

Aalborg Universitet

Spatial Queries for Indoor Location-based Services

Liu, Tiantian

DOI (link to publication from Publisher):
10.54337/aau470863740

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Liu, T. (2022). Spatial Queries for Indoor Location-based Services. Aalborg Universitetsforlag.
https://doi.org/10.54337/aau470863740

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 22, 2024

https://doi.org/10.54337/aau470863740
https://vbn.aau.dk/en/publications/8cee5aa8-5210-45a1-b08b-a7f4429fdcf2
https://doi.org/10.54337/aau470863740

Tia
n

tia
n

 Liu
Spatia

l Q
u

er
ies fo

r
 In

d
o

o
r

 Lo
c

atio
n

-b
a

sed
 Ser

vic
es

Spatial Queries for Indoor
Location-based Services

by
Tiantian Liu

Dissertation submitted 2022

Spatial Queries for Indoor
Location-based Services

Ph.D. Dissertation

Tiantian Liu

Dissertation submitted February, 2022

Dissertation submitted:	 February, 2022

PhD supervisor: 	 Professor Hua Lu
			 Aalborg University, Denmark

PhD committee: 	 Associate Professor Simonas Saltenis (chairman)
			 Aalborg University, Denmark

			 Professor Christophe Claramunt
			 Naval Academy Research Institute, France

			 Professor Lars Kulik
			 University of Melbourne, Australia

PhD Series:	 Technical Faculty of IT and Design, Aalborg University

Department:	 Department of Computer Science	

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-938-7

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Tiantian Liu. Author has obtained the right to include the published
and accepted articles in the thesis, with a condition that they are cited and/or copyright/
credits are placed prominently in the references.

Printed in Denmark by Rosendahls, 2022

Abstract

People have many activities and spend a lot of time in indoor spaces such as airports,
shopping malls, and office buildings. There is an increasing demand for indoor spatial
queries which support indoor location-based services. To support the general indoor
spatial queries, different techniques have been proposed. However, a comprehensive
experimental study on these existing techniques is still missing and we have to fur-
ther study different indoor spatial queries to facilitate people in different scenarios in
reality.

In this thesis, we focus on the following specific works. 1) Experimental study
on existing proposals for indoor spatial queries. 2) Indoor Keyword-aware Routing
Query. 3) Indoor Temporal-variation aware Routing Query. 4) Indoor Crowd-aware
Routing Query.

First, we survey five existing models/indexes for indoor spatial queries. We do
a comprehensive comparison for their structure, corresponding algorithm character-
istics, and their space and complexities. To evaluate the performance of these tech-
niques, we design an in-depth benchmark including tasks and performance metrics.
We conduct extensive experiments on both real and synthetic datasets. From the re-
sults, we analyze the pros and cons of different techniques.

Second, we study an indoor keyword-aware routing query that considers the tex-
tual information. Given two indoor points s and t, an Indoor top-k Keyword-aware
Routing Query (IKRQ) returns k s-to-t routes that do not exceed a given distance
constraint but have optimal ranking scores integrating keyword relevance and spatial
distance. We design a fundamental model to organize textual information and spa-
tial information. We propose a method to calculate the ranking score which integrates
keyword relevance and indoor spatial distance. We design two algorithms with several
pruning rules to process IKRQ. We conduct extensive experiments on synthetic and
real data. The results show our proposals are efficient.

Third, we study an indoor temporal-variation aware routing query that takes into
account temporal variations, e.g., the open and close times associated with entities
like doors and rooms. Given two indoor static points ps and pt , and a current times-
tamp t, an Indoor Temporal-variation aware Shortest Path Query (ITSPQ) returns the
valid shortest path from ps to pt based on the up-to-date indoor topology at the query
time t. To answer an ITSPQ, we design the Indoor Temporal-variation Graph (IT-

iii

Graph) to organize indoor spatial information with temporal variations. Two corre-
sponding algorithms are proposed to process the query. The main difference between
the two algorithms is that one checks a door’s accessibility synchronously while the
other one check that asynchronously. To speed up query processing, we propose the
Indoor Temporal-variation Index (IT-Index) which maintains dynamic door-to-door
distances. To evaluate the proposed techniques, we conduct extensive experiments.
The result demonstrates our IT-Index based method is the most efficient.

Finally, we study two indoor crowd-aware routing queries that consider the influ-
ence of indoor crowd when finding a route. Give two indoor points ps and pt , and a
timestamp t, an Indoor Crowd-Aware Fastest Path Query (FPQ) returns the fastest path
considering the influence of crowds, whereas an Indoor Least Crowded Path Query
(LCPQ) returns a path encountering the least objects en route. We propose a unified
framework that consists of three main components including an indoor crowd model,
a time-evolving population estimator, and two exact and two approximate algorithms
to process each type of query. Extensive experiments are conducted, and the results
show the efficiency and scalability of the proposed framework and algorithms.

Resumé

Folk bruger meget tid i indendørs rum såsom lufthavne, indkøbscentre og kontor-
bygninger. Der er en stigende efterspørgsel efter indendørs rumlige forespørgsler, som
understøtter indendørs lokations baserede services. For at understøtte de generelle in-
dendørs rumlige forespørgsler er forskellige teknikker blevet foreslået. En omfattende
eksperimentel undersøgelse af disse eksisterende teknikker mangler dog stadig, og vi
er nødt til yderligere at forske forskellige indendørs rumlige forespørgsler for at lette
mennesker i forskellige scenarier i virkeligheden.

Afhandlingen fokuserer på følgende specifikke emner. 1) Eksperimentel under-
søgelse af eksisterende forslag til indendørs rumlige forespørgsler. 2) Indendørs søge-
ordsbevidst ruteforespørgsel. 3) Indendørs tidsvariationbevidst routing forespørgsel.
4) Indendørs crowd-aware routing-forespørgsel.

Først undersøger vi fem eksisterende modeller/indekser for indendørs rumlige
forespørgsler. Vi laver en omfattende sammenligning for deres struktur, tilsvarende
algoritmekarakteristika og deres plads ogtid kompleksitet. For at evaluere ydeevnen
af teknikker designer vi en dybdegående benchmark, herunder opgaver og præstation-
smålinger. Vi udfører omfattende eksperimenter på både rigtige og syntetiske datasæt.
Ud fra resultaterne analyserer vi fordele og ulemper ved forskellige teknikker.

For det andet forske vi en indendørs søgeordsbevidst routingforespørgsel, der tager
hensyn til tekstinformationen. For to indendørs punkter s og t returnerer en Indoor
top-k Keyword-aware Routing Query (IKRQ) k s-to-t ruter, der ikke overskrider en
given afstandsbegrænsning, men har optimale rangeringsscore, der integrerer søge-
ordsrelevans og rumlig afstand. Vi designer en grundlæggende model til at organisere
tekstinformation og rumlig information. Vi foreslår en metode til at beregne ranger-
ingsscore, som integrerer søgeordsrelevans og indendørs rumlig afstand. Vi designer
to algoritmer med flere beskæringsregler til at behandle IKRQ. Vi udfører omfattende
eksperimenter med syntetiske og rigtige data. Resultaterne viser, at vores forslag er
effektive.

For det tredje forske vi en indendørs tidsvariationsbevidst routing-forespørgsel,
der tager højde for tidsmæssige variationer, f.eks. de åbne og lukketider, der er for-
bundet med enheder som døre og værelser. For to indendørs statiske punkter ps og
pt og et aktuelt tidsstempel t returnerer en Indoor Temporal-variation aware Shortest
Path Query (ITSPQ) den gyldige korteste rute fra ps til pt baseret på up-to-date in-

v

dendørstopologi på forespørgselstidspunktet t. For at besvare en ITSPQ designer vi
Indoor Temporal-variation Graph (IT-Graph) for at organisere indendørs rumlig infor-
mation med tidsmæssige variationer. To tilsvarende algoritmer foreslås til at behandle
forespørgslen. Den største forskel mellem de to algoritmer er, at den ene kontrollerer
en dørs tilgængelighed synkront, mens den anden tjekker den asynkront. For at frem-
skynde forespørgselsbehandlingen foreslår vi Indendørs Temporal-variationsindeks
(IT-indeks), som opretholder dynamiske dør-til-dørafstande. For at evaluere de fores-
låede teknikker udfører vi omfattende eksperimenter. Resultatet viser, at vores IT-
indeksbaserede metode er den mest effektive.

Til sidst forske vi to indendørs crowd-aware routing-forespørgsler, der overvejer
indflydelsen fra indendørs crowd, når de finder en rute. For to indendørs punkter ps

og pt , og et tidsstempel t returnerer en Indoor Crowd-Aware Fastest Path Query (FPQ)
den hurtigste rute i betragtning af påvirkningen fra menneskemængder, mens en In-
door Least Crowded Path Query (LCPQ) returnerer en rute, der støder på de mindste
objekter undervejs. Vi foreslår en samlet ramme, der består af tre hovedkomponenter,
herunder en indendørs publikumsmodel, en tidsudviklende befolkningsvurdering og
to nøjagtige og to omtrentlige algoritmer til at behandle hver type forespørgsel. Der
udføres omfattende eksperimenter, og resultaterne viser effektiviteten og skalerbarhe-
den af de foreslåede rammer og algoritmer.

Contents

Abstract iii

Resumé v

Acknowledgement xi

Thesis Details xiii

I Thesis Summary 1

1 Introduction 3
1.1 Background and Motivation . 3
1.2 Thesis Structure . 5

2 Experimental Study on Indoor Spatial Queries 7
2.1 Motivation and Background . 7
2.2 Techniques of Indoor Spatial Query 7

2.2.1 Indoor Spatial Query Types 8
2.2.2 Indoor Models and Indexes 8
2.2.3 Comparison . 11

2.3 Experimental Evaluation . 11
2.3.1 Benchmark . 11
2.3.2 Performance Analysis . 13

3 Indoor Keyword-aware Routing Query 17
3.1 Problem Motivation and Statement 17
3.2 Ranking Relevant Routes . 18

3.2.1 Spatial Distance . 18
3.2.2 Keyword Relevance . 19
3.2.3 Ranking Score for Routes 20

3.3 Query Processing Algorithms . 20
3.3.1 Pruning Rules for Expansion 21

vii

Contents

3.3.2 Query Processing Algorithms for IKRQ 21
3.4 Experimental Evaluation . 22

3.4.1 Comparable Methods . 22
3.4.2 Datasets and Settings . 22
3.4.3 Performance Analysis . 23

4 Indoor Temporal-variation aware Routing Query 25
4.1 Problem Motivation and Statement 25
4.2 ITSPQ using Temporal-variation Graph 26

4.2.1 Indoor Temporal-Variation Graph 27
4.2.2 IT-GRAPH based ITSPQ Processing 27

4.3 ITSPQ using Temporal-variation Index 28
4.3.1 Indoor Temporal-Variation Index 28
4.3.2 IT-INDEX based ITSPQ Processing 29

4.4 Experimantal Evaluation . 29
4.4.1 Datasets and Settings . 29
4.4.2 Performance Analysis . 30

5 Indoor Crowd-aware Routing Query 33
5.1 Problem Motivation and Statement 33
5.2 Crowd-Aware Path Planning Framework 34

5.2.1 Indoor Crowd Model . 34
5.2.2 Time-evolving Populations 36

5.3 Query Processing Algorithms . 36
5.3.1 Exact Algorithms for FPQ and LCPQ 36
5.3.2 Approximate Algorithms for FPQ and LCPQ 37

