragments

Sampling Model CR NTR TR STR LTR
CWSM 0.88 0.74 0.79 0.79 0.66
NTWSM - 0.74 - - -

WS TWSM - - 0.67 0.72 0.5
STWSM - - - 0.73 -
LTWSM - - - - 0.61
CUSM 0.87 0.67 0.82 0.54 0.77
NTUSM - 0.73 - - -

US TUSM - - 0.85 0.5 0.78
STUSM - - - 0.77 -
LTUSM - - - - 0.78

We also learn decision tree models for the fragments with
US and respectively they are called:
• Non-transit Under-sampling Model (NTUSM)
• Transit Under-sampling Model (TUSM)
• Shorter Transit Under-sampling Model (STUSM)
• Longer Transit Under-sampling Model (LTUSM)

For all the cases, the training and test sets are taken by
filtering the data from P1 and P2 of the CR. Then we
apply the models CWSM and CUSM to the test sets of all
these fragments. We also apply all the other models to the
relevant fragments for finding the best models for each of
the fragments. Table V shows the AUCs for the models and
cross checking with the different fragments. It shows that
the individual models give a reasonable AUC with their own
fragment. The AUCs with the TR shows that both fragmenting
and re-balancing helps to achieve better models for the transit
cases. For the NTR, models without re-balancing (i.e, CWSM
and NTWSM) produce better ranking. Fig. 7a shows the PR
curves of different models when applied to the NTR. It shows
that both CWSM and NTWSM gives very similar precision for
different values of recall. So, from the AUCs and PR curves
we can conclude that both CWSM and NTWSM can produce
better ranking and patterns for the NTR compared to the other
models. Table V shows that CWSM produces the highest AUC
for the STR, and the next closer AUC is produced by STUSM.
Fig. 7b shows the PR- curves of these two models with the
STR and both of them produces very similar curves and for the
higher value of recall at some points CWSM produces higher
precision. So, we can conclude from the AUCs and PR-curves
that CWSM is the best model for the STR. For the LTR, it is
clear that the data must be re-balanced before learning for
this type of cases. Fig. 7c shows the PR curves for CUSM,
TUSM, and LTUSM when applied to the LTR. It shows that
TUSM produces the best PR curve. So, from the AUCs and
PR curves we can conclude that TUSM is the most appropriate
model for the LTR.

The fragmentation helps to build specialized models; how-
ever, it also reduces the training data size. To see the effect
of training data size on the AUC, we learned decision tree
models with the CR (without re-balancing) with different data
size and the results are reported in Fig. 8. It shows that for
lower numbers of training data set like 20K and 40K the AUCs
are low and with increase in the number of training examples
it becomes stable at 0.88.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

CUSM To NTR
CWSM To NTR
NTWSM To NTR
NTUSM To NTR

(a) Models tested on NTR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
oi

n

Recall

CWSM to STR
STUSM to STR

(b) Models tested on STR

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

LTUSM to LTR
CUSM to LTR
TUSM to LTR

(c) Models tested on LTR

Fig. 7: Precision-recall curves for different models tested on NTR, STR, and LTR

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 100 200 300 400 500 600

A
U

C

Number of Training Records (K)

Fig. 8: AUC with different size of training data

From the comprehensive experiments, we can conclude that
for achieving an unbiased and good ranking the training data
may need to be re-balanced before applying the data mining
tasks. In our data set the decision tree C4.5 algorithm is the
most appropriate choice for classification and ranking. In our
case, re-balancing with under-sampling helps us to achieve
a better model for the transit bags. We also learn that for a
better ranking, it may require learning specialized models for
different groups of data in the whole data set like we did
for non-transit, transit, shorter and longer transit data. In our
data set for the non-transit records, longer transit records, and
shorter transit records the chosen models are CWSM, TUSM,
and CWSM respectively. Moreover, it is also learned that a
larger number of training records also important for a better
and stable ranking.

