
ar
X

iv
:2

10
3.

06
98

0v
2

 [
cs

.D
C

]
 1

9
Fe

b
20

22

Learning to Optimize DAG Scheduling in

Heterogeneous Environment

Jinhong Luo‡†∗, Yunfan Zhou†§∗, Xijun Li†, Mingxuan Yuan†, Jia Zeng†, and Jianguo Yao‡,
‡Shanghai Jiaotong University
†Huawei Noah’s Ark Lab

§Chinese University of Hong Kong (Shenzhen)
∗Equal contributions

1
Abstract—Scheduling job flows efficiently and rapidly on

distributed computing clusters is one of huge challenges for daily
operation of data centers. In a practical scenario, a single job
consists of numerous stages with complex dependency relation
represented as a Directed Acyclic Graph (DAG) structure. Nowa-
days a data center usually equips with a cluster of heterogeneous
computing servers which are different in the hardware/software
configuration. From both the cost saving and environmental
friendliness, the data centers could benefit a lot from optimizing
the job scheduling problems in the heterogeneous environment.
Thus the problem has attracted more and more attention from
both the industry and academy. In this paper, we propose a
task-duplication based learning algorithm, namely LACHESIS

2,
aiming to optimize the problem. In the proposed approach, it
first perceives the topological dependencies between jobs using a
reinforcement learning framework and a specially designed graph
neural network (GNN) to select the most promising task to be
executed. Then the task is assigned to a specific executor with
the consideration of duplicating all its precedent tasks according
to an expert-designed rules. We have conducted extensive experi-
ments over standard workloads to evaluate the proposed solution.
The experimental results suggest that LACHESIS can achieve at
most 26.7% reduction of makespan and 35.2% improvement of
speedup ratio over seven strong baseline algorithms, including
the state-of-the-art heuristics methods and a variety of deep
reinforcement learning based algorithms.

Index Terms—DAG Scheduling, Task duplication, Deep Rein-
forcement Learning

I. INTRODUCTION

With the rapid development of parallel and distributed

computing, scheduling job flows efficiently and rapidly on

distributed computing clusters (i.e., data center) has become

a vital problem. Because a little improvement in execution

efficiency of the distributed computing clusters could both

lead to huge increases in service providers’ profits and large

improvement of Quality of Service (QoS) for clients [1]. For

this purpose, we are supposed to assign jobs to a suitable com-

putation resource (also called executor) within the distributed

system to complete jobs as soon as possible while meeting all

requirements of service.

Specifically, in the typical jobs scheduling problem, a job

to be scheduled consists of many stages (also called tasks)

among which there is a determined dependent relationship.

A Directed Acyclic Graph (DAG) is utilized to describe the

1Xijun Li is the corresponding author.
2The second of the Three Fates in ancient Greek mythology, who deter-

mines destiny.

above dependency. The job is said to be completed once its all

tasks have been finished on executors following the given de-

pendency. The goal is to finish on-the-fly jobs within a cluster

of homogeneous executors with one or more metrics of interest

(e.g., makespan, average complete time, etc.) via assigning

each task to an appropriate executor subject to all dependencies

between tasks. The job scheduling problem within homoge-

neous executors has been proved NP-hard [2]. However, the

heterogeneous computation has become the mainstream infras-

tructure of cutting-edge distributed computing clusters, which

requires us to consider the differences among the executors

when scheduling jobs to these heterogeneous executors. The

differences between these heterogeneous executors might be

the computation, communication capacity, etc., which greatly

increases the complexity of the scheduling problem.

Many previous works have been proposed to solve the

DAG scheduling problem under different settings, which

fall into two categories, heuristics, and learning-based al-

gorithms. Generally, heuristics mainly include list schedul-

ing [3], cluster-based scheduling [4], and task duplication-

based scheduling [5]. List scheduling [3] divides the schedul-

ing process into two-phase work, task selection, and executor

allocation. Cluster-based scheduling [4] clusters the tasks

by heuristic rules to resolve the dependencies and assigns

different task clusters to specific executors by the assignment

strategy. Task duplication-based scheduling [6] duplicates

tasks properly to reduce communication costs to minimize the

completion time of all jobs. Furthermore, the task duplication

technique can be combined with list scheduling or cluster-

based scheduling to improve the scheduling result. However,

the design of heuristics heavily relies on the experience of

human experts, almost not taking advantage of amounts of re-

dundant pattern and characteristics of the scheduling problem.

Thus, learning-based algorithms are proposed to address

the above issues. Mao et. al. proposed Decima algorithm [7]

that adopts a Graph neural Network (GNN) to learn the task

dependencies and executor real-time information first and then

decides the stage assignment. Besides, Sun et. al. proposed

a GNN-based architecture named DeepWeave [8], which re-

duces the Job Completion Time (JCT) by accelerating the

co-flow transmission while processing every single job stage.

Nevertheless, all above techniques neglect the development of

heterogeneous computation, which means they do not consider

the DAG job scheduling within a cluster of heterogeneous

http://arxiv.org/abs/2103.06980v2

executors.

Thus, to optimize the DAG Job scheduling problem,

LACHESISis proposed in this paper. The major challenges is

summarized as follows. First, we have to tackle the complex

dependencies among job stages, which requires the algorithm

to comprehensively perceive the topological structure of jobs.

Second, the state information in a scheduling problem is large-

scale and dynamic, since hundreds of jobs are continuously

submitted by clients to the distributed system. Third, the

heterogeneity of executors makes the calculation of an optimal

solution very difficult. To address the above challenges, a task-

duplication-based learning algorithm named LACHESIS is

proposed, which incorporates GNN with an elaborated heuris-

tic in a two-phase scheduling framework. In the first phase,

LACHESIS perceives the dependencies between all existing

tasks using a specially designed GNN, followed by a policy

network to select one task to be executed. Then a heuristic

method is designed to assign the task to the most ’appropriate’

executor and meanwhile decide whether to duplicate all its

precedent tasks or not.