5.4 Experimantal Evaluation . 37
5.4.1 Datasets and Settings . 37
5.4.2 Performance Analysis . 38

6 Conclusion and Future Work 41
6.1 Conclusion . 41
6.2 Future Work . 42
References . 43

II Papers 45

A Indoor Spatial Queries: Modeling, Indexing, and Processing 47
A.1 Introduction . 49
A.2 Indoor Spatial Queries . 50

A.2.1 Indoor Space Concepts . 50
A.2.2 Indoor Spatial Query Types 52
A.2.3 Related Work . 52

viii

Contents

A.3 Model and Indexes . 53
A.3.1 Indoor Distance-Aware Model 54
A.3.2 Indoor Distance-Aware Index 55
A.3.3 Composite Indoor Index . 56
A.3.4 IP-Tree and VIP-Tree . 57

A.4 Query Processing . 58
A.4.1 Algorithmic Comparison . 59
A.4.2 Complexity Analysis . 60
A.4.3 Extensibility Analysis . 62

A.5 Benchmark . 63
A.5.1 Datasets . 63
A.5.2 Object/Query Workload Generation 65
A.5.3 Model/Index Settings . 66
A.5.4 Performance Evaluation Procedure 66

A.6 Results Analysis . 68
A.6.1 Model/Index Construction 68
A.6.2 Query Processing . 69
A.6.3 Summary of Findings . 81

A.7 Conclusion and Future Work . 82
References . 83

B Indoor Top-k Keyword-aware Routing Query 87
B.1 Introduction . 89
B.2 Problem Formulation . 91

B.2.1 Preliminaries . 91
B.2.2 Principles and Definition of Routing Query 92

B.3 Ranking Relevant Routes for IKRQ 94
B.3.1 Organization of Indoor Space Keywords 94
B.3.2 Keyword Relevance between Query Keywords and Routes . . 95
B.3.3 Ranking Score for Routes 98

B.4 Search Algorithms for IKRQ . 99
B.4.1 Pruning Rules for Expansion 99
B.4.2 Overall Search Framework 101
B.4.3 Topology-oriented Expansion (ToE) 103
B.4.4 Keyword-oriented Expansion (KoE) 106

B.5 Experimental Studies . 108
B.5.1 Results on Synthetic Data 108
B.5.2 Results on Real Data . 114

B.6 Related Work . 115
B.7 Conclusion . 115
References . 116

ix

Contents

C Towards Indoor Temporal-variation aware Shortest Path Query 119
C.1 Introduction . 121
C.2 Preliminaries . 123

C.2.1 Differentiation of Indoor Entities 124
C.2.2 Problem Definition . 125
C.2.3 Indoor Shortest Distance/Path Query Techniques 126

C.3 ITSPQ using Temporal-Variation Graph 127
C.3.1 Indoor Temporal-Variation Graph 127
C.3.2 IT-GRAPH based ITSPQ Processing 128

C.4 ITSPQ using Temporal-Variation Index 133
C.4.1 Indoor Temporal-Variation Index 133
C.4.2 IT-INDEX based ITSPQ Processing 136
C.4.3 Complexity Analysis . 140

C.5 Experimental Studies . 141
C.5.1 Results on Synthetic Data 141
C.5.2 Results on Real Data . 148

C.6 Related Work . 150
C.7 Conclusion . 151
References . 152

D Towards Crowd-aware Indoor Path Planning 155
D.1 Introduction . 157
D.2 Preliminaries . 159

D.2.1 Indoor Crowds . 159
D.2.2 Problem Formulation . 161
D.2.3 Solution Framework . 164

D.3 Indoor Crowd Model . 165
D.3.1 Model Structure . 165
D.3.2 Door Flow Function . 166

D.4 Time-evolving Populations . 167
D.4.1 Rectifying Door Flows . 167
D.4.2 Implementation of Population Estimator 168

D.5 Query Processing Algorithms . 171
D.5.1 Exact Algorithms for FPQ and LCPQ 171
D.5.2 Approximate Algorithms for FPQ and LCPQ 173
D.5.3 Complexity Analysis . 175

D.6 Experiments . 175
D.6.1 Results on Synthetic Data 175
D.6.2 Results on Real Data . 181
D.6.3 Summary of Results . 184

D.7 Related Work . 184
D.8 Conclusion and Future Work . 185
References . 186

x

Acknowledgement

First, I would like to express my gratitude to my Ph.D. supervisor, Professor Hua Lu,
for giving me the opportunity to work with him. He is an excellent researcher and
a nice supervisor who always gives me professional guidance, warm encouragement,
and enormous support. He is always there to help and support me whenever I need
him. I am very grateful for his constructive suggestions and inspiring ideas. Under
his patient supervision, I have improved a lot in the research area. It is my great honor
to be one of his Ph.D. students. If it is possible I would like to continue to work with
him in my future career.

Second, I would like to thank Assistant Professor Huan Li, who helped me a lot
during my Ph.D. study. Without his professional and detailed advice, I cannot imagine
I can have these publications and thesis. We had a lot of discussions regarding my
research work and I was always inspired during the discussion. I am impressed by
his rigorous approach and strong logical thinking. I learned a lot from him during our
cooperation.

Third, I would like to thank Associate Professor Muhammad Aamir Cheema who
hosted me as a visiting student at Monash University. Due to the Covid-19, I could
not study at Monash University physically, but it was a special experience for me. I
appreciate his support and a great help to my research work.

Fourth, I would like to thank all my co-authors, Zijin Feng, Doctor Harry Kai-Ho
Chan, Professor Lidan Shou, Professor Jianliang Xu, and Professor Hong Cheng, for
giving me the chance to work with them and learn from them. I want to thank all my
colleagues at Daisy who provide a friendly working environment. I also want to thank
all administrative staff at AAU for their valuable support regarding administrative is-
sues during my Ph.D. study.

Fifth, I would like to thank the Independent Research Fund Denmark and the De-
partment of Computer Science, Aalborg University for funding me to finish my Ph.D.
study.

Finally, I would like to thank my family and friends, especially my parents and my
husband who always encourage me with warm words. Thank them for their love and
patience. Thank all my friends who let me feel I am not lonely.

Tiantian Liu
Aalborg University, February 26, 2022

xi

Acknowledgement

xii

Thesis Details

Thesis Title: Spatial Queries for Indoor Location-based Services
Ph.D. Student: Tiantian Liu
Supervisor: Prof. Hua Lu, Aalborg University

The main body of the thesis consists of the following papers.

A. Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, and Lidan Shou,
“Indoor spatial queries: Modeling, indexing, and processing,” in 24th Inter-
national Conference on Extending Database Technology (EDBT), 2021, pp.
181–192.

B. Zijin Feng, Tiantian Liu, Huan Li, Hua Lu, Lidan Shou, and Jianliang Xu,
“Indoor top-k keyword-aware routing query,” in 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 2020, pp. 1213–1224.

C. Tiantian Liu, Zijin Feng, Huan Li, Hua Lu, Muhammad Aamir Cheema, Hong
Cheng, and Jianliang Xu, “Towards indoor temporal-variation aware shortest
path query,” IEEE Transactions on Knowledge and Data Engineering (TKDE),
2021.

D. Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, and Lidan Shou,
“Towards crowd-aware indoor path planning,” Proc. VLDB Endow. (PVLDB),
vol. 14, no. 8, pp. 1365–1377, 2021.

In addition to the above papers, I have co-authored the following five papers as part of
my Ph.D. studies, which are not included in the thesis.

E. Tiantian Liu, Zijin Feng, Huan Li, Hua Lu, Muhammad Aamir Cheema, Hong
Cheng, and Jianliang Xu, “Shortest path queries for indoor venues with tempo-
ral variations,” in 2020 IEEE 36th International Conference on Data Engineer-
ing (ICDE). IEEE, 2020, pp. 2014–2017 (Poster Paper).

F. Harry Kai-Ho Chan, Tiantian Liu, Huan Li, and Hua Lu. "Time-Constrained
Indoor Keyword-aware Routing," Proceedings of the 17th International Sympo-
sium on Spatial and Temporal Databases (SSTD), 2021: 74-84.

xiii

Thesis Details

G. Tiantian Liu, Zijin Feng, Huan Li, Hua Lu, Lidan Shou, and Jianliang Xu,
"IKAROS: An Indoor Keyword-Aware Routing System," accepted by 2022
IEEE 38th International Conference on Data Engineering (ICDE) (Demo Pa-
per).

H. Tiantian Liu, Huan Li, Hua Lu, and Muhammad Aamir Cheema. Contact
"Contact Tracing over Uncertain Indoor Positioning Data," under review.

I. Harry Kai-Ho Chan, Tiantian Liu, Huan Li, and Hua Lu. "Time-Constrained
Indoor Keyword-aware Routing: Foundations and Extensions," under review.

This thesis has been submitted for assessment in partial fulfillment of the Ph.D.
degree. The thesis is based on the submitted or published scientific papers listed above.
Parts of the content of the papers in the main body of the thesis are used directly or
indirectly in the extended summary part of the thesis. As part of the assessment,
co-author statements have been made available to the assessment committee and are
also available at the Faculty. The permission for using the published and accepted
articles in the thesis have been obtained from the corresponding publishers with the
condition that they are cited and copyright are placed prominently in the references.
In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of Aalborg University’s products or services. Internal
or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to http://www.ieee.
org/publications_standards/publications/rights/rights_link.html to
learn how to obtain a License from RightsLink.

xiv

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Part I

Thesis Summary

1

Chapter 1

Introduction

1.1 Background and Motivation
With the acceleration of urbanization, indoor space has become increasingly large and
complex, resulting in a lot of indoor LBSs needs. For instance, passengers may want
to query the fastest path to their boarding gate in an airport. Besides, people may
want to know the nearest cafe with a high rating in a shopping mall. In a hospital,
patients want to find a path to the doctor’s office. Indoor spatial queries are the basics
to support relevant applications in different indoor scenarios.

Some works study the indoor model, index, and query [19, 24, 25]. Nonetheless,
there is still no overall experimental study on these existing techniques. Moreover,
existing works in indoor spatial query [19, 24, 25] cannot facilitate people in all sce-
narios in reality. More aspects should be considered, and these are shown in Fig. 1.1.

Pratical needs
in indoor space

Keywords
E.g., shop's name，

function area
name...

Temporal Variations
E.g., door's active

time

Crowds
E.g., queued place,
crowded partitions

Fig. 1.1: Pratical Needs in Indoor Space

• Keywords. In real life, people have the demand of keyword-aware routing
queries, in particular, sometimes people have to across a strange large indoor
building. For example, Jesper wants to take a flight in Copenhagen Airport.
Before he reaches the boarding gate, he wants to draw some cash at an ATM,
have lunch, and buy some Danish cookies as a gift for friends. In this case,

3

Chapter 1. Introduction

it needs an appropriate route that can cover some keywords, such as "cash",
"restaurant", and "cookies".

• Temporal variations. There are some temporal variations and restrictions in
indoor venues in real life. For example, in a shopping mall, some doors may
close in the evening which causes different indoor topology. Some indoor parti-
tions like private offices in an office building will also result in different indoor
topologies because we usually cannot pass through these kinds of partitions in
reality.