Extracted Rules and Analysis: We now explore the
patterns found for the different fragments by their chosen
classifier and the assigned probability estimate scores (risk
scores) of each pattern. For each fragment, we report the top
5 rules with the highest risk scores followed by analysis. For
reasons of confidentiality, the airport names in a pattern have
been changed to A1, A2, ..., A6.
For NTR by CWSM:
Rule1: If DurationBeforeFlight≤2min ⇒ MH [Score: 0.98]
Rule2: If DurationBeforeFlight>2min AND FromAirport=A8 AND
IsLongerStayFound=1 AND TotalBagInThatHour> 192 ⇒ MH
[Score: 0.88]
Rule3: If DurationBeforeFlight>2min AND FromAirport=A8
AND IsLongerStayFound=1 AND TotalBagInThatHour≤192 AND
DurationBeforeFlight≤65min ⇒ MH [Score: 0.66]
Rule4: If DurationBeforeFlight>2min AND FromAirport=A8

AND IsLongerStayFound=1 AND TotalBagInThatHour≤192 AND
DurationBeforeFlight>65min ⇒ OK [Score: 0.27]
Rule5: If DurationBeforeFlight>2min AND FromAirport=A2 AND
DurationBeforeFlightFlight >40min ⇒ OK [Score: 0.12]

For STR by CWSM:
Rule1: If DurationBeforeFlight≤2min ⇒ MH [Score: 0.98]
Rule2: If DurationBeforeFlight>2min AND FromAirport=A2 AND
DurationBeforeFlight ≤25min ⇒ MH [Score: 0.93]
Rule3: If DurationBeforeFlight>2min AND FromAirport=A3 AND
DurationBeforeFlight ≤ 9min ⇒ MH [Score: 0.91]
Rule4: If DurationBeforeFlight>25min AND FromAirport=A2 AND
TotalBagInThatHour>145 ⇒ MH [Score: 0.71]
Rule5: If DurationBeforeFlight > 29min AND FromAirport=A2
AND IsLongerStayFound=1 AND TotalBagInThatHour>115 AND
DurationBeforeFlight ≤ 35min ⇒ MH [Score: 0.63]

For LTR by TUSM:
Rule1: If DurationBeforeFlight≤54min ⇒ MH [Score: 0.88]
Rule2: If DurationBeforeFlight>54min AND IsLongerStayFound=1
AND DurationBeforeFlight≤75min ⇒ MH [Score: 0.64]
Rule3: If DurationBeforeFlight>75min AND IsLongerStayFound=1
AND DurationBeforeFlight ≤ 95min ⇒ OK [Score: 0.45]
Rule4: If DurationBeforeFlight>95min AND IsLongerStayFound=1
⇒ OK [Score: 0.28]
Rule5: If DurationBeforeFlight>54min AND IsLongerStayFound=0
⇒ OK [Score: 0.18]

The above rules show that available baggage handling
time before the flight departure is always an important issue
regardless of the category of the bag. For the non-transit bags
the departure airport is a very important factor and based on
the FromAirport the other risk factors like check-in time of
the bag before the flight, longer stay between locations, and
total number of bags during the flight hour have high influence
on the baggage management problem. Rules 4 and 5 of the
NTR can be discarded as they have very low risk scores. For
the STR, it is considered to be mishandled by default. The
risk factors and the effect of transition duration for the STR
also vary based the transit airport. The rules show that when
the transit duration increases, the other factors like a longer
stay between baggage handling locations and number of bags
during the flight hour take influence on the baggage manage-
ment problem. In case of longer transit records, a record with
DurationBeforeFlight ≤ 54min is directly classified as MH
regardless of any other condition. This condition also reflects



Fig. 5 discussed earlier, where the mishandling rate suddenly
started increasing fast around this point, and it is almost 100%
when the duration ≤ 31min. The rules of LTR also show that if
DurationBeforeFlight > 54min then a longer stay at a location
is highly responsible for baggage mishandling. The rules 3, 4,
and 5 of the LTR can be discarded due to their low risk scores.

V. RELATED WORK

Related work falls into two main categories. One is to pre-
process unstructured RFID-based tracking data, and another
one is to perform data mining task on imbalanced data set.
Warehousing and mining techniques of RFID data from supply
chain systems have been proposed in [9]. They convert the raw
RFID records into cleansed record containing the first and
last reading times of an object under the readers activation
range. They took the advantage of bulky movement of objects
for compressing the huge volume of RFID data. A data
warehouse for analyzing RFID-based baggage tracking data is
proposed in [3], where the raw tracking records are converted
into StayRecords along with other dimensions. In [2], [4]
the raw reading records are converted into mapping records
containing the entry and exit times of an object at a constrained
(e.g., conveyor belts of airport baggage management) and
semi-constrained indoor symbolic locations (e.g., large hall,
rooms, etc.,). In the present paper, we further refine the stay
records into FlightLeg records that capture different aggregate
information from the stay records including other dimensional
information for a higher level analysis.