The technical contributions of this paper can be summarized

as follows:

• We define a DAG job scheduling problem in a heteroge-

neous environment, where the executors might differ from

each other with respect to capabilities of computation and

communication. Meanwhile, the task to be executed in

the environment is allowed to be duplicated over multiple

executors.

• We design a task-duplication based learning algorithm,

which incorporates the GNN with heuristics in a two-

phase framework. The two phases are in charge of task se-

lection and executor allocation respectively. Specifically,

in the first phase, we adapt the GNN in order to deal

with DAGs of arbitrary shapes and sizes and complex

dependencies. Besides, the heuristics used in the second

phase consider the duplication of tasks over multiple

executors.

• We evaluate the proposed algorithm with extensive exper-

iments. The experimental results show that our approach

achieves at most 26.7% reduction of makespan and

35.2% improvement of speedup ratio over seven strong

baselines.

The remainder of this paper is organized as follows. The

previous works are discussed in Section II. A formal definition

of the problem is given in Section III. Our approach to solving

the problem is presented in Section IV. The experimental

results are reported in Section V, followed by conclusion in

Section VII.

II. RELATED WORK

Many works has been contributed to solve the DAG schedul-

ing problem with both heuristic and machine learning methods.

Domain Resource Fairness (DRF) [9] algorithm schedules

different types of resources to satisfy several highly desirable

properties, especially fairness. The Shortest Job First (SJF)

algorithm schedules the shortest job preferentially. Tetris [10]

schedules many types of executors with an analog of shortest-

running-time-first to trade-off cluster efficiency for speeding

up individual jobs.

List scheduling is widely used for DAG scheduling. Het-

erogeneous Earliest Finish Time (HEFT) algorithm [3] is a

highly efficient list scheduling algorithm. Specifically, HEFT

prioritizes the task with a high-level feature and allocates

executors for tasks with a heuristic search algorithm. Besides,

Critical Path on a Processor (CPOP) algorithm [3] is another

list scheduling algorithm which allocates the fastest executors

for the tasks on critical path and matches other executors

with other tasks. Moreover, the Dynamic Level Scheduling

(DLS) algorithm [11] chooses a pair of tasks and executors

which maximize a dynamic attribute combined with tasks and

executors, which is also a list scheduling algorithm.

The scheduling policy is able to duplicate some tasks to

save time for data communication in task duplication scenario.

Task Duplication based Scheduling (TDS) algorithm [6] uses

clustering scheduling method to generate a schedule only

considering duplicating the critical parent task. Duplication

First and Reduction Next (DFRN) algorithm [12] based on list

scheduling method duplicates the task firstly and reduces the

redundant task secondly. Task Duplication based Clustering

Algorithm (TDCA) [13] generates a schedule through four

steps: cluster initialization, task duplication, process merging,

and task insertion.

Different from the aforementioned heuristic algorithms,

learning-based algorithms including Reinforcement Learning

(RL) [14], Deep Learning (DL) [15] etc. are proposed to solve

DAG scheduling problem. Decima [7] using RL to train a deep

neural network to schedule the jobs on spark cluster. However,

Decima only handles the scheduling in homogeneous environ-

ment and detachable jobs without considering data transmis-

sion time existing in jobs. Furthermore, task duplication is not

supported by Decima. DeepWave [16] proposed by Sun et. al.

also uses RL to train a neural network to schedule coflow in

job DAG in order to reduce Job Complete Time (JCT). Ni

et. al. proposed Dream [17] which places a data processing

node on a suitable resource to maximize the throughput of the

whole process using GNN and RL.

III. PROBLEM DESCRIPTION

DAG scheduling problem in heterogeneous environment

widely exists in distributed computing systems. The jobs to

be executed are continuously submitted by clients to the

distributed system which is composed of heterogeneous ex-

ecutors. In particular, each job consists of tasks, in which there

are determined dependencies. One task could be executed on

one executor if 1) all its precedent tasks have been finished

and 2) corresponding data needed is available. A job is said

to be completed if all tasks of it have been finished by

corresponding executors. One is supposed to appropriately

assign tasks to executors in order to complete on-the-fly jobs as

soon as possible while meeting all requirements of scheduling.

Specifically, the goal of this work is to minimize the makespan.

A relatively formal problem description is given below. For

TABLE I: Notation of all variable used in this paper

symbol description

J job (DAG)
n task (DAG node)
wi the computation size of node ni

j(ni) node ni’s job
ϕ(ni) node ni’s parent nodes
ξ(ni) node ni’s children nodes
γ(ni) edges connecting node ni and its children nodes
At the set of executable nodes at time t
eij the size of data transferred from node ni to node nj

rk the executor in system
vk the processing speed of executor rk
Rnp the set of executors allocated for node np

q
j
n node score
cij the transmission speed between executor ri and executor rj
f, g, q non-linear functions

x
j
n node feature vector

a
j
n edge feature vector

e
j
n per-node embedding
EST the earliest start time
AST actual start time for job (node)
EFT the earliest finish time
AFT actual finish time for job (node)

ease of reading, we summarize all variables used in this paper

in Table I.

Definition 1 (Actual Finish Time): AFT (ni, rk) represents

actual finish time for node ni executed on executor rk, which

can be calculated as follows:

AFT (ni, rk) = AST (ni, rk) +
wi

vk
(1)

where AST (ni, rk) denotes actual start time for node ni is

executed on executor rk.

Definition 2 (Earliest Start Time): EST (ni, rj) represents

the earliest start time for node ni executed on executor rj ,

which can be calculated by:

EST (ni, rj) = max
np∈ϕ(ni)

(min
rp∈Rnp

AFT (np, rp) +
ep,i

cp,j
) (2)

EFT (ni, rj) = EST (ni, rj) +
wi

vj
(3)

Obviously, the earliest start time and the earliest finish time

depends on actual finish time of parent nodes and dependent

data transmission time.