• Crowds. Moving objects in indoor space may also influence how people choose
an appropriate route. For instance, people’s moving speed will become slower
due to the influence of the crowds, which will further influence the overall trav-
eling time. Sometimes people may be more conscious of time, so just consid-
ering the length of a path is not enough. For example, there are usually many
people in the security check area in an airport, so passengers have to wait to
pass it. If we just consider the length of a path, it may still result in missing a
flight.

There are some challenges to solve the aforementioned problems. First, the tech-
niques for outdoor space are not applicable to indoor space because of the complex
topology in indoor space. Second, there is no efficient and effective semantic founda-
tion for indoor space. Third, there is no indoor model or index to handle the temporal
variations in indoor space. Fourth, when considering the indoor crowds, we usually
have to derive the population in some partitions at a future time. There is no frame-
work to handle this problem. To bridge the gap, we propose and study the following
problems.

1) Experimental study of techniques for indoor spatial queries. To study the
performance and differences of different techniques for indoor spatial queries,
we conduct extensive experiments on existing proposals. We survey four dif-
ferent indoor spatial queries and five indoor model/indexes and experimentally
evaluate the corresponding query processing algorithms [16].

2) Indoor Keyword-aware Routing Query. We study a new query called Indoor
Top-k Keyword-aware Routing Query (IKRQ) [8]. It returns k routes from the
given point s to the given point t within a given distance constraint. These k
routes have the highest ranking scores integrating keyword relevance and spatial
distance [8]. We design a fundamental model to organize textual information
and spatial information. We propose a method to calculate the ranking score
which considers the indoor textual information and spatial distance. We design
two algorithms with several pruning rules to process IKRQ.

3) Indoor Temporal-variation aware Routing Query. We propose a novel query
called Indoor Temporal-variation aware Shortest Path Query (ITSPQ) [15]. It

4

1.2. Thesis Structure

returns the valid shortest path based on the latest indoor topology at the given
query time [15]. To answer an ITSPQ, the Indoor Temporal-variation Graph
(IT-Graph) is proposed to organize indoor spatial information with temporal
variations. Two corresponding algorithms are proposed to process the query.
The main difference between the two algorithms is that one checks a door’s
accessibility synchronously while the other one check that asynchronously. To
speed up query processing, the Indoor Temporal-variation Index (IT-Index) is
designed which can maintain dynamic indoor door-to-door distances.

4) Indoor Crowd-aware Routing Query. We propose and study two types of
crowd-aware indoor path planning queries [17]. The Indoor Crowd-Aware Fastest
Path Query (FPQ) returns a path with the shortest travel time in the presence of
crowds, whereas the Indoor Least Crowded Path Query (LCPQ) returns a path en-
countering the least objects en route [17]. We propose a unified framework that
consists of three main components including an indoor crowd model, a time-
evolving population estimator, and two exact and two approximate algorithms
to process each type of query [17].

1.2 Thesis Structure
This thesis mainly studies the spatial queries for indoor location-based services. The
overall structure is illustrated in Fig. 1.2.

Queries for Indoor Location-based Services

How to plan a route in indoor space when
considering keywords (Paper B)

Advanced Indoor Routing Query

How to plan a route in indoor space when
considering temporal-variations (Paper C)

How to plan a route in indoor space when
considering crowds (Paper D)

General Indoor Spatial Queries

Experimental evaluation of existing techniques for
indoor spatial queries (Paper A)

Fig. 1.2: Thesis Structure

It first analyzes the existing techniques for indoor spatial queries and conducts ex-

5

Chapter 1. Introduction

tensive experiments to study the performance and differences of these proposals. Then
it studies three specific advanced indoor routing queries considering keywords, tem-
poral variations, and crowds, respectively. Paper A [16] evaluates five different indoor
model/indexes for four indoor spatial queries. This work is the foundation of other
works. Paper B [8] studies an indoor keyword-aware routing query that considers the
indoor textual information. Paper C [15] proposes an indoor temporal-variation aware
shortest path query that considers temporal variations such as the door’s active time.
Paper D [17] studies two queries, indoor crowd-aware fastest path query and indoor
least crowded path query which considers the influence of indoor crowds for indoor
spatial queries.

6

Chapter 2

Experimental Study on Indoor
Spatial Queries

This chapter gives an overall introduction of Paper A [16]. The chapter reuses content
from the paper when that is considered most effective.

2.1 Motivation and Background
Many people’s activities are in indoor space, so indoor location-based services (LBS)
attract the attention of both industrial and academic communities [3, 5]. Typical in-
door spatial queries are usually the foundation of different applications, such as POI
search [13, 20] and path planning [7–9]. Several techniques like space models, in-
dexes, and algorithms have been proposed to support different indoor queries, such
as range query, kNN query, and shortest path/distance query. However, it is still hard
for developers to choose an appropriate technique of indoor queries for a certain in-
door environment because there is still no comprehensive experimental study on all
these approaches. Therefore, it is significant to study the pros and cons of typical
indoor techniques and recommend optimal methods for a given indoor scenario. In
this work, we study five indoor models/indexes that are the foundation of four indoor
spatial queries. We compare their technical features theoretically and analyze the
complexity of all algorithms. We design a benchmark to evaluate their performance
in different indoor scenarios. We report the experimental results and summarize their
advantages and disadvantages.

2.2 Techniques of Indoor Spatial Query

7

Chapter 2. Experimental Study on Indoor Spatial Queries

2.2.1 Indoor Spatial Query Types

We study the following four typical indoor spatial query types. We do not consider
moving objects in this work.

1) Range Query (RQ). A range query RQ(p,r) returns all indoor objects from
object set O whose indoor distance from query point p is within distance r [16].

2) k Nearest Neighbor Query (kNNQ). A k nearest neighbor query kNNQ(p)
returns an object set O′ of k indoor objects whose indoor distances from query
point p are the smallest [16].

3) Shortest Path Query (SPQ). A shortest path query SPQ(p,q) returns the short-
est path φ = 〈p,di, . . . ,d j, q〉 from source point p to target point q [16].

4) Shortest Distance Query (SDQ). A shortest distance query SDQ(p,q) returns
the shortest indoor distance from source point p to target point q, i.e., the length
of SPQ(p,q) [16].

2.2.2 Indoor Models and Indexes

We compare five indoor models and indexes.

11

12

13
14

40

20
21 23

22

33

30

32

31

50d11

d12

d13
d14

d15

d0

d1 d3

d4

d2

d21

d24

d22

d23

0

d31

d32

d33

o1

o2

o3

o4

q
1.1

1.2

1.9

2.0
1.8

2.7 3.0
0.5

p

d4

d11
Doors

Room

Staircase

Hallway

Unidirectional

p’ 10

Fig. 2.1: Example Floorplan [16]

Indoor Distance-Aware Model [19] (IDMODEL). The graph-based IDMODEL

Gdist(V ,Ea,L, fdv, fd2d) consists of five tuples. V represents a set of vertexes, and each
vertex is an indoor partition. Ea represents a set of edges, and each edge connects two
partitions. L represents the set of edge labels, and each label maintains the information
of a door. fdv is a door-to-partition distance mapping for each partition. The distance

8

2.2. Techniques of Indoor Spatial Query

is the maximum Euclidean distance from the door to the point in the partition. fd2d is
a door-to-door distance mapping. If two doors are connected to the same partition, the
distance is the Euclidean distance between these two doors. An example of IDMODEL

corresponding to Fig. 2.1 is shown in Fig. 2.2.

Key Value

(d0, v40) 3.5m

(d0, v30) 6.1m

…

Key Value

(v40, d0, d1) 1m

(v40, d0, d5) 1.2m

…

Door-to-partition distance map

Door-to-door distance map

12
0 50

40 30

20

33

32

31

21

22

23

10

11

13

14

d11
d11d12d15

d13

d1

d1

d0

d0 d5

d5
d3

d3

d33 d33

d31

d32

d32
d31

d13

d14 d14
d2

d2

d21d21

d24

d24 d22
d22

d23

d23

Fig. 2.2: An Example of IDMODEL [16]

Indoor Distance-Aware Index [19] (IDINDEX). Based on IDMODEL, the IDIN-
DEX maintains precomputed global door-to-door distances and their ordering in two
matrices to help further speed up query processing. The door-to-door distance ma-
trix Md2d stores all precomputed door-to-door shortest distance. The size of Md2d is
N × N where N means all number of doors in indoor space [16]. The distance index
matrix Midx is also an N × N matrix such that Midx[di,k] gives the identifier of a door
whose indoor distance from di is the k-th shortest among all the N doors [16]. Fig. 2.3
illustrates an example of the IDINDEX matrices for the top-left part in Fig. 2.1 [16].



d1 d11 d12 d13 d14 d15
d1 0 1.7 2.7 3.6 2.8 4.6
d11 1.7 0 1.9 3.6 2.8 4.6
d12 2.7 1.9 0 2.6 1.8 1.6
d13 3.2 3.4 2 0 2 1
d14 2.8 2.8 1.8 1 0 2
d15 4.3 3.5 1.6 1 2 0


(a) Distance Matrix Md2d



1 2 3 4 5 6
d1 d1 d11 d12 d14 d13 d15
d11 d11 d1 d12 d14 d13 d15
d12 d12 d15 d14 d11 d13 d1
d13 d13 d15 d12 d14 d1 d11
d14 d14 d13 d12 d15 d1 d11
d15 d15 d13 d12 d14 d11 d1


(b) Distance Index Matrix Midx

Fig. 2.3: An Example of IDINDEX [16]

Composite Indoor Index [25] (CINDEX). The CINDEX consists of three lay-
ers to maintain indoor spatial information and moving objects. The geometric layer
organizes all indoor partitions based on R*-tree [4]. A skeleton tier is designed to han-

9

Chapter 2. Experimental Study on Indoor Spatial Queries

R2 R3 R4

R0

R1

v11 v12 v13 v14 v10a v10b

R1
R2

R3

R4 R0

v11

v12

v13 v14

v10a

v10b

(d11, ↑v10a)

(d12, ↑v10a)

(d13, ↑v10b), (d15, ↑v12)

(d14, ↑v10b)

(d13,↑v13), (d14,↑v14), (d16,↑v10a)

geometric

layer
topological

layer

object layer

v13

v14

v12

v11

↑v11o1

o2

↑v10ao4

o-table
*pidoid

o1

o3

v10b

↑v10a

↑v10bo3

o2 o4,

v10a

……

d16

Fig. 2.4: CINDEX Example [16] (Adapted from [25])

dle the distances between staircases on different floors. The topological layer mainly
keeps the connectivity information among indoor partitions. There are inter-partition
links connecting the geometric layer and topological layer [16]. The object layer
stores object buckets for each indoor partition at the leaf node level of the geometric
layer [16]. We focus on static objects in this study, so we adapt the object layer to
index static indoor objects [16]. Fig. 2.4 shows an example of CINDEX for Fig. 2.1.