Several papers address the problems of mining with im-
balanced data set [6], [13]. The main approaches of deal-
ing with imbalanced data are re-sampling (includes under-
sampling [12] and over-sampling [6]) and cost-sensitive learn-
ing [8]. Measuring the performance of classifiers and com-
paring models specially for imbalanced data set scenario have
been discussed widely [6], [13]. We use AUC as the main mea-
sure [5], [11], [12] for comparing the models as well as present
precision-recall curve as there is a deep relation between ROC
and PR space [7]. In the present paper, we apply several data
mining techniques with different re-balancing techniques for
finding best classifier and re-balancing techniques that can
provide a good ranking in our data set.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a detailed methodology for
finding risk factors from the imbalanced RFID airport bag-
gage tracking data. We presented the pre-processing steps for
preparing the raw RFID tracking data into FlightLeg records.
We estimated the risk score of a bag being mishandled. In
order to compute the risk scores, we learned classifiers that
assigned scores and then evaluated the quality of the scores
with the AUC measure. We dealt with the imbalance problem,
applied different data mining techniques, and based on AUCs
and Precision-Recall curves we found that the decision tree is
the best classifier for our data set. We fragmented the data set
into transit, non-transit, shorter and longer transit and obtained
the appropriate models for the different fragments. We also

found that re-balancing the data set by under-sampling helps
to achieve a better predictive model for the longer transit bags.
We conducted comprehensive experiments with real baggage
tracking data, and it showed that fragmenting and mining
each of the fragments separately was a right choice. The
extracted patterns show that overall available handling time
for a bag is a critical factor and; more specifically, a bag is
considered to be a high risk if it has less than 54 minutes
in the transit airport. For non-transit bags, the factors depend
on the departure airport. It was also found that a longer stay
between baggage handling locations and the total number of
bags during the flight hour are important factors to predict
mishandling as well. The proposed methodology can help
the aviation industry with examining baggage management
problems for further improvement in the system.

Several directions for future work exist. First, a more
thorough study of the root causes for mishandling, which is
non-trivial, given the low probability of Mishandled events.
Second, analyzing baggage handling sequences for finding
problems in the system. Third, finding spatio-temporal outliers
from the RFID baggage tracking data. Fourth, developing
native support from the data mining tools like automatic
methods for finding the most appropriate models.

ACKNOWLEDGMENT

This work is supported by the BagTrack project funded by
the Danish National Advanced Technology Foundation under
grant no. 010-2011-1.

REFERENCES

[1] Sita baggage report 2014. www.sita.aero/content/baggage-report-2014.
[2] T. Ahmed, T. B. Pedersen, and H. Lu. Capturing hotspots for constrained

indoor movement. In SIGSPATIAL/GIS, pages 462–465, 2013.
[3] T. Ahmed, T. B. Pedersen, and H. Lu. A data warehouse solution for

analyzing rfid-based baggage tracking data. In MDM (1), pages 283–
292, 2013.

[4] T. Ahmed, T. B. Pedersen, and H. Lu. Finding dense locations in indoor
tracking data. In MDM (1), pages 189–194, 2014.

[5] A. P. Bradley. The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recogn., 30(7):1145–1159, 1997.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
SMOTE: synthetic minority over-sampling technique. JAIR, 16:321–
357, 2002.

[7] J. Davis and M. Goadrich. The relationship between precision-recall
and roc curves. In ICML, pages 233–240, 2006.

[8] P. Domingos. Metacost: A general method for making classifiers cost-
sensitive. In SIGKDD, pages 155–164, 1999.

[9] J. Han, H. Gonzalez, X. Li, and D. Klabjan. Warehousing and mining
massive RFID data sets. In ADMA, pages 1–18, 2006.

[10] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2000.

[11] J. Huang and C. X. Ling. Using AUC and accuracy in evaluating learning
algorithms. IEEE Trans. Knowl. Data Eng., 17(3):299–310, 2005.

[12] X.-Y. Liu, J. Wu, and Z.-H. Zhou. Exploratory undersampling for
class-imbalance learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 39(2):539–550, 2009.

[13] V. López, A. Fernández, S. García, V. Palade, and F. Herrera. An insight
into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics. Inf. Sci., 250:113–141,
2013.

[14] F. J. Provost and T. Fawcett. Analysis and visualization of classifier
performance: Comparison under imprecise class and cost distributions.
In KDD, pages 43–48, 1997.

[15] H. Zhang and J. Su. Naive bayesian classifiers for ranking. In ECML,
pages 501–512, 2004.


