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Abstract—The proliferation of smartphone devices has led to
the emergence of powerful user services from enabling inter-
actions with friends and business associates to mapping, finding
nearby businesses and alerting users in real-time. Moreover, users
do not realize that continuously sharing their trajectory data
with online systems may end up revealing a great amount of
information in terms of their behavior, mobility patterns and
social relationships. Thus, addressing these privacy risks is a
fundamental challenge. In this work, we present TP 3, a Privacy
Protection system for Trajectory analytics. Our contributions are
the following: (1) we model a new type of attack, namely ’social
link exploitation attack’, (2) we utilize the coresets theory, a fast
and accurate technique which approximates well the original
data using a small data set, and running queries on the coreset
produces similar results to the original data, and (3) we employ
the Serverless computing paradigm to accommodate a set of
privacy operations for achieving high system performance with
minimized provisioning costs, while preserving the users’ privacy.
We have developed these techniques in our TP

3 system that
works with state-of-the-art trajectory analytics apps and applies
different types of privacy operations. Our detailed experimental
evaluation illustrates that our approach is both efficient and
practical.

Index Terms—serverless, privacy, mobile cloud

I. INTRODUCTION

The proliferation of smartphone devices has opened up

a new era of collaboration and sharing. With the advent

of the Internet of Things (IoT), the paradigm shift to-

wards interconnected devices and platforms has allowed

the gathering of more information about the environment

from heterogeneous sources and the exchange of infor-

mation with the real world. The IoT paradigm allows

for a renewed form of context-aware computing, where

applications interact with the user, and adapt their ser-

vices based on the prevailing user context. For instance,

trajectory-based systems such as Uber (https://www.uber.com),

Foursquare’s Swarm (https://www.swarmapp.com/) and DiDi

(https://www.didiglobal.com/) have enabled users to system-

atically share updates about their activities and whereabouts.

In these systems, users often contribute their user IDs and

timestamped locations in real-time, possibly enriched with

multimedia content, such as images, videos or text, in order to

track family members and friends, get rewards, or receive rec-

ommendations about places of interest. For the vast majority

of the individuals, there are several benefits from sharing their

whereabouts (e.g., friends trying to find each other in busy

places such as shopping centers or parks, parents tracking their

children locations for safety purposes or citizens earning free

parking time in smart cities1).

Trajectory Analytics. It has been shown that users is-

sue various types of queries to trajectory analytics appli-

cations while taking private leisure walks in public places

or while strolling with friends around the city, asking for

recommendations or other types of services, e.g. querying

for available taxis, which are performed by sharing their own

trajectories. The majority of these state-of-the-art works aim

at capturing human movement, dynamics, regularities [1] and

provide secure analytics [2] observing mobility patterns in

data streams, providing answers to questions regarding the

geographic movement of people (”where do they move?”) or

aiming to understand how social ties impact mobility patterns,

answering questions such as ”what the friends of a user can

reveal about the user’s mobility patterns” and ”how similar

users are based on their mobility” [3], [4]. A fundamental

insight in these works is that people exhibit strong periodic

behavior in their mobility patterns as they move back and forth

between their homes and workplaces [5], [6], and that user

mobility is shaped by our social relationships as we are more

likely to visit places that our friends and people with similar

interests have visited in the past or have shared common

activities with, a phenomenon known as social homophily [7].

Trajectory Privacy Preservation. Current trajectory ana-

lytics applications are crude, since users are asked to ”opt-

in” (thus allowing for disclosing possible sensitive data to

them) in order to receive higher accuracy, whereas in others

they may ”opt-out” and accept generic recommendations but

with much lower quality and accuracy. A typical operating

scenario of such applications employs a system for delivering

trajectories from users to data analysts, in order to be further

processed and returns a set of beneficial services for the users.

In the current big data ecosystem, it is typical to have direct

access to users’ private data, and they must be trusted not to

abuse it. However, this trust has been violated in the past2.

Additionally, as privacy preferences are subjective by nature,

only a small percentage of the users of these systems realize

the serious privacy implications that may arise and their extent.

An adversary, or third party, can extract social trajectory-based

1http://www.vavel-project.eu/
2https://www.eff.org/deeplinks/2015/01/healthcare.gov-sends-personal-data
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data to identify social ties among the users of these systems.

The adversary can further exploit the extracted information

to target individual users for marketing campaigns, monitor

their movements to compromise one’s personal safety, or even

act on behalf of a third company (i.e., an insurance company

that aims to extract personal biometric characteristics from

fitness applications, evaluate the health status of the users and

appropriately adjust their insurance rates [8]). The adversary

can also target groups of users with similar mobility patterns.

For example, it is known that location and mobility data are

examined by NSA to identify new (or unknown) members of

criminal gangs or terrorist cells of targets that already knows

about3. Or finally, groups of users can be exploited for targeted

advertising: advertising companies create targeted ad groups,

based on interests, lifestyles, demographics, geo-location or

mobility patterns. Similar examples can be found in mobile

alerting systems or social transportation systems [9] where

mobility groups are utilized for ride-sharing or to react to

disruptions of transportation services in real-time.