N0

d0

d0 d1 d2 d3
d0 0 1.4 2 3.9

d1 1.4 0 3 4

d2 3.9 4 4.4 0

d3 2 3 0 4.4

d1 d11 d12 d13 d14 d15
d1 0 1.7 2.7 3.2 2.8 4.3,

d12

Distance Matrix for N0 (a non-leaf node)

Distance Matrix for N1 (a leaf node)

N2

d0 ,d1 ,d2 ,d3

v40, v50

N1

d1

v10-v14

N3

d3

v30-v33

N4

d2

v20-v23

access
doors

Fig. 2.5: An Example of IP-TREE [16]

IP-Tree and VIP-Tree [24] (IP-TREE). The IP-TREE maintains indoor spatial
information in a tree with a number of door-to-door distances matrices in each node.
Specifically, several topologically adjacent indoor partitions are maintained in each
leaf node [16]. The non-leaf node consists of a set of adjacent leaf nodes, and ad-
jacent non-leaf nodes are combined hierarchically until a root node is formed [16].
There are a set of access doors and a distance matrix in each node N. An access

10

2.3. Experimental Evaluation

door connects the node N to its external space. Each leaf node contains a small dis-
tance matrix that stores the shortest distance between each door in this leaf node to
each access door of the leaf node [16]. Each non-leaf node also maintains a dis-
tance matrix that keeps the shortest distances between each pair of access doors of its
child nodes [16]. Fig. 2.5 illustrates an example of IP-TREE for Fig. 2.1. Vivid IP-
Tree (VIP-TREE) [24] maintains more precomputed information in the tree to further
speed up the distance computation.

2.2.3 Comparison

We compare the feature, complexity, and extensibility of five indoor model/indexes in
Tables 2.1, 2.2, and 2.3.

Table 2.1: Feature Comparison [16]

Models IDMODEL IDINDEX CINDEX IP-TREE VIP-TREE

Precompute No Yes No Yes Yes
Structure Graph+Mappings Matrix Tree+Links Tree+Matrix Tree+Matrix
Initialization Sequential scan Sequential scan R*-Tree pruning Sequential scan Sequential scan
Expansion Dijkstra Loop Dijkstra LCA LCA
RQ 4 X X X X
kNNQ 4 X X X X
SPQ X 4 4 X X
SDQ X 4 4 X X

2.3 Experimental Evaluation

2.3.1 Benchmark

Datasets. We use four various indoor space datasets, i.e., SYN, MZB, HSM, and
CPH, each featuring a different indoor space [16]. Fig. 2.6 shows the floorplans of
these four datasets.

(a) SYN

(b) MZB

(d) CPH (c) HSM

Fig. 2.6: Floorplan of Datasets [16]

11

Chapter 2. Experimental Study on Indoor Spatial Queries

Ta
bl

e
2.

2:
C

om
pl

ex
ity

A
na

ly
si

s
[1

6]

Sp
ac

e
R
Q

kN
N

Q
SD

Q
SP

Q

ID
M

O
D

E
L

O
(V

+
D
+

2V
d
+
V
d

2)
O
(o
V

lo
g
D
)

O
(o
V

lo
g
D
)

O
(V

lo
g
D
)

O
(V

lo
g
D
+
w
)

ID
IN

D
E

X
O
(2
D

2)
O
(o
d

lo
g
D
)

O
(o
d

lo
g
D
)

O
(d

2)
O
(d

2
+
w
)

C
IN

D
E

X
O
(V

+
V
d
+
O
)

O
(o
V

lo
g
D
)

O
(o
V

lo
g
D
)

O
(V

lo
g
D
)

O
(V

lo
g
D
+
w
)

IP
-T

R
E

E
O
(ρ

2 f
2 L

+
ρ
D
)

O
((

ρ
lo

g f
L
)2 (

V
o

/
L
+

ρ
))

O
((

ρ
lo

g f
L
)2 (

V
o

/
L
+

ρ
))

O
(ρ

2
lo

g f
L
)

O
((

ρ
2
+
w
)

lo
g f
L
)

V
IP

-T
R

E
E

O
(ρ

2 f
2 L

+
ρ
D

lo
g f
L
)

O
(ρ

2
lo

g f
L
(V
o

/
L
+

ρ
))

O
(ρ

2
lo

g f
L
(V
o

/
L
+

ρ
))

O
(ρ

2)
O
(ρ

2
+
w
)

12

2.3. Experimental Evaluation

Table 2.3: Extensibility Analysis [16]
IDMODEL IDINDEX CINDEX IP/VIP-TREE

Temporal Variation X X X X
Moving Objects X X X X

Uncertain Locations X X X X
Keywords X X X X

Performance Evaluation Procedure [16]. We propose a number of tasks to eval-
uate the performance of each model/index. These tasks are classified into two types,
i.e., A. model construction and B. query processing. For each task, we vary one pa-
rameter while others are fixed to the default value. The experimental settings with
default parameters in bold are listed in Table 2.4. The code of the evaluations is public
online [1]. The following tasks are reproduced from [16].

A Model Construction. We use (a1) model/index size and (a2) construction time as
the performance metrics of model construction. We evaluate the effect of the indoor
size by varying the number of floors from 3 to 9 in the synthetic dataset.

B Query Processing. We use (b1) running time and (b2) memory use as the perfor-
mance metrics to evaluate the efficiency of query processing (all query types). We
use (b3) number of visited doors (NVD) to evaluate SPDQ [16].

B1 Effect of Floor Number n. For each query type, we vary floor number n from 3
to 9 in SYN to evaluate the scalability [16].

B2 Effect of Object Number |O|. We vary |O| from 500 to 2500 to evaluate the
efficiency of RQ and kNNQ in four datasets [16].

B3 Effect of Range Distance r. We increase r from 200m to 1000m in SYN5, HZM
and CPH, and from 20m to 100m in MZB to evaluate the effect of r to RQ [16].

B4 Effect of k. For kNNQ, we increase k from 1 to 100 in four datasets [16].

B5 Effect of Source-Target Distance s2t. To test SPDQ, we vary s2t from 1100m to
1900m in SYN5, HZM, and CPH, and from 30m to 150m in MZB [16].

B6 Effect of Topological Change. We vary indoor topology by changing the door
number from 840 to 1280 in SYN5 and obtain SYN5− and SYN5+ [16].

B7 Effect of Hallway’s Decomposition Method. We use SYN5 and MZB with the
derived datasets, SYN50, MZB0 and MZB∆ [16].

2.3.2 Performance Analysis

We conduct extensive experiments, then report and analyze the results. We implement
all techniques and experiments in Java and run on a MAC with a 2.30GHz Intel i5
CPU and 16 GB memory [16].

The performance of five model/indexes is summarized in Table 2.5 where more
stars mean it performs better for the corresponding query type [16].

13

Chapter 2. Experimental Study on Indoor Spatial Queries

Ta
bl

e
2.

4:
E

va
lu

at
io

n
Se

tti
ng

s
(D

ef
au

lt
Pa

ra
m

et
er

s
in

B
ol

d)
[1

6]

Sy
m

bo
l&

M
ea

ni
ng

Ta
sk

M
et

ri
cs

Q
ue

ri
es

D
at

as
et

Pa
ra

m
et

er
Se

tt
in

g

n
flo

or
nu

m
be

r
A

a1
,a

2
-

SY
N

3,
5,

7,
9

B
1

b1
,b

2,
b3

(o
nl

y
fo

rS
P
D

Q
)

R
Q

,k
N

N
Q

,S
P
D

Q

|O
|

ob
je

ct
nu

m
be

r
B

2
b1

,b
2

R
Q

,k
N

N
Q

al
l

50
0,

10
00

,1
50

0,
20

00
,2

50
0

r
ra

ng
e

va
lu

e
B

3
b1

,b
2

R
Q

SY
N

5,
H

Z
M

,C
PH

20
0,

40
0,

60
0,

80
0,

10
00

M
Z

B
20

,4
0,

60
,8

0,
10

0

k
-

B
4

b1
,b

2
kN

N
Q

al
l

1,
5,

10
,5

0,
10

0

s2
t

so
ur

ce
-t

ar
ge

t
di

st
an

ce
B

5
b1

,b
2,

b3
SP

D
Q

SY
N

5,
H

Z
M

,C
PH

11
00

,1
30

0,
15

00
,1

70
0,

19
00

M
Z

B
30

,6
0,

90
,1

20
,1

50

-
to

po
lo

gi
ca

lc
ha

ng
e

B
6

b1
,b

2,
b3

(o
nl

y
fo

rS
P
D

Q
)

R
Q

,k
N

N
Q

,S
P
D

Q
SY

N
SY

N
5−

,S
Y

N
5,

SY
N

5+

-
de

co
m

po
si

tio
n

m
et

ho
d

B
7

b1
,b

2,
b3

(o
nl

y
fo

rS
P
D

Q
)

R
Q

,k
N

N
Q

,S
P
D

Q
SY

N
SY

N
50 ,S

Y
N

5
M

Z
B

M
Z

B
0 ,M

Z
B

,M
Z

B
∆

14

2.3. Experimental Evaluation

• IDMODEL costs minimum time and space for construction. For SPQ/SDQ, it
works better if large paritions are decomposed into more small partitions [16].
It always performs well for RQ and kNNQ.

• IDINDEX performs well for all query types regarding the time costs. However,
it incurs large time and space costs when constructing offline.

• CINDEX’s performance of query processing is similar to IDMODEL [16].

• IP-TREE and VIP-TREE performs well for SPQ/SDQ tasks, especially when
the indoor space contains more C-Pars connected by so-called access doors [16].

In a word, IDINDEX is the best choice when the size of doors and partitions is
small. VIP-TREE is recommended for path planning or the space accommodates
many C-Pars [16]. Otherwise, IDMODEL is a good choice for RQ and kNNQ because
it requires small time and space to construct and it can balance storage and query time
costs well [16].

Table 2.5: Summary of Findings [16]

Model Construction Cost RQ/kNNQ Search SPQ/SDQ Search
Model Size Time Memory Time Memory Time

IDMODEL ????? ????? ????? ??? ????? ?

IDINDEX ? ? ? ????? ? ?????

CINDEX ???? ???? ????? ??? ????? ?

IP-TREE ??? ??? ???? ? ???? ???

VIP-TREE ?? ??? ??? ?? ??? ????

15

Chapter 2. Experimental Study on Indoor Spatial Queries

16

Chapter 3

Indoor Keyword-aware Routing
Query

This chapter gives an overall introduction of Paper B [8]. The chapter reuses content
from the paper when that is considered most effective.

3.1 Problem Motivation and Statement
People usually spend significant parts of their daily life in different indoor venues
such as airports, office buildings, and shopping malls. The demand for keyword-aware
routing queries is increasing, especially when people have to go through an unfamiliar
large indoor building [8]. For example, Jesper wants to take a flight in Copenhagen
Airport. Before he reaches the boarding gate, he wants to draw some cash at an ATM,
have lunch, and buy some Danish cookies as a gift for friends. He has to do these
within 1.5 hours. In this case, he needs an appropriate route, which is from his current
position to the boarding gate and has to include an ATM, a restaurant, and a cookies
shop. Besides, the distance of the route should be less than a distance constraint [8].1

We propose a novel query, indoor top-k keyword-aware routing query (IKRQ) [8].
An IKRQ requires a start point s, a terminal point t, a distance constraint ∆, and
a query keyword list QW [8]. It returns the k best routes from s to t that are not
longer than ∆ and have highest ranking scores [8]. A route score integrates the route’s
keyword relevance w.r.t. QW and its route distance, i.e., length from s to t [8].The
formal definition of our problem is defined as follows, which is reproduced from [8].