Definition 3 (Makespan): Makespan is completion time of

the workload which is significant to execution efficiency of

the whole process. Our target in the DAG scheduling problem

is minimizing the makespan, which can be defined as follows:

Objective : min(makespan(Job)) (4)

where Job = {J1, J2, · · ·, Jk} represents the set of jobs in the

system.

The DAG scheduling problem can be illustrated as follows.

Given the dependency relations of tasks, the computation size

of the task, the size of data transferred between tasks, speed

of computation for executors, and speed of data transmission

for executors, the DAG scheduling is to schedule the tasks

on executors to minimize the makespan. In order to simplify

Fig. 1: A simple instance of a DAG-structured job. A node in

the DAG represents a job stage, which is composed of several

parallel tasks. Meanwhile, an edge is defined by the nodes it

connects and the size of data shuffled by it. In a DAG job,

only the nodes whose parent nodes are finished can be the

candidate of the next node chosen to be processed.

the problem properly, we assume that every task can be exe-

cuted by executors successfully without considering execution

failure. Furthermore, we assume that wi

vj
represents all time

for task ni executed on executor ri avoiding considering the

changes of the processing speeds of executors. In addition to

assumptions, the constraints of the problem are also signif-

icant to the scheduling process. And some constraints must

be satisfied in scheduling process. The constraints can be

demonstrated as follows:

1) Constraints for tasks: First, all tasks are atomic, and

they can’t be preempted by another task if they are running

on executors. Moreover, a task should be assigned to at least

one executor to be executed. If it is assigned to more than

one executor, the result of the same task executed on different

executors is also the same. The last, a task can be executed

by an executor until all of its dependencies are satisfied

and all data required is transferred to the assigned executor.

Finally, tasks can be noticed and processed if and only if the

corresponding job arrives at the system.

2) Constraints for executors: First of all, |R| ∈ N indicates

that the number of executors in the system is limited. Then,

every executor can only execute a task at the same time. In

other word, the execution of different tasks assigned on the

same executor is exclusive. Finally, vi 6= vj , i 6= j represents

that the processing speeds of executors may be different.

3)Constraints for communication: In the first place, result

data can only be transferred from one executor to another

executor after the task generating result data is completed.

In the second place, data transfer time is communication data

size divided by transfer speed between two executors if the

parent task and the children task aren’t assigned to the same

executor, and otherwise 0.

The main challenges of DAG scheduling in a heterogeneous

environment could be summarized as follows.

Complex dependencies. Data processing platforms and query

compilers such as Hive, Hadoop, and Spark-SQL create jobs

which usually have a DAG structure. Generally, the DAG is

complicated and arbitrary due to tens or hundreds of tasks

and countless data transmissions. An optimal scheduler should

ensure that the tasks are executed in parallel as much as

possible and no task is blocked by the dependencies of the

task under the condition of available executors. In order to

realize the above targets, the scheduling algorithm should

understand the complex dependencies of tasks and plan ahead

to assign the tasks to executors properly. Evidently, it is

of great importance to learn from the DAG structure for

designing an ideal scheduling algorithm. On the contrary, the

traditional algorithms just enqueue different available tasks

by a high-level attribute directly without taking advantage of

dependencies fully.

Heterogeneous environment. Executors within a large scale

cluster or cloud environment are usually heterogeneous, which

probably have different computing speed, memory size, and

transmission bandwidth. Furthermore, the difference in com-

puting speed may cause a huge difference in computation time

when executors deal with the same task. So allocating the

task to a suitable executor is able to reduce execution time.

Certainly, a naive idea is allocating all tasks to the fastest

executor to get minimum time of task execution. However,

the allocation strategy damages the parallelism of all task

execution process. Although it obtains minimum execution

time of a single task. In addition, the execution time of two

similar tasks executed by two slow executors parallel is not

less than executed by a fast executor when the processing

speed of the fast executor is twice the slow executor. Therefore,

an ideal scheduling algorithm should consider not only the

parallelism of execution but also the difference in processing

speed. In other words, the heterogeneity of executors makes a

huge room for improvement of efficiency of DAG scheduling

systems. Evidently, the task should be assigned to a specified

executor which is more complicated than assignment in a

homogeneous environment.

Continuous arrival of jobs. In addition to understanding

task dependencies and executor heterogeneity, an ideal DAG

scheduling algorithm should also deal with the situation

that many jobs arrive in the system continuously. For the

data processing platform, the jobs are submitted by differ-

ent clients randomly. Hence, the DAG scheduling algorithm

should schedule the tasks to executors continuously and plan

ahead for the future arrival jobs. The future jobs arriving at

the platform will change the current DAGs’ structure. On the

contrary, some existing algorithms only handle the situation

where all jobs arrive at the system at start time. They can

optimize the schedule result iteratively and modify the existing

assignment gradually due to the changeless DAGs. Therefore,

the DAG scheduling algorithm in continuous environment

should make an assignment immediately which would be

executed in time. Besides, every assignment decision should

be completed in a short period of time to avoid blocking the

execution of tasks.

IV. THE PROPOSED FRAMEWORK

This section presents the details of our proposed

LACHESIS. Specifically, LACHESIS is composed of two

parts: a GNN and a heuristic algorithm, which is correspond-

ing to the two phases of the scheduling process, namely

the node selection phase and the executor allocation phase.

In the node selection phase, LACHESIS uses a GNN to

learn the complex relationship no matter tasks in the same

job or in different jobs. In the executor allocation phase,

LACHESIS uses a heuristic search algorithm to assign the

selected task to a suitable executor and decide to duplicate the

corresponding task or not. Finally, we adopt a reinforcement

learning paradigm to train LACHESIS as an entirety. As

scheduling DAG jobs, LACHESIS repeats the above process

until all tasks are assigned to executors. In particular, this

kind of algorithm framework combine the advantages of RL

and heuristic method to ensure high decision quality and fast

inference, which can handle scalable task information and

heterogeneous executor states.

A. GNN Design

The GNN contained in the LACHESIS is mainly con-

structed by two parts, namely information embedding and

a fully connected feed-forward network. In this section, we

will focus on the detail of information embedding. Since we

adopt a reinforcement learning paradigm to train LACHESIS,

the information of jobs in the system should be properly

transferred to the LACHESIS to function as state information.