The serverless computing model. Recently, a new privacy-

preserving model for trajectories in Mobile Cloud Environ-

ments(MCEs) has been proposed, referred to as on-device

public-private TPP model [10], where user data is partitioned

into two parts: (a) a public part that can be shared with a data

analyst, and (b) a private part (on-device data) that is protected

from disclosure. The model conducts computations using

both private and public data on the user’s phone. However,

storing all the user trajectories in the phones is impossible

due to storage limitations and therefore, unavoidably, they

must be conducted through a mobile cloud service provider

before being disclosed to the data analyst. The advent of

cloud computing has enabled providing low-latency trajectory

analytics and has enabled many service providers to move

their hardware infrastructure from on-premise deployments

into large-scale shared cloud resources [11]. The Serverless

Computing has been introduced recently in the literature

[11] as a scheme to enable Mobile Cloud providers balance

the trade-off between the computational costs for users (i.e.

provide results with low-latency) and the provisioning costs

(i.e resource allocation costs), compared to traditional on-

premises deployments. While marrying these two paradigms,

we face two challenges: the first is how to detect social ties

between users based on the trajectories, in real-time. The

question is whether the estimation of privacy exposure can

utilize only a subset (sample) of the user’s trajectories. The

second challenge is, since the Serverless Computing paradigm

enables for a pay-as-you-use service, how we can exploit it to

balance the trade-off between providing trajectory analytics

with low-latency and minimizing the costs associated with

using such a service, while considering the different privacy

perspectives of the individual users.

The goal of the work is to present a cost-effective and prac-

tical system for MCEs enhanced with a user-tunable degree of

privacy preservation, that provide solutions to these two major

3https://www.expressvpn.com/internet-privacy/guides/nsa-spying/

challenges: (1) minimize the volume of mobility patterns

required for the privacy estimation analysis to enable on-device

storage, and (2) utilize the serverless computing paradigm

for trajectory analytics, to balance the trade-off between low-

latency computations and minimization of provisioning costs,

preserving at the same time the privacy of the trajectories.

Contributions. In this work we make the following contri-

butions:

• We propose TP 3, a Practical Privacy preservation system

for trajectory analytics in MCEs. TP 3 adopts an on-

device model that reduces the volume of the examined

mobility patterns using the theory of coresets and allows

the system to obtain guaranteed, fast and accurate ap-

proximations of user trajectory data.

• We model a new type of attack, namely social link

exploitation attack, where a third party data analyst can

infer information about the user and the user’s behavior

by associating the user’s patterns with groups of similar

users while sharing trajectory data.

• We exploit the Serverless Computing paradigm for pro-

viding a balance between high performance trajectory

analytics and low provisioning costs, utilizing a Pareto-

Frontier search algorithm. We apply four different privacy

operations achieving a good balance between accuracy

and privacy of the disclosed trajectories.

• We have implemented the TP 3 system to support trajec-

tory analytics apps on top of Android devices and the

OpenFaaS serverless platform, and evaluated its perfor-

mance. We illustrate that TP 3 is a cost-effective approach

and can achieve at least 47% reduction of the risk of

privacy exposure while users are able to contribute data

to trajectory analytics apps.

II. MODEL AND THREAT DEFINITION

A. On-device Model

Users. Users U in the TP 3 system are characterized by

the tuple 〈idu, {pτu,i}〉, where idu is the unique id of user u

and {pτu,i} is a list of all the contributed publicly available

data reports made by the user through the trajectory analytics

apps. Typically, these reports are coupled with location and

timestamps and illustrate the user’s presence activity. The i-th

spatio-temporal data report issued by a user u, pτu,i, is a tuple

〈lati, loni, τ, datu,i,τ 〉, where lati, loni are the geospatial

coordinates, τ a timestamp value annotating the time when

the user u issued the specific report and datu,i,τ denotes the

data associated with the spatio-temporal report. In the case of

a traffic monitoring application e.g., the data can represent the

traffic state (e.g. ”traffic jam”, ”road closure” etc.), whereas in

location-based recommendation apps it can reveal the location

semantics of a place where a user has checked-in.

Trajectories. Users share reports to trajectory analytics

apps which are represented in the form of trajectories. That

is, users maintain locally their spatio-temporal data reports

which form their mobility patterns. Each user u trajectory trlu
has a unique identity l and a sequence of spatio-temporal data



reports pτu,i; these denote the route the user was following

while issuing the spatio-temporal data reports.

Mobility Profiles. The Mobility Profile (MP) of a user

u, Gu, is represented through the user’s trajectories, Gu =
〈{trl1u , trl2u , ..., trlκu }〉. We discuss in detail how mobility pro-

files are compiled in our TP 3 system in section III-A.

Utility. The notion of utility has been introduced in recent

works[12], [13] as a performance metric of location privacy

protection systems in order to capture the trade-off between

data quality and user privacy preservation. The goal is to

preserve data utility as much as possible (in terms of how

useful and accurate the data report is) while preserving the

users’ privacy. In TP 3, our aim is to measure the utility

UT of a perturbed trajectory t̂r
l

u , thus we define it as the

inverted distance between each one true report pτu,i ∈ trlu

and the corresponding released report p̂τu,i ∈ t̂r
l

u. More

formally, UT (t̂r
l

u, tr
l
u) =

∑
∀pτ

u,i∈trlu

∀p̂τ̂
u,i∈t̂r

l

u

1√
E‖p̂τ̂

u,i
−pτ

u,i
‖2
2

, where

E ‖ • ‖ denotes the difference between the reports (also called

”correctness” [14]). In the case of trajectory analytics applica-

tions the aforementioned formula considers the geographical

distance between the reports, whereas in the case of emergency

response trajectory analytics applications, for which time is

a critical parameter, the equation also considers the difference

in the timestamps among the original and the released reports.

