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Abstract—Call data generated from mobile phones reflect a
social network structure. Analyzing the topology, behavior and
dynamics of such networks is one of the prevailing interests
in network science. We propose to analyze call networks as
a spatio-temporal evolutionary stream. Initially, we explored
some of the dynamics of call activity in evolving call networks.
To overcome the space and time limitations of analyzing
massive call networks, we made use of sampling algorithms
to generate samples in real-time. We also discussed sampling
at a precise level of socio-centric and ego-centric network. We
delineated and evaluated some sampling methods and algo-
rithms. Analyzed the properties of evolutionary call network
and proposed some potential contributions in the realm of
sampling and exploring activity patterns. We also discussed
some prospective aspects of influence analysis such as family
influence.

1. Introduction

Mobile data is generated from a number of wireless sens-
ing and GPS enabled devices, regnant are mobile phones.
One of the fastest evolving data generating from these
mobile devices is Call data. Besides being spatio-temporal
in nature this data arrives continuously at high speed and
volume proportional to the number of devices. Batch pro-
cessing such data requires high cost in data warehousing
etc. Furthermore, the results may get antiquated. Stream
processing ceaselessly manipulates high speed data, while
maintaining the latest results. Ergo, we consider streaming
processing is an exemplary way of processing high velocity
data. It is one of the major challenges of data mining
community to learn from changing and evolving nature of
high velocity streams in real-time. Therefore, processing
streams typically require real-time incremental analytical
methods.

Over the past decade, researchers are interested in build-
ing a virtual world of connections, relationships, and in-
teractions of real world entities to study the complexities,
behavior and dynamics of networks formed by them. Most
of the works in social network analysis are based on social
networking applications, with a petty work in the field of
call networks. Our work would focus on social network
analysis of mobile data streams such as call network. We
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would focus on methods to analyze the evolution of high
velocity networked data, to deduce actionable patterns.

In the next section, we present some interesting results
and discuss some potential contributions in the scope of
understanding the dynamics of call activity patterns (section
2.1), sampling socio-centric networks (section 2.2), sam-
pling ego-centric networks (section 2.3) and influence anal-
ysis (section 2.4). In section 3 we derive some conclusions
and discuss future work.

2. Potential Contributions

2.1. Analysis of Call Activity Graph

We made use of an anonymised temporal call stream
of 300 million calls over 31 days made by 11 million
subscribers. On an average 10 to 280 calls are made during
mid-night and mid-day respectively. We modeled telecom-
munication call graphs as nodes corresponding to callers
and callees. The edges between them represent calls. We
weighted our samples based on frequency of calls.
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Figure 1. Evolution of nodes and edges in call graph stream

The snapshots of number of nodes and edges at the end
of each day, as the stream evolves over 31 days are shown in
Figure 1. The plot exhibits a high call activity on weekdays
and decreased call activity on weekends comparatively. We
also observe peeks on Fridays. Some users are active on
weekends while others are inactive. Some decreased call
activity on weekdays maps to the real-world holidays. We
can also detect real-time events based on the real-time
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streaming call activity patterns. As we exemplified above,
with the help of call activity patterns alone we can be able
to apprehend some insightful social behaviors from the real
world. When this kind of temporal network combined with
the spatial information can provide remarkable acumen in
the day to day activities of users/entities. The real-time
streaming scenario would make it more powerful.

2.2. Sampling Socio-Centric Network

Sampling is the process of selecting a subgraph from
an original graph to represent the characteristics of it, at a
given point of time. As real-time mobile streaming networks
are temporal, unbounded and huge to fit in memory it is
difficult to analyze them with a commodity machine. We
need real-time evolving samples that can represent the huge
networks, while maintaining a trade-off between accuracy of
results and cost of computation over huge networks. What
if we have a real-time evolving sample of the stream with
the similar properties and topology of the original graph?
There are a number of algorithms proposed for sampling
of streams [1], [2], [3], and [4] etc. However, there are no
solutions to match all the properties of graphs. If the sample
matches few properties, which sample would yield proper
estimates for directed and weighted evolutionary graphs? In
this section, we refer to the work we carried out in [5].
We implemented three sequential algorithms, space saving
[6], reservoir sampling [1] and a biased random sampling
algorithm [5] to generate sample streams in real time. These
algorithms are briefed below.

2.2.1. Space Saving Algorithm. The Space Saving Al-
gorithm (SSA) [6] is the most approximate and efficient
algorithm for finding top frequent elements from the stream.
The algorithm maintains partial information of interest as
it monitors only a subset of elements from the stream. It
maintains counters for every element in the sample and
increments its count when the element re-occurs in the
stream. If a new element is encountered in the stream it
is replaced with an element with the least counter value and
its count is incremented.