Obviously, the most naive idea is to construct a flat vector

with all features of a job to represent the job in the system.

However, a flat vector is incapable to represent the complicated

relationship between different job stages. Hence, a information

embedding process is leveraged to generate a representation

consisting of all the useful information.

Before concentrating on the process of information em-

bedding, it is significant to choose useful features for a job

stage as raw information. Evidently, good features of nodes

may help the model represent DAG information clearly. And

some high-level features such as rankup and rankdown can

represent the DAG information about the task, which are

beneficial to the GNN to process the problem structure. For

instance, rankup and rankdown, which can be calculated as

Eq. (5) and (6) respectively, represent the length from the

node to exit node (the node without children nodes) and the

length from the task to the entry node (the node without

parent nodes) [3] respectively. In other words, the two features

indicate the approximate position of the belonging DAG for

the corresponding node. In particular, the job attributes contain

the number of left tasks and the sum of average execution

time for left tasks. Moreover, the node features contains all

the features from the corresponding job such as the average

Fig. 2: Node embedding in a DAG job. For a certain em-

bedding node, the information contained in its children nodes

and edges connecting them is aggregated and transferred in a

two-level neural network.

left execution time, the average time cost of incoming data, the

average time cost of outgoing data, rankup, and rankdown.

rankup (ni) =
wi

v̄
+ max

nj∈ξ(ni)

(

ei,j

cij
+ rankup (nj)

)

(5)

rankdown (ni) = max
nj∈ϕ(ni)

(

rankdown (nj) +
wj

vj
+

eji

cji

)

(6)

In Eq. (5), v means the average speed of all executors, and

eij indicates the data size transferred from node ni to node

nj . Generally, the rankup value of node ni equals the average

execution time of itself adding the maximum value of the sum

of communication cost and the maximum rankup of children

nodes. Hence, rankup value is the maximum execution time

for the paths from the node to exit node. Similarly, rankdown

value represents the maximum execution time for the paths

from the entry node to the corresponding node. The above

process is shown in Figure 2.

The information embedding is composed of two procedures:

node embedding and high-level summarization. In the node

embedding procedure, the computation of every node embed-

ding GNN layer can be expressed as follows:

e
j
n = g





∑

u∈ξ(n)

(

e
j
u

)



+ h





∑

u∈γ(n)

(

a
j
u

)



+ x
j
n (7)

In Eq. (7), vector xj
n represents the node attributes correspond-

ing to tasks in Job j. LACHESIS constructs a per-node em-

bedding (Gj , x
j
n) 7−→ ejn. Eq. (7) illustrates the fundamental

calculation operation of GNN of LACHESIS. Similarly, the

per-job embedding and global embedding can be calculated as

Eq. (7). Node embedding leverage the connectivity of DAG to

pool the information to each node. By stacking node embed-

ding GNN layers together, a node can eventually incorporate

information from across all the reachable nodes. However,

node embedding is incapable to aggregate the information for

a whole DAG job or a cluster of DAG jobs. Thus, we design

the high-level summarization to tackle this flaw, as shown in

Figure 3.

Fig. 3: High-level summarization of DAG jobs’ information.

Nodes’ information is pooled to generate DAG summaries.

And all DAG summaries are passed through a neural network

to generate a global summary.

Fig. 4: Framework of the GNN used in LACHESIS. Job

information and executor information is the input of the GNN.

Furthermore, the job information is incorporated to three

different dimension representations. Finally, the GNN outputs

the probabilities of each candidate job stage being selected.

After this multi-layer data processing, we get the three

different dimension representations of the jobs in the system.

Next, those representations are computed through a fully

connected feed forward network, outputting initial scores for

candidate nodes. Then, a softmax layer is used to compute

the probability of every node with the obtained scores. The

probability of every node can be calculated as follows:

P (n) =
exp

(

qin
)

∑

u∈At
exp

(

q
j(u)
u

) (8)

In Eq. (8), P (n) represents the probability of the node n

and qin represents the score for the node n in job Ji. And

At indicates the executable node set for current state which is

computed at every node selection step. All above procedures

are depicted in Figure 4.

After the process of GNN, the scheduling algorithm is able

to select the next node based on current information which

is a key part of the whole algorithm. Then, the selected node

is supposed to be assigned to a suitable executor to minimize

finish time of the node. Evidently, we can get a good schedule

with a small makespan if we minimize the finish time of every

node at every assignment step.

B. Executor Allocation

Assigning a node to a suitable executor is another important

step for the whole scheduling process. Obviously, a simple

idea is making use of a neural network model to deal with node

information and executor information to select a pair of nodes

and executors at the same time. It handles the task and executor

information together to generate an assignment pair which

can be executed directly without other computation. However,

the decision space of the neural network model would be the

product of executable tasks and available executors which are

too large to converge to a stable state. Therefore, we design

a two-phase algorithm to cope with the problem which is

capable of reducing the decision space, which includes the

node selection phase and the executor allocation phase. In

the first place, in the node selection phase, the algorithm

only focuses on handling job information without considering

executor information. In the second place, in the executor allo-

cation phase, the model only makes decisions about executor

information with the determinate selected node.

A heterogeneous environment makes the executor alloca-

tion more difficult than that in a homogeneous environment.

Considering task duplication, task assignment should bal-

ance the computing cost and communication cost. In fact,

heterogeneous executor information is standard and easy to

deal with if the next node is determined. Therefore, we

choose a heuristic search algorithm to allocate an executor

for the selected node by considering execution efficiency.

Task duplication should be considered under many conditions.

Apparently, duplicating a task on different executors will

probably reduce the earliest start time for the children tasks

directly by saving communication cost. Besides, duplicating

many tasks on different executors may also be beneficial to

reduce the makespan in some cases. However, the online job

processing procedure requires the algorithm to deal with the

jobs as soon as possible. And the assignment generated by

the algorithm is not changeable because it may be executed

immediately. So it is not possible to optimize the assigned

schedule through trying different duplication schedules.