Social Graph. The set of users U form an undirected social

graph G = (V,E,S), where each node vu ∈ V denotes user u,

each edge emn ∈ E annotates the social tie between users um

and un, and finally S(um, un) ∈ S is a value that represents

the strength of the social tie between users um and un.

B. Serverless Model

We chose to deploy TP 3 on a Serverless environment

rather than a traditional hosting solution in a cloud provider.

Choosing the Serverless computing model [11], we have a

lower operational and deployment cost due to its unique

pricing policy based on a pay-as-you-use model. This model

allows for using ephemeral containers that are utilized only

during our workload. During long periods of inactivity, con-

tainers stop running automatically (scale to zero) to keep the

operational cost low, since it provides a seamless method

for autoscaling the resources. That is the number of active

instances can adapt dynamically according to the number of

requests, e.g., if 3 active instances are typically employed,

these can increase to 10 during data bursts and can go back to

normal levels when the number of requests decreases. Apart

from the aforementioned benefits, it allows developers to build

simpler software by designing their services as functions. In

our approach we use OpenFaaS (https://www.openfaas.com/)

as our Serverless environment, but our system works inline

with existing state-of-the art Serverless systems such as AWS,

GCF, IBM Cloud, etc.

C. Threat Model

Social Strength. To infer whether a pair of individuals

are socially connected, recent works [3], [4] have attempted

to model the relationship between the users’ mobility patterns

and their social ties. One approach is to use a graph model

[4] where learning the users’ mobility features and evaluating

the users’ mobility similarity, the social tie between two users

can be captured. A similar model was introduced in [3] where

they aim at recording the diversity of the locations visited

by the users. However, both approaches are not appropriate

for our setting as they focus on single locations rather than

trajectories, and thus cannot encapsulate the users’ movement

regularity, dependencies or transitions among different loca-

tions. Trajectory-based modeling, on the other hand, allows us

to meet with high accuracy the requirements of applications

with spatiotemporal correlations among queries issued by the

users for trajectory analytics apps [15].

We use an entropy-based model to capture the social

strength among two users of the system, given their mo-

bility profiles. Our metric captures the diversity of the

users (i.e. in terms of the number of different places they

visit) by evaluating the similarity of their mobility pro-

files. Thus, the social strength S(Gu1
,Gu2

) among two users

u1, u2 given their mobility profiles Gu1
, Gu2

, is defined

as: S(Gu1
,Gu2

) = α · eH(Gu1
|Gu2

) where H(Gu1
|Gu2

) =

−∑
1≤z≤|Gu1

|

1≤y≤|Gu2
|

P(trlzu1
|trlyu2

) · logP(trlzu1
|trlyu2

)

where α ∈ (0, 1] is a parameter to tune the degree of privacy

preservation tailored to the user’s personal needs (explained

in detail in the next section). For instance, a value of (α = 1)

indicates that the user is highly concerned about the privacy.

Additionally, S(Gu1
,Gu2

) ∈ (0, 1]; a value of S(Gu1
,Gu2

)
equal to 1 indicates that the two users are highly socially

connected and have identical mobility behavior, while a value

close to 0 indicates that there is little social connection among

the users.

The probability function P(trlzu1
|trlyu2) evaluates the simi-

larity between the trajectories trlzu1
, tr

ly
u2

of users u1,u2. To

perform this computation, we utilize the notion of expected

edit distance metric [16], which characterizes the similarity

between trajectories with a respective probability to show up.

That is, given the trajectory tr
ly
u2

, the function captures what

is the probability to find the trajectory trlzu1
, as implied by

the metric. Therefore, the probability function P(trlzu1
|trlyu2

)

is defined formally as: P(trlzu1
|trlyu2

) =
LCS(trlzu1

,tr
ly
u2

)

|trlzu1
|

where

LCS(•, •) denotes the longest common consecutive subse-

quence between two trajectories. We assume a third party data

analyst that aims at exploiting the social ties among mobile

users. The data analyst has compiled a list D of mobility

profiles (MPs) for all users that have shared trajectories with

the trajectory analytics apps. The MPs are compiled from the

users’ mobility patterns using most frequent subset pattern

mining procedure[17].

Social Link Exploitation Attack. We introduce a novel

type of attack, namely the social link exploitation attack, where

the a data analyst attempts to exploit the social relationships

through trajectory analytics apps in order to predict the move-

ment patterns of a particular user. In our setting, the analyst



Fig. 1. Social Strength Exploitation Attack Example.

has already compiled a model of human mobility based on the

geospatial movements of the users. By estimating the social

strength between a user and the set of compiled mobility

profiles, the attacker is able to associate the user with other

users with the same behavior and estimate the user’s mobility

pattern [18]. The attacker can exploit this information not only

to compromise one’s safety but also for marketing purposes to

predict the most likely venue that a user will visit and select

an appropriate ad to pop-up in the user’s phone.