Problem (Indoor Top-k Keyword-aware Routing Query [8]). Given a start point
ps, a terminal point pt , a distance constraint ∆, and a query keyword list QW, an
indoor top-k keyword-aware routing query IKRQ(ps, pt , ∆, QW, k) returns k

1A time constraint T , e.g., 1.5 hours, can easily be converted to a distance constraint ∆ =Vmax ·T , where
Vmax is the maximum indoor walking speed [8].

17

Chapter 3.

routes from ps to pt in a k-set Θ such that ∀R ∈ Θ, δ (R) ≤ ∆ and Ψ(R,∆,QW) ≥
Ψ(R′,∆,QW) for any route R′ /∈ Θ from ps to pt with δ (R′) ≤ ∆.

Above, δ (R) represents the indoor distance of a route R. Ψ(R,∆,QW) captures
the ranking score for a route R, which takes into account both spatial distance and
keyword relevance between R and a given routing query. We proceed to detail the
design of our ranking mechanism for routes [8].

3.2 Ranking Relevant Routes

3.2.1 Spatial Distance

In indoor space, a route R = (xs,di, . . . ,dn,xt) is a path through a sequence of doors
from an item xs to an item xt , where xs and xt can be a point or a door [8]. A route R’s
route distance is δ (R) = δ∗(xs,di)+∑

n−1
k=i δ∗(dk,dk+1)+ δ∗(dn,xt), where δ∗(x1,x2)

means the Euclidean distance from point/door x1 to point/door x2. If x1 and x2 are not
in a same partition, δ∗(x1,x2) is 0 [8].

zara watsons apple

starbucks

samsung

ecco
oppo

costa

1dd1d
2dd2d 3dd3d

4dd4d

5dd5d
6dd6d

1vv1v

2vv2v

3vv3v

4vv4v

11vv11v

12vv12v

10vv10v

8vv8v

7vv7v

6vv6v

5vv5v 9vv9v

ecco keyword

partition

hallway

door

directionality

s
pp
s

p

t
pp

t
p

7dd7d

8dd8d

9dd9d

12dd12d

doordoor

10dd10d

11dd11d

13dd13d 14dd14d

15dd15d

4.5m4.5m4.5m

1m1m1m

5m5m5m

8.3m8.3m8.3m

4.2m4.2m4.2m

6m6m6m

13m13m13m

7.1m7.1m7.1m

3.5m3.5m3.5m

16dd16d

17dd17d

1pp1p
2pp2p

path

Fig. 3.1: An Example of Floorplan [8]. ©2020 IEEE

Referring to Fig. 3.1, for route R(ps, d2, d5, pt), the route distance δ (R) = δ∗(ps,
d2) + δ∗(d2, d5) + δ∗(d5, pt) = 8.3m + 4.2m + 6m = 18.5m.

For a partition, which covers the start point ps, the terminal point pt , or a subset
of query keywords, we call it key partition [8]. The set of sequential key partitions
for a route is denoted as KP(·) [8].

We call routes Ri and R j homogeneous routes if Ri.head = R j.head, Ri.tail =
R j.tail, and KP(Ri) = KP(R j) [8]. Suppose HR is a complete set of homogeneous
routes for a routing query, we say a route Ri ∈HR is prime against R j ∈HR if δ (Ri)<
δ (R j) [8]. Ri is a prime route if Ri is prime against all other routes in HR [8].

18

3.2. Ranking Relevant Routes

3.2.2 Keyword Relevance

We consider two keyword types, i.e., identity word (i-word) and thematic word(t-
word) [8]. We call an indoor partition’s semantic name as an i-word, while we call a
tag relevant to that partition as a t-word [8]. In particular, i-words are usually obtained
from the floor map. For example, in a shopping mall, i-words can be store names like
costa and samsung or function area names such as toilet and elevator. T-words are
usually extracted from the textaul information of the indoor partition. For instance, a
shop costa can be associated with many t-words such as coffee, tea and milk. In our
setting, one partition can associate with many t-words but only one i-word [8]. We use
a P2I mapping P2I(vk) to map a partition vk to its associated i-word wi, and an I2P
mapping I2P(wi) to map an i-word wi to a set of relevant partitions [8]. Moreover,
We use an I2T mapping I2T(wi) to map an i-word wi to a set of relevant t-words, and
a T2I mapping T2I(wt) to map a t-word wt to a set of relevant i-words [8]. For each
partition vk, we use {P2I(vk), I2T(P2I(vk))} to describe its partition words PW(vk),
which includs an i-word wi = P2I(vi) and a set of t-words relevant to wi as indicated
by I2T mapping [8]. Fig. 3.2 shows an example of keyword mapping. In our setting,
we assume that the i-word set and t-word set are distinct. Moreover, for two partitions
with the same i-word, we assume that they have the same set of t-words [8].

IW1 apple

IW2 costa

IW3 starbucks

IW4 samsung

… …

ID WORD

IW1 apple

IW2 costa

IW3 starbucks

IW4 samsung

… …

ID WORD

TW1 coffee

TW2 laptop

TW3 smartphone

TW4 mocha

… …

ID WORD

TW1 coffee

TW2 laptop

TW3 smartphone

TW4 mocha

… …

ID WORD

Identity Word Set Thematic Word Set

v12

v3

v7

v10

…

Partition

P2I mapping: partition → i-word (n:1)

I2P mapping: i-word → partition (1:n)

I2T mapping: i-word → t-word (m:n)

T2I mapping: t-word → i-word (n:m)

Fig. 3.2: Indoor Space Keyword Mappings [8]. ©2020 IEEE

For a route R = (xs,di, . . . ,dn,xt), its route words are the union of all its relevant
partitions’ associated i-words, computed as RW(R) =

⋃
x∈RPW(v∗(x)).wi [8]. Refer-

ring to the route R = (ps,d3, pt) in Fig. 3.1, for point ps, we have PW(v(ps)).wi =
PW(v1).wi = {zara}. Likewise, we have PW(v(pt)).wi = ∅ [8]. For door d3, we have
PW(D2P@(d3)).wi = PW(v1).wi ∪PW(v5).wi = {zara} ∪ ∅ = {zara} [8]. Conse-
quently, we have RW(R) = {zara} [8].

Given a query keyword list QW, we define the route R’s keyword relevance as
follows, which reproduced from [8].

ρQW(R) =


0, if NQW (R) = 0;

NQW (R)+
∑

wQ∈QW

(
max

w′i∈M(wQ ,R)
s(w′i)

)
NQW (R) , otherwise.

19

Chapter 3.

Above, NQW (R) is the number of R’s route words that are relevant to query words
in QW , and M(wQ,R) denotes the set of wQ’s matching i-words on R [8]. When the
context is clear, we use ρ(R) to denote the keyword relevance [8].

3.2.3 Ranking Score for Routes

Given a query IKRQ(ps, pt , ∆, QW, k) and a route R from ps to pt , we compute the
ranking score of R as follows [8].

ψ(R,∆,QW) = α · ρ(R)
|QW|+ 1

+(1−α) · (∆−δ (R)
∆

) (3.1)

The ranking score is a linear combination of keyword relevance and spatial rele-
vance, where the tradeoff parameter α ∈ [0,1] is used to customize the weight of two
parts [8].

3.3 Query Processing Algorithms
We design a unique processing framework for IKRQ, which is shown in Fig. 3.3,
which is reproduced from [8].

IKRQ Search

TOE
Topology-oriented Expansion

Pruning Rule 1

KOE
Keyword-oriented Expansion

Call

Pruning Rule 2

Pruning Rule 3

Pruning Rule 4

Pruning Rule 5
Fig. 3.3: IKRQ Processing Framework [8].

We propose two expansion methods, i.e., topology-oriented expansion (ToE) and
keyword-oriented expansion (KoE) [8]. To improve the efficiency of query processing,
we design 5 pruning rules.

20

3.3. Query Processing Algorithms

3.3.1 Pruning Rules for Expansion

We calculate the lower bound indoor distance for two indoor items xi and x j as fol-
lows, which are reproduced from [8].

|xi,x j|L =


|xi,x j|E , if xi and x j are on the same floor;

min
sdi∈SD(xi),sd j∈SD(x j)

(
|xi,sdi|E + δs2s(sdi,sd j)+

|sd j,x j|E
)
, otherwise.

This method is originate from a previous work [25]. In this equation, |xi,x j|L is the
Euclidean distance if xi and x j are on the same floor. Otherwise, one needs to go
through a number of staircase doors (e.g., sdi ∈ SD(xi)) to reach x j from xi, and there
can be multiple such paths. In this case, |xi,x j|L is the shortest path distance among
all such paths [8].

Based on the lower bound indoor distance, we propose the following pruning rules
for IKRQ [8].

Pruning Rule 1. A partial route R? = (ps,di, . . . ,dn) in the searching can be pruned
if δ (R?)+ |dn, pt |L > ∆. [8]

Pruning Rule 2. A door dn can be pruned out of the search if |ps,dn|L + |dn, pt |L >

∆ [8].

Pruning Rule 3. An indoor partition vi can be pruned out of the search if its lower
bound distance δ (ps,vi, pt) =

min
di∈P2DA(vi),d j∈P2D@(vi)

(|ps,di|L + δd2d(di,d j)+ |d j, pt |L) > ∆.

Pruning Rule 4. Given the current k-th highest ranking score ψk among the seen
complete routes, a partial route R? = (ps,di, . . . ,dn) can be pruned if its upper bound
ranking score ψU (R?) = α ·1+(1−α)(1− (δ (R?)+ |dn, pt |L)/∆) ≤ ψk [8].

Pruning Rule 5. A partial route R? = (ps,di, . . . ,dn) in the search can be pruned if
the search has already obtained a route R?′ from ps to dn that is prime against R? [8].

3.3.2 Query Processing Algorithms for IKRQ

We design a unique query processing algorithm that can adapt to two expansion meth-
ods. Both two expansion methods are based on the spirit of Dijkstra’s algorithm when
expanding in an indoor graph.

Topology-oriented Expansion (ToE). The main idea of ToE is that it always ex-
pands one hop (an enterable door or the terminal point) from the current node (a
leavable door or the start point). All incomplete routes are maintained in a priority
queue. In each iteration, the route with a higher ranking score will be expanded first.

21

Chapter 3.

Keyword-oriented Expansion (KoE). KoE mainly focuses on expanding to an
enterable door of the partition which is related to an uncovered keyword. One hop in
KoE is actually a partial route that may go through several partitions.

3.4 Experimental Evaluation

3.4.1 Comparable Methods

We evaluate ToE, KoE, and their variants on synthetic and real data. All compared
algorithms are listed in Table 3.1.

Table 3.1: Notations of Comparable Methods [8]. ©2020 IEEE

Modification ToE family KoE family
– ToE KoE
no distance-based Pruning Rules 6-8 ToE\D KoE\D
no kbound-based Pruning Rule 9 ToE\B KoE\B
no prime-based Pruning Rule 10 ToE\P –
with precomputed shortest routes – KoE∗

3.4.2 Datasets and Settings

Synthetic Dataset. We generate a multi-floor indoor space based on an existing floor-
plan2. There are 141 partitions and 220 doors on each floor. To evaluate the effect of
the indoor size, we duplicate floorplan 3, 5, 7, or 9 times [8]. In the default setting, we
use a 5-floor indoor space with 705 partitions and 1100 doors [8]. We obtain keywords
by extracting words from the shop information of five shopping malls in Hong Kong.
Finally, we get 1120 i-words and 9195 t-words. Then we randomly assign these words
to each room in the indoor space [8].