Considering the efficiency of execution and the continuous

execution model, we design the DEFT algorithm attempts

to try to duplicate one parent node of the selected node

to reduce the makespan avoiding duplicating multiple tasks

simultaneously in at a single assignment step. In order to

compute the earliest finish time of the selected node in task

execution mode, copy parent earliest finish time algorithm

(CPEFT) duplicates one parent of the select node on the

executor before computing. In some cases, the earliest finish

time in duplication execution mode is not less than that in

common execution mode. So DEFT algorithm comprised of

EFT and CPEFT is supposed to compare the result of EFT

with that of CPEFT to obtain the minimum result. The CPEFT

algorithm can be calculated as follows:

AFTC(nk, ni, rj) = min
rk∈Rnk

(

AFT (nk, rk) +
eki

ckj

)

(9)

CPEFT (np, ni, rj) = max
nm∈ϕ(ni),nm 6=np

[AFTC(np, ni, rj), AFTC(nm, ni, rj)] +
wi

vj

(10)

In Eq. (10), CPEFT attempts to duplicate each parent node

of the selected node to calculate the earliest finish time

and selects the minimum result. Rnp
is the set of allocated

executors for node np; AFT and AFTC are calculated as

Eq. (1) and Eq. (9). So DEFT can be calculated as follows:

DEFT (ni) = min

[

minEFT (ni, rk) , min
np∈ϕ(ni)

CPEFT (np, ni, rj)

]

(11)

In Eq. (11), the DEFT algorithm selects the minimum result

in the results of EFT and CPEFT, which ensures that the

result is the minimum one no mater duplicate the parent node

or not. Appendix (Section VI) provides the details of DEFT

algorithm. Briefly, the heuristic algorithm DEFT searches all

the executors and selects the earliest finish time assignment

considering task duplication.

The heuristic algorithm makes the selected node matched

with a suitable executor through two loops in a short time. In

summary, we can calculate an assignment for a node through

the node selection phase and the executor allocation phase.

C. Algorithm Training

Training the aforementioned algorithm model to suit the

continuous execution environment is an intractable problem

for LACHESIS. LACHESIS assigns a node to an executor

at one step, and it repeats this procedure until all nodes

are assigned. Once a node is assigned to an executor, the

algorithm will decide the next node based on updated in-

formation about jobs and executors. The timing to execute

the scheduling algorithm in the continuous execution mode

is significant. The scheduling algorithm should interact with

the scheduling events because it can’t schedule tasks all the

time. In particular, the scheduling events happen when a job

arrives at the system, a task is completed by executor and

the system contains unassigned executable tasks. For each

scheduling event, LACHESIS probably schedules a task to

the corresponding executor and updates information of the left

tasks and executors.

RL training proceeds in episodes to optimize the objective.

Each episode contains many scheduling events and actions

generated by LACHESIS. We use T and tk to represent

the number of actions in an episode which can vary in

different episodes and the wall clock time for kth action

respectively. Usually, the RL framework requires a reward to

navigate the model to achieve the designed target. So after

every action, LACHESIS generates a reward of rk based on

the high-level scheduling objective in the training process.

For instance, LACHESIS penalizes the agent rk = −(tk −
tk−1) after the kth action if the objective is minimizing the

makespan. Minimizing the expected time-average of penalties

E[1
tT

∑T
k=1(tk − tk−1)] is the target of the RL reward.

LACHESIS uses synchronous actor-critic method [18] for

RL training. Specifically, this method uses an actor network to

choose the action and a critic network to score the potential se-

lection actions, which is more stable than one network method

for model training. In addition, all operations of LACHESIS

from GNN to the policy network are differentiable. We use

the following elements to illustrate the RL model concisely.

Algorithm 1: Training process for LACHESIS

1 Initialize the weights of actor µ (s | θµ) πθand critic

Qw

(

s, a | θQw
)

2 for each iteration do
3 Sample a job arrival sequence randomly
4 Sample episode length τ ∼ exponential(τmean)
5 Receive initial observation s1
6 for k = 1 to τ do
7 Select action ak = µ (s | θµ)
8 Execution action ak and observe reward rk, state

sk+1

9 Let yk = rk + γQ′

w(sk+1, µ
′(sk+1|θ

µ′

)|θQ
′

w)
10 Update critic by minimizing the loss:

L = 1

N

∑

i
(yi −Qw(si, ai|θ

Qw))2

11 Update the actor policy:
12 ∇θµµ|

ak
=

1

N

∑

k
∇θµµ

(

s | θβ
2
)

∇aQw

(

s, a | θQw
)

13 Update the target networks:
14 ∆θ ← ∆θ +∇θ log πθ (sk, ak)Qw(sk, ak)
15 end
16 τmean ← τmean + ǫ
17 θ ← θ + α∆θ
18 end

State (s): information about the system including the sum of

average execution time of left tasks, the number of left tasks,

average communication time, high-level features, etc.

Action (a): the action of selecting the next task.

Reward (r): rk = −(tk − tk−1) which minimizes the

makespan.

Provided that the agent collects the observation (sk, ak, rk)
in the episode which has T actions. LACHESIS uses the

actor-critic method to update the parameters θ of the policy

πθ(st, at) as follows:

θ ← θ + α∇θ log πθ (sk, ak)Qw (sk, ak) (12)

In Eq. (12), α, Qw (sk, ak), and log πθ (sk, ak) represent

the learning rate, the score generated by the critic network

for current (sk, ak) and the various directions of the action

ak on the state sk in the parameter space. Briefly, the goal

of the equation is to get a better-than-average reward through

changing the probability of the task being selected based on

the score. The pseudo code in Algorithm 1 provides more

details about algorithm training.

V. EVALUATION

A. Implementation

We implement LACHESIS as a plug-and-play scheduling

service using Python, which can communicate with the data

processing platform. Usually, the data processing platform

consists of a master node and many resource nodes. The

resource node executes the tasks dispatched by the master node

and reports information about the resource node to the master

node through the node manager which is an application in

the resource node. Similarly, the resource manager dispatching

tasks is an application of the master node.