Example. In Figure 1 we illustrate a scenario of how a

curious data analyst can associate a user u with one of the MPs

of the set D that has already been compiled. The left part of the

figure illustrates three users of a specific trajectory analytics

app. In a real world scenario, the users typically provide direct

access of their trajectories to the data analyst. The right part

of the figure shows a small sample of the MPs compiled from

our Fousquare dataset (described in section V) for various

users utilizing this app. We show 6 different trajectories that

correspond to three users, based on the Foursquare data. The

bottom of the figure illustrates the trajectory of the user u that

is evaluated, which consists of the following report sequence:

Train Station, Cafe, Clothing Store, Bookstore and finally the

user enjoys a burger in a Burger Shop. We may observe

that there is a common pattern among user u and the third

trajectory which belongs to user idu′ = 2 who has probably

visited a ”Mall”. The data analyst computes the social strength

of user’s u trajectory (up to the 5th report) and the MPs that

have been compiled. The computed social strength reveals,

with high probability, that user u is very likely to visit an

”Ice-cream Shop” in one of the next moves. Subsequently,

after associating those users two users as more highly socially

connected, the data analyst can infer the next probable visit

of the user in order to provide for e.g. targeted advertisements

for ”Ice Cream Shops” or related ads.

III. TP 3 APPROACH

In this section we present the main mechanisms of the TP 3

system: a) we first build mobility profiles using the theory

of coresets, that provides a guaranteed approximation sample

of the original geolocated data reports stored on-device, b)

we formulate our multi-objective optimization problem, c) we

present our algorithm for estimating the set of all the non-

dominated solutions, which constitute a Pareto frontier, and

d) we apply a set of serverless privacy operations at the last

stage of the TP 3 system that aim at minimizing the social

strength of the user with any kind of social relationships, (i.e.,

friends or users with similar behavior) to preserve his privacy.

A. Building Mobility Profiles

TP 3 is built based on the observation that people show

strong regularities in their behavior while using trajectory-

based apps. For example, during weekdays they typically

follow specific movement patterns between primary (e.g.,

”home”) and secondary (e.g., ”work”) locations, while on

weekends they present different mobility behavior that alter-

nates between ”home” and various social locations. We model

the users’ movement patterns using coresets, a data reduction

technique that allows us to significantly reduce the trajectories

size while providing a guaranteed approximating sample of the

original trajectory stored on-device.

Theoretical Background. We utilize a sampling technique

in order to generate a representative set of reports that

approximates well the trajectory of a user over space and

time rather than keeping all his spatio-temporal reports. In

the literature, many different sampling techniques have been

proposed such as [19]. The sampling technique should be

designed with the following properties: i) provide guaranteed

approximation of the initial dataset, ii) provide a sample

set of minimal size with bounded loss of information, and

finally, iii) have small algorithmic complexity that can be

executed in memory-constrained environments, such as users’

mobile phones in our setting. In TP 3’s services, we exploit

the theory of coresets[20], which fits our setting and has been

recently used to address geometric and graph problems[21],

such as k-means, k-median, etc. Our approach differs from

the above works, since: (1) we consider user trajectories rather

than single geospatial reports, and (2) address different privacy

goals. The benefit of coresets is that they constitute a small

set which approximates well the original data, and running

queries on the coreset produces similar results to the original

data. Thus, in our approach: (1) we keep only the reports

of the generated coreset when compiling and storing a user’s

trajectory, (2) this results in significant performance benefits,

as the number of reports kept locally on a user’s phone is

significantly reduced, as extensively evaluated in [6].



In computational geometry, a coreset CS of a point set X

is a sample that can efficiently approximate the initial set of

points X . Given a set of user shared spatio-temporal reports

C, we assume that C can be approximated by a factor 1 ± ǫ

from a smaller subset C∗ of the user’s shared spatio-temporal

reports. More formally, for the given point set C and a class

of queries Q, the following property holds for the coreset C∗

and for a given ǫ: (1− ǫ)Q(C) ≤ Q(C∗) ≤ (1 + ǫ)Q(C)
Trajectory Coresets. We build the coreset of the user’s u

trajectory trlu by selecting the appropriate spatio-temporal re-

ports that will comprise the coreset as follows: Without loss of

generality, we apply a well-known compression mechanism[6]

on the user’s u trajectory to generate a set of spatio-temporal

reports that preserve the shape of the user’s trajectory but with

fewer number of reports. The generated set of reports after

applying this scheme is the coreset of the user’s trajectory.

In our work, we apply a procedure similar to [6]. This

procedure generates a trajectory that preserves the sequence in

space and time but approximates the original user trajectory

with fewer data reports. In order to decide whether a new

trajectory shared by the user can be described by a coreset, we

evaluate its reports. Specifically, the algorithm evaluates, for

two consecutive reports pτu,i & pτ+1
u,i+1, if the percentage change

of the tangent is over a predefined threshold θ. More formally,

| tan(p
τ+1

u,i+1
)−tan(pτ

u,i)

tan(pτ
u,i

) | ≥ θ. High values of θ (θ > 0.0005)

define a stricter sampling (and a smaller size of coreset)

compared to values close to zero.