2.2.2. Reservoir Sampling. This is a well known algorithm
of Reservoir Sampling (RS), denoted as Algorithm R in [1].
The author mentioned in his work that all the algorithms us-
ing a reservoir of elements from the original data to generate
samples are a kind of reservoir sampling. In algorithm R the
author maintained a reservoir of elements with a predefined
sample size. In the streaming scenario, initially the reservoir
is filled with the initial elements from the stream. Every
element after that, is computed for the probability of being
inserted and a random number is generated to pick an
element already in the sample. If the probability of the
new element is greater than the probability of the selected
element then the new element replaces and old one, if not
it is discarded. By the end every element in the sample
is selected with equal probability. Consequently, the items
are inserted into the reservoir with decreasing probability.
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Therefore, it leads to samples with very old items from the
stream, as also discussed in [4].

2.2.3. Biased Random Sampling. We have known the ran-
dom sampling techniques with all the elements in the sample
with equal probability. In this section we present a biased
random sampling technique which we have discussed in [5]
where we sample items/objects with unequal probability.
Biased Random Sampling (BRS) is based on the idea of
reservoir sampling but it ensures that every item in the
stream definitely enters the reservoir. As a general initial
step, the reservoir is filled with the first items from the
stream. Then, we do not compute the probability of later
items, as every item definitely enters stream. For replacing
an item already in the sample, a random number r is
generated, where 1 < r < sizeofreservoir. The element at
the position of random number is replaced with the new item
from stream. Here the probability of every item entering
the reservoir is equal as every item enters the stream, but
the probability of every item in the reservoir is not equal.
Hence, this technique is biased towards new items from the
stream. It can be used in the scenarios where old items are
considered stale or not useful.

Below we present two methods we used for implement-
ing the above algorithms. One is the node based method and
the other is an edge based method.
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Figure 2. Graph metrics over samples



2.2.4. Node Based Method. Node based methods in gen-
eral, sample a set of nodes from the original graph. The
resultant samples contain a set of vertices from the graph
stream and showing no connections between them. The
samples posses only nodes and no structure, therefore we
also acquire the corresponding edges of nodes in real time.
As the number of edges incident upon the sampled nodes
increases, so are the adjacent nodes. As a result, we have a
subgraph with increased number of nodes, derived from the
associated edges. The time for computation of such methods
also increases substantially with the added time for acquiring
edges and their corresponding nodes.

2.2.5. Edge Based Method. As the name suggest, these
samples are generated by selecting a subset of edges from
the original graph. The resultant graph is a subgraph of
original graph with nodes and edges. The algorithms that
can be implemented in the node based method, can also be
implemented using edge based method in our scenario.

For conducting experiments we used the call network
stream described in section 2.1. We employed a number of
graph metrics over the sample snapshots at the end of 31
days streams, which are depicted in figure 2 and 3. From the
above experiments we observe that, RS is biased to nodes
with low degree centralities and BRS and SSA nodes exhibit
higher degree centralities compared to it. BRS best suits
for measuring weighted centralities based on frequency of
edges. Hence, it is also suitable for running real-time queries
for finding frequent items over the sample. BRS and SSA
sample communities with high average degree centralities
that shows a better community structure when compared
to RS. Therefore BRS and SSA would be more suitable
for applications exploring community structure. SSA and
BRS generates samples with better component structure
compared to RS. RS and BRS has good performance with
runtime compared to SSA. For using samples to run queries
like top frequent items, SSA would be appropriate as it
samples top frequent edges, while not considering other
factors.

The above results suggests the biases of the implemented
algorithms in generating samples when compared to each
other and the topology of original graph. Nevertheless there
is more scope for comparing the above samples with the
ground truth of the original network stream at any point of
time, which requires highly scalable techniques. One of the
prospective work is to determine what percentage of samples
yields what percentage of accurate results. Furthermore
the network is always growing and we need to generate
relatively growing samples.

2.3. Sampling Ego-Centric Network

An ego centric network maps the relationships of an
ego with alters and also between themselves. In [7], [8],
[9], [10] the authors discuss the importance and properties
of ego network. [11] proposed an ego-centric network sam-
pling approach for viral marketing applications. The authors
employed a variation of forest fire algorithm for sampling
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Figure 3. Degree distribution of samples

ego network. They compared the degree and clustering
coefficient distribution of sampled ego networks with the
original ego network.

Capturing the ego networks of high velocity streaming
graphs over a period of time is highly infeasible as it can
reach over millions of redundant edges for an active user in
few days. Sampling techniques are generally used to create
representative specimens of large scale socio-centric tem-
poral networks. In this section, we refer to our edge based
sampling method with forgetting factor over an evolving ego
network (SEFF) introduced in [12]. SEFF method samples
ego networks as they evolve, while maintaining the freshness
of the ego network, with the latest ties and most stronger
relationships from past, based on an attenuation factor. We
also made use of an exhaustive list of node level and graph
level metrics to evaluate and compare the samples with the
original network.