Real Dataset. We use the real indoor topology of a seven-floor shopping mall in
Hangzhou, China [8]. There are ten staircases in which each stairway is roughly 20m
long [8]. There are 639 stores in total. We extract 5036 t-words for 533 i-words from
the mall’s website [8].

Parameters and Metrics. We list the parameter settings in Table 3.2, where the
bold numbers are default values3. We generate 10 query instances for each parameter
setting and run each instance five times. The metrics we use includes the average
running time and average memory cost [8].

2https://deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
3In the real dataset, we adjust α to 0.7 to suit the needs of keyword-awareness in shopping [8].

22

3.4. Experimental Evaluation

Table 3.2: Parameter Settings [8]. ©2020 IEEE
Parameters Settings

k 1, . . . , 7, . . . , 11
|QW| 1, 2, 3, 4, 5

β (% of i-words in QW) 20%, 40%, 60%, 80%, 100%
δs2t (meter) 1100, 1300, 1500, . . . , 2100

η 1.4, 1.6, 1.8, 2.0
α 0.1, 0.3, 0.5, 0.7, 0.9
τ 0.05, 0.1, 0.2, 0.4

3.4.3 Performance Analysis

We report the running time of each algorithm with the default setting in Fig. 3.4. With
the pruning rules, ToE and KoE run fast compared to other methods. Specifically, ToE
returns top-7 results within 117ms while KoE needs about 133ms [8].

In general, ToE\D and KoE\D cost more time, which indicates that the distance-
based pruning is useful. Next, ToE\B and KoE\B perform similarly to their original
counterparts, which means that the kbound pruning barely works in the default set-
ting [8].

0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

A l g o r i t h m s

Tim
e (

mi
llis

ec
.)

 T o E T o E \ D T o E \ B
 K o E K o E \ D K o E \ B K o E *

Fig. 3.4: Default parameters [8]. ©2020 IEEE

Moreover, the results in Fig. 3.4 show that KoE∗ incurs more time costs than other
algorithms and it fluctuates more on different query instances [8]. This shows that
its precomputing does not pay off. On the contrary, it requires more time to compute
the path because it has to recompute indoor distances when a route regularity check
fails [8]. ToE\P does not perform well, nearly 5 to 6 orders of magnitude slower than
other methods, so we omit the results of ToE\P in Fig. 3.4 [8]. ToE\P causes the
number of routes increasing exponentially because it searches without prime route-
based pruning [8].

More performance analysis about the effect of different parameters can be seen in
the full research work [8].

23

Chapter 3.

24

Chapter 4

Indoor Temporal-variation
aware Routing Query

This chapter gives an overall introduction of Paper C [15] and Paper C is the extended
version of a previous work [14]. The chapter reuses content from the paper when that
is considered most effective.

4.1 Problem Motivation and Statement
Indoor routing queries can facilitate people in need and have attracted some researchers’
interest. However, the existing techniques [19, 23] do not consider temporal variations
and restrictions in indoor venues. For example, in a shopping mall, some doors may
close in the evening which causes different indoor topology. Some indoor partitions
like private offices in an office building will also result in different indoor topologies
because we usually cannot pass through this kind of partitions in reality.

To handle these temporal variations and restrictions, we differentiate two kinds
of indoor partitions, i.e., private partitions and public partitions. A private par-
tition cannot be used in routing while a public partition can. Accordingly, we also
distinguish two types of doors. A public door connects two public partitions, while
a private door connects at least one private partitions. In our setting, we define the
active time interval (ATI) of a door as [open-time, close-time). For example, [9:30,
17:10) means a door is open at 9:30 and closed at 17:10 [15].

We propose and study a novel query called indoor temporal-variation aware short-
est path query (ITSPQ) which returns the shortest path from a source ps to a target pt

while considering temporal variations and semantic restrictions [15]. However, such
queries are not easy to handle. First, the existing techniques of modeling the indoor
space do not take into account the temporal variations. Second, to speed up the query
processing, the door-to-door distances are precomputed and maintained in a matrix or

25

Chapter 4. Indoor Temporal-variation aware Routing Query

a tree. However, the precomputed information will become invalid when considering
the temporal variations.

v1 v3 v4

v7

v2

v17

v5

v6 v8

v9

v10

v11

v16 v12 v13 v15

v14

d1
d4 d8

d2
d6

d7

d10

d9

d12

d13

d19
d21 d20

d16 d15

d11

d5

d14

d17

door
directionality

doors

public
partition

private
partition

p1

p2

10m

5m

4m

6m

d3
2m

p3

p4

8m

4m

5m

3md18

2m

d14

d2

v8

v10

Fig. 4.1: An Example of Indoor FloorPlan [15]. ©2021 IEEE

The following problem defination and example are reproduced from [15].

Problem (Indoor Temporal-variation aware Shortest Path Query). Given a static
start point ps, a static target point pt , and a current timestamp t, an indoor temporal-
variation aware shortest path query ITSPQ(ps, pt , t) returns the valid shortest path
from ps to pt that meets the following rules:

1. Each door di in the path should be open at t +∆t1, where ∆t is the walking time
from ps to di and it is computed based on human’s average walking speed [2]
— 5km/h;

2. The path should not go through any private partition except the private parti-
tions that contain ps and/or pt .

Referring to Fig. 4.1, for a query ITSPQ(p3, p4, 9:00), there are two candi-
date indoor paths. One path is (p3,d15,d16, p4) with length 10m and another path
is (p3,d18, p4) with length 12m. Although (p3,d18, p4) is the longer one, the query
returns (p3,d18, p4) as the result. That is because (p3,d15,d16, p4) breaks the rule,
i.e., the path goes through a private partition v15. When considering another query
ITSPQ(p3, p4, 23:30), there is no result because d18 is closed at 23:00 and no path
can meet both rules in the problem definition [15].

4.2 ITSPQ using Temporal-variation Graph

1In this paper, we do not consider the waiting tolerance in the routing, i.e., someone reaches a door and
waits there until the door opens [15].

26

4.2. ITSPQ using Temporal-variation Graph

4.2.1 Indoor Temporal-Variation Graph

We design IT-GRAPH GIT (V , E, Lv, LE) which manages several information, i.e.,
indoor topology, semantic properties of indoor entities, geometric information, and
temporal variation information in a composite structure [15]. The IT-GRAPH consists
of four components. 1) The set of vertices V represents indoor partitions. 2) The set
of directed edges E which means doors. 3) The set of vertex labels Lv where each
label maintains three kinds of information, i.e., partition’s ID, partition’s type (public
partition PBP and private partition PRP), and distance matrix in that partition. 4) The
set of edge labels that maintains the door’s ID, door type (public door PBD and private
door PRD), and the ATIs of doors [15].

We illustrate an example of the IT-GRAPH in Fig. 4.2, which is reproduced from
our full research paper [15]. We use solid circular vertices and hollow circular vertices
to denote public and private partitions, respectively. The outdoor space is represented
by a square vertex. Each directed edge represents the door, which is connected to two
partitions. The information of the vertex labels and the edge labels is maintained in a
door table and a partition table, respectively. For example, a record (d1, PRD, 〈[5:00,
23:00)〉) in Fig. 4.2 means door d3’s type is public and its active time interval is [6:00,
23:00). Moreover, it shows partition v16 is a public partition, and the distance between
its doors d3 and d21 is 4m in partition table in Fig. 4.2.

IDd d-type ATIs

d
7

PRD [6:00, 23:30)

d
3

PBD [6:00, 23:00)

… … …

Door Table

IDv p-type DM

v
1

PRP [[(d
1
, d
1
), 0]]

v
16

PBP [[(d
3
, d
17

), 2], [(d
3
, d
21

),

4], [(d
17

, d
21

), 5]]

… … …

Partition Table

v1

v3

v2

v4

v5

v6

v7

v8

v9

v10

v11

v12
v14

v15

v16

v17

v0

v13

d5d1

public partition private partition

outdoors

d2 d3

d6

Fig. 4.2: Example of Indoor Temporal-Variation Graph [15]. ©2021 IEEE

4.2.2 IT-GRAPH based ITSPQ Processing

We design a unique framework to process ITSPQ using IT-GRAPH. The main idea is
to expand the node in IT-GRAPH based on Dijkstra’s algorithm. Due to some temporal
variations and restrictions, some checks are needed to make sure whether the door is
open or the partition is accessible. We propose two checking methods, synchronous
check, and asynchronous check.

Synchronous Check. For searching a feasible path, we calculate the arrival time
to a door d by using the departure time plus the travel time cost (dist/velocity). Then,

27

Chapter 4. Indoor Temporal-variation aware Routing Query

we check d’s active time intervals. If the arrival time is not in d’s active time intervals,
we do not consider d in that path.

Asynchronous Check. One of the drawbacks of the synchronous check is that it
needs to validate each encountered door when searching a route. However, in some
circumstances, the graph can be static for a time interval. Because the temporal vari-
ation of doors can only happen at the border of doors’ ATIs. Such border time points
are called checkpoints. The indoor topology will stay static between two consecutive
checkpoints [15]. Therefore, we propose the asynchronous check, which just checks
on a time-dependent IT-GRAPH that contains all currently open doors [15]. We just
need to update the topology asynchronously at each checkpoint [15].

These two check methods are suitable for different scenarios according to their
characteristics. For some scenarios with improvised variations, the search using the
synchronous check is recommended. For example, if a fire happens in an indoor
space, some doors should be closed urgently. In this case, the indoor topology is
dynamic. In contrast, for the scenario where doors are opened and closed periodically,
an asynchronous check is more suitable because it can save more search costs without
on-the-fly handling of active time intervals [15].

4.3 ITSPQ using Temporal-variation Index

4.3.1 Indoor Temporal-Variation Index

To speed up the query processing, we design an index, indoor temporal-variation in-
dex (IT-INDEX). The IT-INDEX captures the information of the indoor topology and
organizes indoor partitions into a tree structure [15]. However, the tree structure does
not include the temporal variations and directionality of doors, so we design a distance
cube to maintain the door-to-door distance considering the temporal variations [15].

(doors)

d1→d7

d1

d6
d7

N7 N8

N9

v1, v2, v3,

v6

d3, d5,

d7

N1

v4, v5, v7,

v8

d5, d9

N2

v9, v10

d9, d13,

d14

N3

d3, d7,

d13 , d14

v16, v17

d3, d17

N4

v14, v15

d11, d15,

d18

N5

v11, v12,

v13

d7, d14, d15
d17, d18

N6

d3, d7,

d11, d14

d11, d13

Doors and Life Interval Shortest Distance

and Path

(d1, d7, (22:29:51, 24:00:00)) null

(d1, d7, [5:59:51, 22:29:51)) (16, (d1, d3, d7))

(d1, d7, [0:00:00, 5:59:51)) null

…

Information in Cube (N1)

0: 00

24: 00

d7 d6 d5 d3 d2 d1

(time)

(doors)

(a) Tree Structure (b) Distance Cube for N1

…

Fig. 4.3: Indoor Temporal-Variation Index [15]. ©2021 IEEE

We consider two partition types, i.e., impassable partitions that include all private
partitions and those public partitions with only one door and passable partitions that
are public partitions with two or more doors [15]. Each leaf node consists of a set
of topologically interconnected partitions, while each non-leaf node is formed with a
set of interconnected leaf nodes [15]. The non-leaf nodes are hierarchically merged
to form a non-leaf node at a higher level until one root node at the highest level is

28

4.4. Experimantal Evaluation

formed [15]. Corresponding to Fig. 4.1, the tree structure of IT-INDEX is illustrated
in Fig. 4.3(a). Following the IP-tree [24], we maintain access doors in each leaf node
Ni. Different from IP-tree, we distinguish enterable access doors and leavable access
doors for Ni to maintain the information of door directionality [15]. For each non-leaf
node, we maintain the pointers for its access doors.