B. Our multi-objective optimization problem

1) Social Strength Minimization: Assume a user trajectory

trlu comprising a list of data reports shared by user u. Then

assume that a user wishes to share a new trajectory. The

question is whether it is safe for the user to issue a query

sharing this trajectory. The role of TP 3 is to evaluate the

safety for the user to issue it and then apply appropriate

privacy measures. Thus, given a set B of MPs Guk
that belong

to possible social user ties and a threshold δ, we compute

the social strength of the user’s trajectory trlu, compared to

the users represented by the MPs, using a score function as

follows: score(trlu,B) = 1
|B| ·

∑
∀Guk

∈B S(trlu,Guk
)

2) Performance Maximization: The second metric we con-

sider in our multi-objective problem is the requests success

rate(RSR). The RSR has been introduced in recent works

[22] as a performance metric of serverless functions. For a

given memory allocation m ∈ M from a set M of possible

memory allocations, the requests success rate λm is defined

as the ratio of the number of user requests successfully

served by this memory allocation m, sucreqm, to the overall

number of the requests submitted by the users to the system,

totalm. In our work, our goal is to maximize the execu-

tion performance for all possible given memory allocations

m ∈ M . Thus, our objective can be formulated as follows:

EP (m) = max(λm) = max(#sucreqm
#totalm

), ∀m ∈ M .

3) Spending Budget minimization: The third metric we

consider in our multi-objective problem is the spending budget

SB. To compute this metric, we applied a pricing model

similar to the one used by popular cloud providers like

IBM (https://cloud.ibm.com/functions/learn/pricing). The met-

ric considers a basic rate cr which denotes the amount of

monetary units to pay per GB of data per sec, the average

execution time of the serverless privacy preserving operation

avgTF(•), the memory allocation m ∈ M allocated for

the execution of the function and the number of successful

requests served by the system, sucreqm. More formally,

SBm = cr · avgTF(•) ·m · sucreqm.

Thus, for a finite cloud operator budget Cb monetary units,

our goal is to maximize the difference W(m) between Cb and

SBm. More formally, W(m) = Cb − SBm.

Problem Definition. More formally, our problem can be

formulated as a maximization problem as follows:

max T (EP (m),W(m)) (1)

s.t.min score(F(trlu),B) < δ (2)

W(m) > 0 (3)

where T (•, •) is our objective function that considers both the

execution performance and the spending budget.

C. Pareto Frontier Search Algorithm

In TP 3, we solve a multi-objective optimization problem

where we aim to balance the trade-off between the perfor-

mance maximization and the required budget, while preserving

privacy for the user trajectories. One of the most common

ways of detecting appropriate solutions in such problems is

constructing the Pareto frontier. In order to detect the optimal

solutions in the examining search space, we need to define

the notion of dominance [23]. Given two memory allocations

m1 and m2, m2 dominates m1(m2 � m1) if one of the

following criteria is met: (1) the spending budget for m2

is less than equal than the one required for m1 and the

performance of m2 is greater than equal to the performance

of m1 or (2) m2 requires strictly smaller budget than m1 and

also the performance of m2 is greater than or equal to the

performance of m1. However, computing the Pareto frontier

is a computationally costly process. A naive approach is to

enumerate all possible combinations of memory allocations,

performance the spending budget. Such an exhaustive search

algorithm has exponential complexity O(m|K|) as it generates

all these m|K| possible allocations. We propose a novel ap-

proach that detects near-optimal memory allocations in an ef-

ficient and fast way without enumerating all the solutions. Our

greedy algorithm approximates the Pareto-optimal frontier by

selecting the appropriate memory allocation for the serverless

privacy function that is affected the most in its performance by

memory allocation. Starting with the memory allocation that

helps maximize the performance, we traverse the frontier to

select the most appropriate one that minimizes the spending

budget. By doing so, it is not required to enumerate all possible

solutions.

D. Serverless Privacy-Preserving Operations F(•)
TP 3 aims for social strength minimization against a set of

MPs that it has already compiled and appropriately stored.



This is achieved by applying privacy-preserving operations

that distort the users’ trajectories and therefore minimize the

social strength with any social ties. Such techniques include

spatial-location cloaking approaches [24], temporal cloak-

ing methods [25], addition of redundant dummy locations

[26] and path confusion techniques [27]. Depending on the

user’s required level for privacy, TP 3 applies the appropriate

privacy operation each time the user wishes to publish new

trajectory data to minimize the social strength below the δ-

threshold.

Cloaking. In the Spatial-location cloaking privacy model

[24], the exact location of the user is replaced by a broader

spatial region termed cloaking region (CR). This privacy-

preserving operation takes as input a spatio-temporal data

report and returns a region cell r̂cpτ
u,i

(rather than the exact

spatio-temporal location) that includes the spatio-temporal

data report pτu,i the user wants to publish. This technique

simply blurs a user spatio-temporal report into an uncertainty

region. A larger region size indicates a more strict privacy re-

quirement, at the expense of not providing useful information

for the system.