Fig. 5: Actor-critic training framework of LACHESIS.

The running procedure of the data processing platform

with a LACHESIS agent can be described as follows. First

of all, clients submit jobs to the data processing platform.

Then, the resource manager sends information about jobs and

executors to LACHESIS agent and gets an assignment for the

next task from LACHESIS. Next, the resource manager dis-

patches the task to the corresponding resource node based on

the decisions of LACHESIS agent. Particularly, the resource

node reports the execution status to the master node with

heartbeats. Therefore, LACHESIS can be easily integrated

into the data processing platform as a plug-and-play module.

LACHESIS agent only gets information from the master node

and computes an assignment for the next task. The information

that the master node transfers to LACHESIS agent is state

observation and resource status. State observation is described

in Section IV-A. Resource status contains available execution

time of the executor and the list of executed tasks on the

resource node.

As for the detailed implementation of GNN in LACHESIS

, it consists of a three-layer modified graph convolution neural

network which uses the technique of sharing parameters.

Specifically, each layer only contains two non-linear function

f(·) and g(·). Besides, the policy network contains three hid-

den fully connected layers with 32, 16, 8 units on each layer,

respectively. As mentioned above, the RL neural network is

a light-weight model which infers the next task less than 30

ms in most situations. For the heuristic method DEFT, it will

cost M computations if it does not duplicate the parent nodes

where M is the number of executors. Considering duplicating

a parent node in every assignment step, it takes P ∗ M

computations where P is the number of parent tasks. So the

complexity of the assignment one task to executor is O(PM).
For all tasks in the system, the complexity of the whole process

is O(EM) where E is the number of edges.

A simulated environment for the data processing platform

is beneficial to the offline training of LACHESIS. Generally,

training the RL model in a real environment occupies many ex-

ecutors with a low speed for training. Therefore, we designed

a simulator for the data processing platform and trained our

model on it. The details of the simulator are demonstrated

in Appendix (Section VI). The RL model trained with the

simulator can be integrated with the true data processing

platform well to generate good assignments for the system.

B. Experiment Settings

Dataset. The experiment dataset is generated from TPC-

H workload [19], which is a decision support benchmark.

Specifically, the workload mainly contains TPC-H queries

which are executed on a real data processing platform. In

order to avoid processing the complex real environment, we

extract the key information about task dependencies and work-

load size from the workload and evaluate LACHESIS in the

simulated environment with the TPC-H workload. Because the

scheduling algorithm should be able to process jobs regardless

of scale, we evaluate it with small scale jobs and large scale

jobs. The jobs are selected from the TPC-H workload with

six size types (2, 5, 10, 50, 80 and 100 GB) and 22 different

job shapes. For the heterogeneous executors, we focus on

processing speed of executors. So we collect the frequency

of the Intel CPU range from 2.1 to 3.6 GHz. We simulate 50

executors in experiments and set computing speed from the

frequency table randomly to realize the heterogeneity. In order

to simplify the scheduling problem, we assume that transfer

speed is the same between different executors.

Compared baselines. Seven strong baselines are compared

with the proposed LACHESIS :

1) First-In-First-Out (FIFO) scheduling method. It executes

jobs based on an ascending order of arrival time that they arrive

at the platform. And the algorithm uses the DEFT algorithm

in the executor allocation phase.

2) Short Job First (SJF) scheduling method. It prioritizes

the executable tasks by an ascending order of arrival time

to generate the execution order. Similarly, the algorithm also

allocates the selected task to an executor through DEFT

algorithm.

3) HEFT algorithm. It is a high efficiency heuristic schedul-

ing algorithm in non-duplication and batch mode. It prioritizes

the tasks with high-level features rankup by a descending

order and allocates executors with the EFT algorithm.

4) TDCA algorithm. It makes use of duplication and clus-

tering techniques to minimize the makespan in batch mode.

5) A RL-based scheduling algorithm based Decima named

Decima-DEFT. It combines the task selection method from

Decima and the DEFT heuristic algorithm.

6) A high rankup first scheduling algorithm. It selects the

next task based on the rankup feature. It also uses a DEFT

algorithm to allocate executors for the selected task.

7) A high response ratio next (HRRN) algorithm. It selects

the next task by the ratio twait

twait+texecution
where twait rep-

resents the wait time and texecution represents the execution

time. DEFT is used for the executor allocation in the algo-

rithm.

Metrics. We use makespan, speedup, and schedule length

ratio to measure the performance of the scheduling algorithms.

Evidently, different metrics can be used for measuring the

performance in different angles. Specifically, makespan is the

completion time of all jobs, and the speedup value is sequential

execution time divided by actual execution time in batch mode.

The sequential execution time is computed by assigning all

tasks to the fastest executor. The actual execution time is the

0 100 200 300 400 500 600 700 800
Episode

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Lo
ss

Lachesis

Fig. 6: Learning curve of the proposed algorithm

time of the generated schedule, also called makespan. The

speedup value can be computed as follows:

Speedup =
minpj∈Q

{
∑

ni∈N wi,j

}

makespan
(13)

In Eq. (13), the numerator is a determinate value for the

same executor environment. Therefore, higher speedup value

represents less actual execution time which is a better schedule

result. Average speedup value is the average result of speedup

value, which is used in our experiment to measure the exper-

iment result.

It is necessary to normalize the schedule to compare the

performance between different jobs. And the schedule length

ratio (SLR) is the makespan of the actual schedule divided

by the lower bound execution time, which can normalize the

scheduling result. The SLR value of a schedule on the jobs

can be defined as follows:

SLR =
makespan

∑

ni∈CPMIN
minpj∈Q {wi,j}

(14)

In Eq. (14), the denominator means the sum of execution

time for allocating nodes on the critical path (CPmin) to

the fastest executor. And the critical path of a DAG is the

minimum length of entry node to exit node. Besides, the

denominator of the fraction only depends on the DAGs and

executors without the influence of the scheduling algorithm,

which is the lower bound of the problem. Evidently, the

scheduling algorithm gets the lowest SLR result in a special

situation indicating that it is the best algorithm with respect

to performance. In our experiment, the average SLR is used

to measure the scheduling algorithm over different jobs.