When constructing an IT-INDEX, it follows two rules [15]. 1) There is at least one
passable partition in a leaf node, and the other partition should be connected to the
passable partition. That can guarantee that each partition in the node can be physically
reachable (without considering temporal variations and door directionality) [15]. 2)
The number of passable partitions in a leaf node with more than k public doors should
be only one. This is to reduce the complexity of further distance computation.

For each node in the IT-INDEX, we maintain a distance cube, denoted as a 3-
tuple (di, d j, L), to store the shortest path relevant to that node [15]. In the distance
cube, di,d j are two doors, and L is a life interval during which the shortest path is
valid (considering temporal variation) [15]. The shortest path here conforms to our
rule that one can not pass any private door [15]. Compared to IP-tree [24], IT-INDEX

maintains semantic properties and temporal variations of indoor entities, together with
the distance cube that keeps the shortest distance information with respect to temporal
variations [15].

4.3.2 IT-INDEX based ITSPQ Processing

We propose an overall framework to process ITSPQ using IT-INDEX. It first finds
thee lowest common ancestor NLCA for the points ps and pt [15]. Then, two children
of NLCA are obtained, i.e., one is the ancestor of Leaf(ps), Ns, while another is the an-
cestor of Leaf(pt), Nt . Next, it computes the shortest paths from ps to each leavable
access door of Ns and finds qualified leavable access doors of Ns. For each qualified
di, it computes the shortest distance from di to each enterable access door of Nt [15].
Then, it computes the shortest distance from d j to pt for each qualified d j. Conse-
quently, the shortest distance dist from ps to pt through di and d j is computed as the
sum of the shortest distances of ps→ di, di→ d j and d j→ pt [15].

4.4 Experimantal Evaluation

4.4.1 Datasets and Settings

Synthetic Dataset. We generate a multi-floor indoor space with 141 partitions and
224 doors on each floor [15]. In our setting, each room partition is seen as a private
partition (PRP) while each common partition such as a hallway or a staircase is seen
as a public partition (PBP). Finally, there are 53 PBPs and 88 PRPs on each floor. We
use a 7-floor indoor space with 987 partitions (371 PBPs and 616 PRPs) and 1568
doors as the default setting [15].

29

Chapter 4. Indoor Temporal-variation aware Routing Query

Real Dataset. We collect a dataset with real indoor topology and temporal varia-
tion information from a seven-floor shopping mall in Hangzhou, China [15]. All stores
and equipment rooms are seen as private partitions while hallways and staircases are
seen as public partitions [15]. Totally, there are 1050 partitions (553 PBPs and 497
PRBs) connected by 2093 doors.

Parameter Settings. The parameter settings with default values in bold are listed
in Table 4.1. The floor number is only varied in synthetic data to evaluate the scal-
ability. We select random pairs of open time and close time to form the checkpoint
set T in size of 4, 8, 12, or 16 [15]. T is set in the default value 8 in real data. We
set a temporal door ratio (TDR) (20%, 40%, 60%, 80% or 100%) of doors to be the
varied doors that do not open all time [15]. TDR is set in the default value 60% in
real data [15]. For each setting of s2t, we generate five pairs of ps and pt to form the
query instances [15]. The distance from ps to pt is varied from 1100m to 1900m. We
fix the query time to 12:00 in each query instance to make a fair comparison. We also
vary the query time t to see its effect on query processing [15].

Performance Metrics. We evaluate the construction time and index size of IT-
INDEX. For query processing algorithms, we evaluate the average running time, mem-
ory cost, and the number of door visits (NDV) per run of a single query instance [15].
To obtain the average value, each query instance is run 10 times.

Table 4.1: Parameter Settings for Synthetic Data [15]. ©2021 IEEE
Parameters Settings
Floor Number 3, 5, 7, 9, 11
|T | 4, 8, 12, 16
TDR (% of varied doors) 20%, 40%, 60%, 80%, 100%
s2t (m) 1100, 1300, 1500, 1700, 1900
t 0:00, 2:00, . . . , 12:00, . . . , 22:00

Baseline Method [15]. We compare our proposals to a general temporal graph
(GTG) [10, 11, 21, 22]. To adapt to our problem, we assign the door type and ATIs
to each vertex in GTG and the weight of each edge is the distance between two doors.
We adapt the synchronous check to GTG. We do not consider door directionality
in the comparative experiments because it will cost more space and search time for
GTG [15].

4.4.2 Performance Analysis

For synthetic dataset, in the default parameter setting, it takes around 310 ms to build
the IT-GRAPH and the graph size is around 3.5 MB, while the constructing time for
IT-INDEX is around 30 minutes and its size is around 7 MB [15]. Calculating the
distance cubes for nodes in IT-INDEX takes the most of the time when constructing
IT-INDEX. For real dataset, IT-INDEX is built within 4 hours and its size is around
14.3 MB [15].

30

4.4. Experimantal Evaluation

We summarize the results of experiments on query processing as follows [15]. ITI
always performs best in terms of efficiency because IT-INDEX maintains some door-
to-door distances in each node, which can help speed up searching. The running time
of using ITI is shorter than the other three by an order of magnitude in most tests. If
the graph topology is more completed, the efficiency of ITG/S, ITG/A and GTG will
become worse dramatically, whereas ITI’s running time and memory use just increase
slightly. Besides, GTG has the lowest search efficiency because of its large graph
size [15].

31

Chapter 4. Indoor Temporal-variation aware Routing Query

32

Chapter 5

Indoor Crowd-aware Routing
Query

This chapter gives an overall introduction of Paper C [17]. The chapter reuses content
from the paper when that is considered most effective.

5.1 Problem Motivation and Statement
Indoor venues like shopping malls or airports accommodate many objects. These
objects may form crowds and influence how people choose an appropriate route. For
instance, people’s moving speed will become slower influenced by crowds, which will
further influence the overall traveling time. Sometimes people are sensitive to travel
time, so just considering path length is not enough. For example, in an airport, if we
just consider the shortest path, it may still cause missing a flight because the crowds
may influence the traveling time [17]. In other scenarios, people may want to find a
path that can meet the least number of people. For instance, people may want to avoid
human contact as much as possible during the COVID-19 pandemic [17].

In this work, we propose two crowd-aware indoor path planning queries [17].
Referring to Fig. 5.1, given a source point ps, a target point pt , and a query time
t, an Indoor Crowd-Aware Fastest Path Query (FPQ) returns a path with the shortest
travel time in the presence of crowds, whereas an Indoor Least Crowded Path Query
(LCPQ) returns a path that encounters the least objects en route [17]. As an indoor
path is essentially a series of indoor partitions (basic topological units like rooms),
FPQ’s routing cost is partition-passing time, whereas an LCPQ’s is partition-passing
contact [17].

The fastest path query and the least crowded path query are defined as follows,
which are reproduced from [17].

33

Chapter 5. Indoor Crowd-aware Routing Query

v1

v2

v3 v6

v4

v5

v7

d5

d7

d2

d4

door
directionality

doors

R-partition

Q-partition

ps
d1 d4

d1

v4

v1
Pt

d3 d6

d8

object

d9

v8

(distance, time
cost, contact)

(20, 120, 15)(4, 6, 0)

(4, 6, 0)
(8, 12, 0)

(5, 12, 2)

(3, 6, 1)(3, 6, 1)

(16, 24, 0)

(5, 12, 2)(20, 30, 2)

(20, 72, 2)
(3, 6, 1)
d9

d5

d7

d2

d4

ps

d1

Pt
d3

d6

d8

Fig. 5.1: An Example of Floorplan at Query Time tq

Problem 1 (Indoor Crowd-Aware Fastest Path Query FPQ [17]). Given a source ps

and a target pt , an indoor crowd-aware fastest path query FPQ(ps, pt , t) returns a path
φ (ps,di, . . . ,d j, pt) such that a) the overall travel time Tφ is minimized and b) φ is the
shortest among all satisfying a). Formally, @φ ′ 6= φ , Tφ ′ ≤ Tφ ∧distφ ′ < distφ .

Problem 2 (Indoor Least Crowded Path Query LCPQ [17]). Given a source ps and
a target pt , an indoor least crowded path query LCPQ(ps, pt , t) returns a path φ (ps,di, . . . ,
d j, pt) such that a) the overall contact is the least, and b) φ is the shortest among all
satisfying a). Formally, @φ ′ 6= φ , κφ ′ ≤ κφ ∧distφ ′ < distφ .

5.2 Crowd-Aware Path Planning Framework
We propose a crowd-aware query processing framework as illustrated in Fig. 5.2. It
consists of three components, Indoor Crowd Model, Time-evolving Population Esti-
mator, Query Processing Algorithms. We give a detailed introduction of each compo-
nent in the following sections.

5.2.1 Indoor Crowd Model

Following the accessibility graph [12], we propose the indoor crowd model to organize
the indoor topology and population [17]. The indoor crowd model G(V ,E,LV ,LE)
consists of the following components. 1) The set of vertices V represents indoor parti-
tions. 2) The set of directed edges E where each edge e(vi,v j,dk) ∈ E means one can

34

5.2. Crowd-Aware Path Planning Framework

LCPQ
Partition-Passing Contact

Time-evolving Population Estimator

Indoor Topology
door directionality, partition connectivity/accessibility

Indoor Geometry
partition shape, door-to-door distance

Indoor Crowd-Evolution
absolute population, door flows

FPQ
Partition-Passing Time

call call

Exact Search

Query Processing

apply to

Indoor Crowd Model

Exact Search
Global

Approx.
Search PP

Approx.
Search NT

Fig. 5.2: Crowd-Aware Path Planning Framework [17]

reach v j from vi through a door dk. 3) The set of vertex labels LV where each label is
a five tuple [vi,Area(vi),Md2d,τ , (Pi

tl , tl)]. Here, vi represents the corresponding par-
tition, Area(vi) means this partition’s area, Md2d is a matrix maintaining the shortest
distance between each pair of doors in this partition. Moreover, τ ∈ {R,Q} represents
the type of vi

1 and (Pi
tl , tl) indicates that vi’s absolute population at a latest timestamp

tl is known as Pi
tl . 4) The edge label set where each edge label consists of a door flow

function f (vi,v j,dk) and a local array F[t]. An example of an indoor crowd model
corresponding to the space in Fig. 5.1 is shown in Fig. 5.3.

v1
v6

v7

f(v2 , v5 , d4), F[t]

f(v5 , v2 , d4), F[t]

f(v2, v4, d3), F[t]

f(v
1,

v 2
, d

1)
, F

[t
]

f(v2, v1, d1), F[t]

f(v4, v7, d6
), F[t]

f(v8, v5, d7), F[t]

f(v5, v8, d7), F[t]

f(v
8,

v 7
, d

9)
, F

[t]

f(v7, v8, d9), F[t]

f(v
7,

v 6
, d

8)
, F

[t
]

f(v6, v7, d8), F[t]

f(v6, v3, d5), F[t]

f(v3, v6, d5), F[t]
f(v1, v3, d2)

, F[t]

v8

v3

v4

v5

v2

Area 90m2

Md2d [(d1, d2, 5),
(d2, d1, 5)]

𝛕 R

(P, t) (0, 10:01)

Fig. 5.3: An Example of Indoor Crowd Model [17]

1We differentiate two types of partitions. A Queue Partition (Q-partition) requests objects to enter and
leave sequentially, while a Random Partition (R-partition) has no such a restriction and objects can enter
and leave it randomly [17].