TempCloaking. Compared to the Spatial Cloaking model, this

privacy-preserving model [25] uses time transformation and

delays the user’s response by a time period. That is, for two

consecutive time instances τ1, τ2, the time instance τ2 of a new

report p̂τ2u,i is set to the time τ1 plus a random cloaking factor.

In TP 3, the timestamp value of the trajectory’s data reports

is changed accordingly by a specific amount of time, which

consequently leads to a different trajectory, thus reducing the

similarity with the compiled MPs.

Dummy Locations. An alternative approach to applying time

or spatial transformations is this privacy-preserving model

[26] where a number of dummy locations is generated. The

user, instead of reporting the actual location, reports one or

more locations which are very close to the actual one. Thus,

for a given spatio-temporal data report pτu,i, a list of one or

more dummy spatio-temporal data reports p̂τu,ii is generated.

Instead of publishing the trajectory with only the actual spatio-

temporal reports pτu,i, TP
3 publishes the list of the dummy

spatio-temporal reports generated, including the original ones.

Path Confusion. This privacy model [27] differs from the

previous models, since perturbations of the previous locations

are applied in order to obfuscate and reduce the similarity

with the MPs. Given a set of spatio-temporal reports pτu,i
the user wants to share, the goal is to apply a perturbation

technique pert() that changes the actual trajectory of the user

(i.e. publish another report instead of the actual one), which

results to a different user trajectory. The perturbation process

considers up to q sequential spatio-temporal reports to perturb

and changes their sequence.

IV. IMPLEMENTATION

On-device TP 3 service. For the on-device service of TP 3

on the Android devices we utilized the Android Development

Framework. We implemented an Android Service that works

Fig. 2. Architecture Overview.

in concert with the Waze (https://www.waze.com/) and Crow-

dAlert (http://crowdalert.aueb.gr) and allows for the secure

sharing of trajectories. Currently, it provides an API to those

apps from which calls to trajectory-publishing methods are

redirected through the Data Delivery Service of TP 3. If the

user is willing to share a trajectory or a list of past trajectories

with a data analyst, the Android Service of TP 3 system is

triggered and prepares appropriately the trajectory or the list

of trajectories for delivering through the Data Delivery Service

of TP 3, in order to be evaluated based on his personal privacy

preferences.

Data Delivery service. The Data Delivery service in TP 3 is

responsible for processing trajectory shared from the Android

Service. The Data Delivery service employs Apache Kafka as

its fundamental building block. Apache Kafka is one of the

most popular pub/sub systems and it is used for propagating

millions of messages per second between a set of producers

and consumers or across different services. Apache Kafka,

apart from its ultra high throughput, uses replication, thus

guarantying zero lost messages. Each user’s on-device service

acts as a Kafka Producer and sends trajectories in specific

topics, based to the user’s personal privacy preferences. Kafka

Consumers constantly poll trajectories from these topics and

send them through appropriate HTTP endpoints to the Open-

FaaS Gateway to invoke the respective Serverless Privacy

Function. Afterwards, the sanitized output is provided through

appropriate HTTP endpoints to the data analyst.

Serverless Privacy Functions. This component sanitizes

the user’s trajectory before being publishing it to the data

analyst. TP 3 comprises three different modes of privacy

models (loose, moderate and strict), in which different privacy

operations are applied in order to distort the users’ trajectories.

The loose privacy mode corresponds to the application of

the Dummy Location or Path Confusion privacy function,

depending on the type of trajectory app (i.e., Path Confusion

is suitable for applications where the perturbation of the

reports in a trajectory is preferred rather than suppressing

them, such as venue recommendation applications), which

is encapsulated in the message received from the on-device

TP 3 service. The moderate privacy mode corresponds to the

Cloaking function and finally, the strict privacy mode refers to

the TempCloaking function, which changes the nature of the

user’s trajectory. Finally, the sanitized trajectory is forwarded

through the appropriate HTTP endpoints to the data analyst,

preserving user’s privacy and utility. Our architecture overview

is given in Figure 2.
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V. EXPERIMENTAL EVALUATION

We conducted series of experiments to identify the effect of

different parameters on the efficiency of each privacy operation

in minimizing the social strength among the users and to show

the benefits of employing a serverless model to maximize

the system’s performance and minimize the cost. We answer

the following questions: 1) how memory allocations affect

the average response time, 2) how the memory allocations

affect the throughput in terms of request/sec in each privacy

operation, 3) how the different memory allocations affect the

RSR, 4) what is the effect of the trajectories’ length to the

social strength minimization, 5) how the stored report size

is affected by each privacy operation, 6) how the memory

allocations affect the spending budget of the system operator,

7) what is the effect of the percentage of trajectories that the

data analyst has in his possession, 8) how the percentage of

the sanitized trajectories affects the utility and finally 9) how

TP 3 performs compared to state-of-the-art techniques.

A. Experimental Setting

Data Description. To validate our analysis we utilized a

real-world dataset from the Foursquare location-based service.

The Foursquare dataset includes check-in data in New York

city collected from Foursquare from 12 April 2012 to 16

February 2013 [28]. The dataset contains 227428 check-ins

and 1083 users, where the users were anonymized for privacy

reasons. We selected 60% of the dataset’s users to train the

appropriate MPs and the remaining 40% users as the test set.