2.3.1. Sampling Ego Network with Forgetting Factor.
This method starts by building an ego network of specific
ego and begin to scrape together all the adjacent ties to the
ego and their adjacent ties (depth=2). This is done by using
a set for storing adjacent nodes. For every recurring edge,
the edge weight of the corresponding edge is incremented
by maintaining in a hash table. A forgetting factor is im-
posed over edges, following successive grace periods. In our
experiments, we use a grace period of 1 day. This means we
apply the forgetting factor over the ego network as soon as
the stream enters a new day, i.e we forget the old edges each
of a kind (i.e edges between a pair of nodes), by some fixed
percentage defined by the forgetting factor. The forgetting
factor is given by two parameters, an attenuation factor o
and a threshold . Where 0 < o < 1 and also 0 < 0 < 1.
After every grace period or update time ¢ the tie strength
between two nodes is given by the equation 1.

6]

where wy is the tie strength between any two nodes in the
ego network at time ¢. After every successive grace period,
the edge weight is decreased by « and consequently the
alter/alters adjacent to the corresponding edge are removed
if the edge weight decreases than the threshold value 6.
a=1 gives maximum forgetting i.e it forgets the whole

Wy = Wy + (1 — O{)'wt,1
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Figure 4. Metrics over ego networks with and without forgetting factor

network except the network of current day. o = 0 gives
the original network. If the removed edge corresponds to
an alter adjacent to the ego, the adjacent alter gets removed,
along with the second level alters adjacent to the alter itself,
if the above condition is satisfied. If the removed edge is
a second level edge, not having a direct connection to ego
then the corresponding node alone is removed. Following
this strategy, we get the most active alters in the ego network
at the end of each day.
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Figure 5. Efficiency and effective size of ego networks

2.3.2. Experimental Evaluation. The experiments are con-
ducted using the real-world stream of call network described
in section 2.1. Sample streams are generated over 31 days
for different values of o and 6. We made use of an extensive
list of metrics to compare the sample snapshots with the
original network as shown in Figures 4 and 5. We observed
that the SEFF method preserves the efficiency of network

and importance of ego while decreasing redundancy in the
network.

As a proposed work, we intend to analyze the evolution
of ego network over a time period of 31 days or more and
compare the evolving samples with the degree distributions
of all the nodes in an ego network. The prospective work
also involves analyzing the evolution of a number of egos
with different properties such as an ego with high degree
centrality, betweenness , closeness etc.

2.4. Influence Analysis

Discovering sets of key players and analyzing their
influence is also one of the vital problems in social net-
work analysis. In this phenomenon some nodes can have
intrinsically higher influence than others due to network
structure. The global measures are often associated with
nodes in the network rather than edges. The edges are rather
associated with the strength of relationships between nodes.
[13] discusses the importance of Influential analysis. We
would consider the edge based and node based measures to
analyze the influence, such as determining the pivotal nodes
with top tie strengths as shown in Figure. 6. In this figure,
we depict a sample snapshot of 10* top frequent edges using
[6] algorithm from an evolving call network at the end of
31 days. The above graph is illustrated using Fruchterman-
Reingold layout algorithm [14]. We can observe few dense
connections in the center of the graph and many sparsely
connected nodes at the periphery. Additionally, we propose
to analyze the cascading behavior and strength of mutual
exchange of information between nodes.
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Figure 6. Sample of top frequent 104 edges

We also propose to analyze a novel aspect of behavioral
influence, i.e. family influence, where people in a family are
influenced by each other. A family can be people sharing
common geographical location. This aspect can be applied
to churn prediction in call networks. Where one node quit-
ting the network greatly influences other nodes in its family.
Analysis of user preferences in mobility networks is also a
part of our future works.

3. Conclusion

We have discussed above our potential contributions
in the area of mobile streaming networks’ analysis. We
analyzed the call network to understand and extrapolate
the behaviors of users. We discussed how the temporal
and spatial nature of mobility networks will be helpful in
detecting the real-time events and activities. We presented
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some results and outlined possible interesting perspectives in
the sphere of sampling and Influence analysis. We identified
some potential endeavors, such as implementing and devel-
oping techniques for generating evolving samples, evalu-
ating the samples by comparing the distributions of node
measures with the ground-truth, analyzing the streaming
ego networks for different positional nodes and examining
the behavioral influence and information diffusion between
nodes. We have also briefed some interesting concepts such
as sampling evolving ego networks and family influence for
churn prediction.
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