C. Experimental Results

1) Convergence: Figure 6 shows the loss value of

LACHESIS decreases as episode increases on batch execu-

tion mode. LACHESIS ’s loss converges to a small value

gradually after 800 episodes. Every training episode only takes

less than 100 ms to handle with jobs arrived at the platform

in the beginning, which indicates the high efficiencies of the

simulator.

0 2 4 6 8 10 12 14 16 18 20

Number of jobs
1

2

3

4

5

6

Av
er
ag
e
M
ak
es
pa
n

1e6

TDCA HEFT Lachesis
FIFO-DEFT Decima-DEFT

(a) Average makespan

0 2 4 6 8 10 12 14 16 18 20

Number of jobs
0

1

2

3

4

5

6

7

Av
er

ag
e

Sp
ee

du
p

TDCA HEFT Lachesis
FIFO-DEFT Decima-DEFT

(b) Average speedup

0 2 4 6 8 10 12 14 16 18 20

Number of jobs
0

2

4

6

8

10

12

14

16

Av
er

ag
e

SL
R

TDCA HEFT Lachesis
FIFO-DEFT Decima-DEFT

(c) Average SLR

0 5 10 15 20 25 30

Time(ms)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Decima-DEFT Lachesis

(d) Decision time(ms)

Fig. 7: Experimental results under batch mode on small scale jobs

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of jobs
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

M
ak

es
pa

n

1e7

TDCA HEFT Lachesis
FIFO-DEFT Decima-DEFT

(a) Average makespan

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of jobs
0

5

10

15

20

25

Av
er

ag
e

Sp
ee

du
p

TDCA HEFT Lachesis
FIFO-DEFT Decima-DEFT

(b) Average speedup

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of jobs

2

4

6

8

10

12

14

16

Av
er

ag
e

SL
R

TDCA HEFT Lachesis
FIFO-DEFT Decima-DEFT

(c) Average SLR

0 10 20 30 40 50 60 70 80

Time(ms)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Decima-DEFT Lachesis

(d) Decision time(ms)

Fig. 8: Experimental results under batch mode on large scale jobs

2) Batch mode: Here we measure the schedules gener-

ated by LACHESIS in batch mode using the aforementioned

metrics. In the batch mode, jobs arrive at the system in the

beginning and no jobs arrive in the future. The number of jobs

in the system ranges from 1 to 20 in a small scale experiment.

Besides, we select ten workloads for every different number of

jobs to examine the algorithms in order to reduce the inference

of randomness.

Figure 7a shows that the average makespan of LACHESIS

is less than the other four baseline scheduling algorithms.

Moreover, LACHESIS can reduce the average makespan of

the best baseline algorithm by 15.3% at most. The performance

of HEFT is close to that of Decima-DEFT, because the

duplication execution mode benefits a little for the makespan

in small scale situations. Furthermore, the makespan of FIFO-

DEFT is the maximum result in five comparing algorithms

because the algorithm only selects the next node by the

arrival sequence, which can’t utilize the dependencies between

different tasks. Noticeably, the result of TDCA is only better

than that of FIFO-DEFT indicating that TDCA may be not

suitable for this kind of job.

Figure 7b shows that speedup value of LACHESIS is the

maximum value within the five algorithms. This figure demon-

strates that LACHESIS is able to speed up the execution

process up to 6.8 times compared to the sequential execution

process. The speedup value ascends as the number of jobs

ascends, which demonstrates that the more executors are used

for execution tasks. Figure 7c reveals that the SLR Value of

HEFT, Decima-DEFT and LACHESIS are close to 1 and the

value of LACHESIS is the minimum value in five algorithms.

The SLR value of FIFO-DEFT and TDCA decreases a lot

when the number of jobs changes from 1 to 2 because the time

of the critical path increases rapidly. Figure 7d demonstrates

that 98% decision operation time of LACHESIS is less than

14ms, although it is about 3ms bigger than that of Decima-

DEFT algorithm.

Figure 8a shows that LACHESIS is also the best schedul-

ing algorithm within five scheduling algorithms. Furthermore,

LACHESIS reduces the makespan of the second algorithm

by 26.7% at most, which shows the advantage of LACHESIS.

We can notice that Decima-DEFT is better than HEFT in most

cases in our experiment. Maybe the reason for this situation

is that the duplication method of Decima-DEFT plays an

important role in reducing the makespan. In addition, FIFO-

DEFT is also the worst scheduling algorithm in large scale

experiment because it only adopts the arrival order.

Figure 8b shows that the speedup value of LACHESIS

exceeds the other four algorithms substantially. Especially, the

speedup value of LACHESIS exceeds the second algorithm

by 35.2% at most. Besides, the speedup value of FIFO-DEFT

is almost unchanged after the number of jobs is bigger than

20 due to the unreasonable makespan of the algorithm. Sim-

ilarly, Figure 8c indicates that LACHESIS is the minimum

value within all value of five algorithms. The SLR value of

LACHESIS and that of Decima-DEFT are between 1 and

2 indicating that the learning method is good for DAGs

scheduling situations. The SLR value of TDCA ascends with

the number of jobs ascends nearly because the critical path

of the special job is almost unchanged and the makespan

of TDCA increases. Figure 8d illustrates that 98% decision

operations of LACHESIS can be completed in 30 ms in batch

mode of large scale. Obviously, the decision time of two

learning algorithms increases with the number of jobs in the

system. LACHESIS is about 10ms slower than Decima-DEFT

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of jobs
2

3

4

5

6

7

8

9

Av
er
ag
e
M
ak
es
pa
n

1e6
HighRank *up SJF * HRRN *Decima * Lachesis

(a) Average makespan

0 10 20 30 40 50 60 70 80

Time(ms)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Decima-DEFT Lachesis

(b) Decision time(ms)

Fig. 9: Experimental results under continuous mode on large

scale jobs

algorithm.