This represents a range of cases in a real system where a data

analyst can have a range of knowledge about users and their

respective trajectories, but it is not possible at all times to have

a global view of the users.

Setup. We deployed OpenFaaS in our cluster, which con-

sists of 5 nodes (Intel(R) Core(TM) i7 3770 CPU @3.40GHz,

16GB RAM, Ubuntu 16.04 LTS). We used Docker Swarm as

the orchestrator and we deactivated Prometheus AlertManager

in order to deactivate autoscaling of functions. We used Hey

(https://github.com/rakyll/hey) for traffic measurements. We

tested three different workload scenarios with five different

memory allocation setups: (512, 1024, 1536, 2048 and 2560

(in MB)). In OpenFaaS, we setup our images to allocate

512MB of memory and we used replication in order to increase

the total allocated memory. That is, each machine will host a

container of each function with 512MB of allocated memory

(so 1024MB means 2 replicas in 2 machines, 1536MB 3

replicas in 3 machines etc.).

Mobility Profile Coverage Rate. We introduce a novel

metric, namely mobility profile coverage rate, for capturing the

percentage of users that are associated with compiled mobility

profiles. The metric considers how similar the trajectory of a

user is compared to the compiled mobility profiles. Formally,

CR(score(∀trlu,B) ≥ δ) =
#users(score(trlu,B)≥δ)

TotalUsers
where

∀trlu denotes every user that has score(trlu,B) above the

threshold δ and # denotes the number of users.

Analysis. Figures 3 & 4 illustrate the number of trajectories

considered and what is the average length of the training

trajectories. As we may conclude, selecting an 8− hour time

window length is reasonable for selecting the trajectories, since

it provides a good balance between the length of trajectories

to explore and the number of trajectories. In Figure 5 we draw

the coverage rate for different degrees of trajectory similarity.

As we may observe, as we set higher levels of similarity with

the mobility profiles, the coverage rate decreases. However,

even for only 30% of trajectory similarity over 60% of users

are captured by the mobility profiles. In Figure 6 we draw

the number of users captured by the mobility profiles. We

observe that even for the case of 50% similarity, the number

of captured users is 200 out of the 1084 users, which consists a

considerable number of users. Thus, we conclude that mobility

profiles may expose the privacy of a large number of users

even with low mobility pattern similarity.

Baselines. We evaluated the performance of TP 3’s privacy

operations compared to a state-of-the-art technique, namely

SmartMask [29], which applies a location obfuscation tech-

nique that assigns a spatio-temporal data report(a check-in),

to the nearest, in terms of distance, point-of-interest.

B. Experimental Workloads

To show the benefits of employing the serverless model

for the privacy functions and different user inputs, we used

Hey to generate 20000 HTTP requests using as a payload

either single trajectories or mobility profiles, without any rate

limitation to stress TP 3 to its limits and test each privacy

function independently. We setup three real-world scenarios,

in which, each user of the test set, is willing to share either a

single trajectory or the whole set of the trajectories that consist

his mobility profile. The experimental results draw the average

value for each one of the examined metrics from all the users

in the test set.

One-vs-One Scenario - (OvO). In the first scenario, we

examine the performance of the system when each user shares
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a single trajectory in the serverless system, evaluated against

the most frequent mobility profile encountered in our system.

One-vs-Many Scenario - (OvM). Second, we examine the

case in which the user shares a single trajectory which is

evaluated against the whole set of mobility profiles compiled

by our system. The goal is to capture the possible set of users

with whom he may have similar mobility patterns with his

trajectory.

Many-vs-Many Scenario - (MvM). Last, we evaluate the

case where the user shares his whole set of trajectories, i.e.,

his entire mobility profile, against the whole set of mobility

profiles compiled by our TP 3 system. Compared to the

previous scenario, in this one we aim at capturing all possible

users with similar MPs, considering the entire MP of the user.

C. Parameters Examined

1)Average Response Time vs Memory. In Figures 7(a),

7(b), 7(c) and 7(d) we illustrate the Average Response Time

of our system which denotes the flexibility of the serverless

model with respect to the memory allocation. Our results

depict the impact of having flexible memory allocations in the

amount of time required to respond to a request. An interesting

finding that we observe, is that, increasing the total amount

of allocated memory, this results to a significant decrease of

the average response time for all the privacy functions in all

scenarios.

2) Requests/sec vs Memory. Figures 8(a), 8(b), 8(c) and

8(d) depict our initial intuition that, by having flexible memory

allocations using a serverless model, we should expect high

increase in the number of requests served per sec. We reason

these results to the fact that with higher memory the system

can handle more concurrent HTTP requests and we can safely

conclude that it is beneficial to employ a serverless model for

serving multiple concurrent requests.

3) Requests Success Rate vs Memory. In Figures 9(a),

9(b), 9(c) and 9(d), we draw the ratio of successful requests

served using a serverless model towards the total number

of requests received for a specific memory allocation. The

results show that as we increase the allocated memory, and

consequently the number of replicas, the ratio increases to a

value equal to one, meaning all user requests are successfully

served by TP 3. This result is expected due to our setup, since

the Docker Swarm load balances the traffic across all active

replicas. Overall, the results show that it is beneficial to employ

a serverless model for maximizing the system’s performance.
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4) Trajectory length vs Social Strength. We evaluated

the performance of each privacy operation for reducing the

social strength considering trajectories of different length. We

considered trajectories with length equal or greater than a

varying trajectories length parameter. Figures 10(a), 10(b),

10(c) & 10(d) illustrate the social strength in logarithmic scale

observed after applying each privacy operation for different

values of trajectory length. An interesting finding is that the

Dummy Locations technique outperforms the Cloaking tech-

nique for a trajectory length equal to 3. This is due to the fact

that the Dummy Locations technique better obfuscates the user

trajectory, since the random points inserted for this trajectory

length, change it significantly. Overall, the TempCloaking and

Cloaking privacy operations outperform the other techniques

in terms of social strength minimization.

5) Coreset size vs Stored Reports. We investigated the

effect of the size of the coresets on the size of stored reports

when each privacy operation is applied. From our experimental

analysis, we considered a value of θ = 0.0005 which is

reflected on a moderate level of sampling (and is the default

settig in our implementation). Figures 11 and 12 illustrate

the performance in terms of stored reports size reduction for

each privacy operation. The results depict that the privacy

operations allow for reducing the number of stored reports in

the users phones significantly. We observe that TempCloaking

(76% size reduction) still outperforms the privacy operations

having Path Confusion and Cloaking as runner ups.

6) Spending Budget vs Memory. We examined the spend-

ing budget performance against different memory allocations

and for every workload scenario. In Figure 13, we draw the

spending budget performance for the many-to-many scenario,

which is the most heavy in terms of performance, for the dif-

ferent privacy operations and memory allocations. We observe

that the spending budget is relatively low compared to having

a fixed budget. In addition, we observe that we can vary the

spending budget with regards to the serverless privacy function

we want to execute, thus providing a tunable-degree of privacy

with regard to the execution costs.

7) Percentage of data analyst trajectories. In Figure 14

we draw the percentage of trajectories captured by the percent-

age of users for whom the data analyst has compiled MPs, with

no privacy technique applied and after using TP 3’s privacy

operations. We observe that as the percentage of users in

possession of the data analyst increases, the percentage of tra-

jectories captured also increases for all the privacy operations

but still remains under 50%. That is, since the data analyst has

the 100% of the users, only ∼45% of user trajectories can be

detected if only Cloaking technique is selected from all users

to be applied. We also observe that TempCloaking technique

totally minimizes the similarity of user trajectories with a MP

due to the fact that it totally changes the nature of the user’s

trajectories. Path Confusion and Dummy Locations methods

also present good performance and so, we can conclude that

TP 3 can successfully trade-off between different levels of

privacy and desired accuracy of results.

8) Utility vs Percentage of Shared Trajectory. We

investigated the balance between data quality and privacy,



when each one of TP 3’s privacy operations is applied. Once

a privacy operation has been selected, the goal is to apply it

while preserving as much data utility as possible. In Figure

15 we draw the utility for the different privacy operations

applied. The x-axis denotes the percentage of the trajectory

that has already been published without applying any privacy

operation. The published data are considered useful when the

utility equals 100%. Path Confusion and Temporal Cloaking

have utility 100%, since in the Foursquare location-based

application they affect only the times of the reports rather

than the corresponding locations. Overall, we safely conclude

that TP 3 succeeds in maintaining a balance between the data

accuracy and privacy.

9) Comparison with state-of-the-art. In Figure 16 we

draw the percentage of similarity for the different privacy oper-

ations applied. We observe that TP 3 outperforms SmartMask,

since for every provided privacy operation by TP 3, it results

in lower similarity (it performs 47% better than SmartMask).

This implies that TP 3 is practical and efficient for protecting

against social link exploitation attacks.

VI. RELATED WORK

Privacy Models. Privacy preservation is not a new area and

approaches have been proposed in the literature[4], [3], [30],

[31], [32]. However, these works have several limitations. In

[4], they propose an attack that predicts social links between

users, but it does not consider trajectories nor focuses on

how a user associates to a group of users based on his

mobility patterns. The authors of [3] aim at understanding

the significance of a location visited by a user, which is

encapsulated in the number of visits to a specific location.

However, it is limited since the focus is on single locations

rather than trajectories. In [31], the authors focus on securing

the sensitive attributes of each location visited by applying l-

diversity whereas in our approach we provide different privacy

operations tailored to user needs. The authors of [30] focus on

Geo-Indistinguishability for single locations than trajectories

as we do in our work. Finally, in [32], the authors proposed

transformations based on the K-anonymity concept for user

locations, without considering the users’ mobility patterns nor

possible social ties, which is the focus of our work.

VII. CONCLUSIONS

In this paper we presented TP 3, a privacy preservation

system for trajectory analytics. We have modeled a new type

of attack considering how social ties shape human mobility.

Our proposed system employs the serverless paradigm and

manages to balance the trade-off between maximizing the

overall performance and minimizing the operational costs,

while requiring low maintenance and administration from

the cloud provider. TP 3 runs in concert with state-of-the-

art trajectory analytics apps. Our experimental evaluation,

compared to state of the art schemes, illustrates a reduction

of at least 47% in user privacy exposure, providing a tunable

degree of privacy preservation with high system performance

for users and low costs for cloud providers.
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