3) Continuous mode: In continuous mode, the jobs arrive at

the system continuously and the scheduling algorithm needs

to schedule online with current job information. Therefore,

we let a job arrive at the system in the beginning and the

others arrive at the system continuously. In order to simulate

the arrival situation of data processing platform, we ensure that

the arrival interval is the Poisson distribution with an average

interval time of 45 seconds.

Figure 9a shows that LACHESIS is the best scheduling

algorithm compared with other four baseline algorithms in

most cases. In particular, SJF∗, HRRN∗, and HighRank∗
up rep-

resents SJF-DEFT algorithm, HRRN-DEFT, and HighRankup-

DEFT respectively. Apparently, LACHESIS is able to reduce

the average makespan of the second algorithm by 7.4% at

most. Moreover, HighRankup-DEFT is better than Decima-

DEFT after the number of jobs is bigger than 50, which

indicates that the node selection model of Decima-DEFT is

worse than that of HighRankup-DEFT. Besides, SJF-DEFT is

better than the worst algorithm HRRN-DEFT representing that

the shortest job first policy is better than the high respond

ratio next policy in the node selection phase. For the data

processing platform, scheduling decisions should be made

in time to avoid unreasonable wait time. Figure 9b shows

that LACHESIS completes 98% decision operation in 38ms.

Hence, LACHESIS is an efficient algorithm, although it is

about 15ms slower than Decima-DEFT.

VI. SUPPLEMENTARY MATERIALS

Due to the limitation of space, we put part of contents

in an external link, including the pseudo code of DEFT

algorithm, implementation of the simulator for LACHESIS,

parameter/hyperparameter setting of referred algorithms, etc.

Readers of interest can directly access the link.

VII. CONCLUSION

In this work, we propose a novel two-phase scheduling

algorithm named LACHESIS to address the job scheduling

problem in heterogeneous environments. Specifically, it deal

with node selection using reinforcement learning and copes

with executor allocation by means of a sophisticated heuristic

rules. The proposed LACHESIS could be as a plug-and-

play module in any kinds of data processing system which

is supposed to cope with job scheduling problem. Extensive

experimental results suggest that our proposed LACHESIS

greatly outperform the-state-of-the-art baselines in terms of

the efficiency and effectiveness.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter
as a Computer: An Introduction to the Design of Warehouse-

Scale Machines, Second Edition, 2013. [Online]. Available:
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of Books in the Mathematical

Sciences). W. H. Freeman, 1979.
[3] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-

complexity task scheduling for heterogeneous computing,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 13, pp. 260–274, 04
2002.

[4] T. Yang and A. Gerasoulis, “A fast static scheduling algorithm for dags
on an unbounded number of processors,” in Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, ser. Supercomputing ’91.
New York, NY, USA: Association for Computing Machinery, 1991, p.
633–642. [Online]. Available: https://doi.org/10.1145/125826.126138

[5] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: A survey,”
J. Supercomput., vol. 71, no. 9, p. 3373–3418, Sep. 2015.

[6] S. Darbha and D. P. Agrawal, “Optimal scheduling algorithm for
distributed-memory machines,” IEEE Trans. Parallel Distrib. Syst.,
vol. 9, no. 1, p. 87–95, Jan. 1998.

[7] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proceedings of the ACM Special Interest Group on Data Communi-

cation, ser. SIGCOMM ’19. Association for Computing Machinery,
2019, p. 270–288.

[8] P. Sun, Z. Guo, J. Wang, J. Li, J. Lan, and Y. Hu, “Deepweave: Ac-
celerating job completion time with deep reinforcement learning-based
coflow scheduling,” in Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence,
2021, pp. 3314–3320.

[9] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” ser. NSDI’11. USA: USENIX Association, 2011, p.
323–336.

[10] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proceedings of the

2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p.
455–466. [Online]. Available: https://doi.org/10.1145/2619239.2626334

[11] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures,”
IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 2,
pp. 175–187, 1993.

[12] Gyung-Leen Park, B. Shirazi, and J. Marquis, “Dfrn: a new approach
for duplication based scheduling for distributed memory multiprocessor
systems,” in Proceedings 11th International Parallel Processing Sympo-
sium, 1997, pp. 157–166.

[13] K. He, X. Meng, Z. Pan, L. Yuan, and P. Zhou, “A novel task-duplication
based clustering algorithm for heterogeneous computing environments,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 1,
pp. 2–14, 2019.

[14] R. Sutton and A. Barto, Introduction to Reinforcement Learning. MIT
Press.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[16] P. Sun, Z. Guo, J. Wang, J. Li, J. Lan, and Y. Hu, “Deepweave:
Accelerating job completion time with deep reinforcement learning-
based coflow scheduling,” 07 2020, pp. 3286–3292.

[17] X. Ni, J. Li, M. Yu, W. Zhou, and K. Wu, “Generalizable resource
allocation in stream processing via deep reinforcement learning,” CoRR,
vol. abs/1911.08517, 2019.

[18] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5,
pp. 834–846, 1983.

[19] TPC-H. (2021) The tpc-h benchmarks. [Online]. Available:
www.tpc.org/tpch/

https://xijun-doc.oss-cn-hongkong.aliyuncs.com/MDM2022_submisson/Appendix.eps
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi.org/10.1145/125826.126138
https://doi.org/10.1145/2619239.2626334
www.tpc.org/tpch/

	I Introduction
	II Related work
	III Problem Description
	IV The proposed framework
	IV-A GNN Design
	IV-B Executor Allocation
	IV-C Algorithm Training

	V Evaluation
	V-A Implementation
	V-B Experiment Settings
	V-C Experimental Results
	V-C1 Convergence
	V-C2 Batch mode
	V-C3 Continuous mode

	VI Supplementary Materials
	VII Conclusion
	References