35

Chapter 5. Indoor Crowd-aware Routing Query

We propose a door flow function based on the classic Poisson distribution in
queueing theory [6].

f (vi,v j,dk) : t 7→ Pt , t ∈ RT(dk),Pt ∼ Poisson(λ) (5.1)

In the function, t ∈ RT(dk) represents a report timestamp of dk, Pt denotes the
population that flows from vi to v j between t and dk’s next report timestamp, and λ

represents the expected value of Pt under Poisson distribution [17].

5.2.2 Time-evolving Populations

From the indoor crowd model, a partition vk’s latest population Pk
tl at an query time tq

earlier time tl (tl ≤ tq) can be accessed. To estimate the routing cost (traveling time for
FPQ and contact for LCPQ), it is important to derive vk’s time-evolving population and
its future inflows/outflows based on Pk

tl [17].
Let [t0, t1] ∈ UTI(vk) be the unit time interval covering tl . We have Pk

t0,t1 = Pk
tl ,

meaning that vk’s population over [t0, t1] is equal to Pk
tl . Subsequently, for a future unit

time interval [tx, tx+1] ∈ UTI(vk), its population can be calculated as

Pk
tx,tx+1

= Pk
tx−1,tx −out(vk, tx)+ in(vk, tx), x = 1,2, . . . (5.2)

where out(vk, tx) and in(vk, tx) are vk’s estimated outflow and inflow at update times-
tamp tx, respectively [17].

Assume that all relevant door flow functions are ready at tq. We can estimate the
inflow and outflow at a future update timestamp based on the expected values λ [17].
Formally,

out(vk, tx) = ∑
di∈P2D@(vk)∧tx∈RT(di)

∑
vp∈D2PA(di)

f (vk,vp,di).λ

in(vk, tx) = ∑
d j∈P2DA(vk)∧tx∈RT(d j)

∑
vq∈D2P@(d j)

f (vq,vk,d j).λ

where di (resp. d j) is a leaveable (resp. enterable) door updated at time tx and vp ∈
D2PA(di) (resp. vq ∈ D2P@(di)) is its enterable (resp. leaveable) partition [17].

5.3 Query Processing Algorithms
We propose two exact and two approximate algorithms for FPQ and LCPQ [17].

5.3.1 Exact Algorithms for FPQ and LCPQ

Two exact query processing algorithms using two different population estimators. The
global estimator estimates all partitions’ populations globally, whereas the local es-

36

5.4. Experimantal Evaluation

timator only estimates a relevant partition’s population by looking up its upstream
partitions flows [17].

5.3.2 Approximate Algorithms for FPQ and LCPQ

To speed up the query processing, we propose two strategies to derive approximate
populations [17]. The following strategies are reproduced from [17].
Strategy 1: Population Derivation for Partial Partitions (PP). When estimating the
flows, the estimated flows may be contrary to the real situation, so we need to rectify
the expected flows. However, the door flows from a long distance or at a very old
timestamp only have a slight impact on a partition’s current population. Therefore,
we rectify only the outflows of the current relevant partition rather than processing
the outflows of its upstream partitions strictly (i.e., the inflows to the current relevant
partition) [17].
Strategy 2: Population Derivation at Necessary Timestamps (NT). To further speed
up the population derivation for individual partitions, the iterative population compu-
tations are skipped. We just estimate its population at the arrival time directly. It is
worth noting that Strategy 2 is used in combination with Strategy 1 to achieve the
maximum effect of acceleration [17].

5.4 Experimantal Evaluation
We implement four search methods for either FPQ or LCPQ. In particular, *PQ and
*PQ-G are exact search algorithms using the local estimator and global estimator, re-
spectively. *PQ-PP and is *PQ-NT are approximate search algorithms using Strategy
PP and Strategy NT, respectively. All algorithms are implemented in Java and run on
a PC with a 2.30GHz Intel i5 CPU and 16 GB memory [17].

5.4.1 Datasets and Settings

Synthetic Data. We generate a multi-floor indoor space with 141 partitions and 216
doors on each floor [17]. To simulate different size of indoor spaces, we duplicate the
floorplan 3, 5, 7, or 9 times (see Table 5.1). To simulate different types of partitions,
we randomly pick 14 partitions having two doors as the Q-partitions while regarding
all others as R-partitions on each floor.

Real Data. We use a real dataset that is collected from a seven-floor shopping
mall in Hangzhou, China. There are 977 partitions in total, connected by 1613 doors2.
The flows information is collected from the trajectory records on 2017/01/05. In total,
there are 1,598 object trajectories with more than 90,000 positioning records [17].

2We assume that there is no Q-partition in this shopping mall. We varied the fraction of Q-partitions/R-
partitions on synthetic data, but it shows little impact on all algorithms.

37

Chapter 5. Indoor Crowd-aware Routing Query

Baseline Methods. We compare our proposals to two baseline methods. One
method uses a general time-dependent graph (GTG), where each vertex is a door and
the weight of each edge is the cost between two doors, i.e., the time cost for FPQ or
the contact for LCPQ [17]. We use a Dijkstra-based algorithm (*PQ-GTG) without pre-
computation to keep the fair. To adapt it to our problem, we combine it with our exact
population estimator to process FPQ and LCPQ. Another method is the adaptive method
based on the indoor crowd model (*PQ-A) [17]. It keeps updating and recomputing
the optimal route at every node until the destination is reached [17].

Parameter Settings. Table 5.1 lists all parameter settings with default values in
bold3. For synthetic data, we simulate the flows and populations. The partition’s
maximum object number is varied from 0 to |o|. The max capacity of a partition v is
set as Area(v) ·β (β is 1 per m2 in this work). We set the parameter λ of each door
flow function as a value ranging from 0 to 3 randomly4. Time interval TI to control
the length of the unit update time interval of partitions [17].

Performance Metrics. To be fair, we run each query instance ten times and com-
pare their average running time and memory cost [17]. To evaluate the accuracy of
all methods, we measure the hit rate and the relative error [17]. The query hit rate is
the proportion of query instances whose search result equals its gold standard result
among all 100 instances5 [17]. The relative error is to measure the accuracy of esti-
mated routing cost against the gold result. The estimated cost refers to overall travel
time Tφ for FPQ and overall contact κφ for LCPQ [17]. Taking FPQ as an example, the

relative error is γ = |T (E)
φ
−T (G)

φ
|/T (G)

φ
where T (E)

φ
and T (G)

φ
is the overall travel time

corresponding to the exact search and gold result, respectively [17].

Table 5.1: Parameter Settings [17]
Parameters Description Settings

floor Floor number 3, 5, 7, 9
|o| Partition’s maximum object number 300, 600, 900, 1200, 1500

TI (s) Time interval 5, 10, 15, 20
s2t (m) The shortest distance from ps to pt 900, 1100, 1300, 1500, 1700

5.4.2 Performance Analysis

Comparison in default setting. We report the comparison of algorithms for FPQ and
LCPQ on synthetic data in default setting in Tables 5.2 and 5.3. The results in default
setting on real data are reported in Tables 5.4 and 5.5. More detailed results report can
be seen in Paper D [17]. We summarize the results as follows.

First, in terms of running time and memory use, *PQ-PP and *PQ-NT incur less
time and memory cost compared to *PQ and *PQ-G as workloads reduce. Moreover,

3We just vary s2t for real data.
4The value is set according to our analysis of real data. The door flow of a hallway/staircase is relatively

more than that of a room.
5The gold result is returned by searching over the detailed simulated trajectories.

38

5.4. Experimantal Evaluation

Table 5.2: Comparison of Algorithms for FPQ on Synthetic Data (best result in bold) [17]
FPQ FPQ-G FPQ-PP FPQ-NT FPQ-GTG FPQ-A

Running Time (ms) 584 585 208 25 2857 189
Memory (KB) 115 112 111 12 278 14
Hit Rate (%) 98 98 98 95 98 94
Relative Error 4.37E-08 4.37E-08 4.37E-08 8.09E-08 4.37E-08 0.1233

Table 5.3: Comparison of Algorithms for LCPQ on Synthetic Data (best result in bold) [17]
LCPQ LCPQ-G LCPQ-PP LCPQ-NT LCPQ-GTG LCPQ-A

Running Time (ms) 446 461 131 20 2532 163
Memory (KB) 182 192 144 7 257 8
Hit Rate (%) 83 83 83 60 83 87
Relative Error 0.0128 0.0128 0.0129 0.1113 0.0128 0.1256

Table 5.4: Comparison of Algorithms for FPQ on Real Data (best result in bold) [17]
FPQ FPQ-G FPQ-PP FPQ-NT FPQ-GTG FPQ-A

Running Time (ms) 1900 1997 67 11 25559 53
Memory (KB) 367 393 61 1 669 2
Hit Rate (%) 99 99 99 98 99 98
Relative Error 1.86E-15 1.86E-15 1.86E-15 4.38E-14 1.86E-15 0.1492

Table 5.5: Comparison of Algorithms for LCPQ on Real Data (best result in bold) [17]
LCPQ LCPQ-G LCPQ-PP LCPQ-NT LCPQ-GTG LCPQ-A

Running Time (ms) 992 1047 28 10 13895 45
Memory (KB) 307 341 30 1 568 2
Hit Rate (%) 88 88 88 67 88 90
Relative Error 0.0546 0.0546 0.0546 0.6606 0.0546 0.062

Strategy NT helps save more time and memory compared to Strategy PP because NT
further utilizes historical information to skip timestamps. In terms of hit rate and
relative error, PP performs better than NT. That is because NT skips many timestamps,
which further decreases the accuracy of intermediate results [17].

Second, FPQ-PP and FPQ-NT outperform LCPQ-PP and LCPQ-NT on accuracy be-
cause the partition-passing time is less sensitive to the populations compared to the
partition-passing contact [17].

Third, the results show two baseline methods’ weaknesses. In particular, *PQ-GTG
performs poorly in terms of running time and memory since the graph contains more
nodes to process. It seems that *PQ-A performs well on both efficiency and effec-
tiveness. However, it is impossible for a user to obtain the completed path before
departure because *PQ-A needs to keep updating during expansion [17].

More experimental results can be seen in an extended version [18].

39

Chapter 5. Indoor Crowd-aware Routing Query

40

Chapter 6

Conclusion and Future Work

6.1 Conclusion
This thesis focuses on the spatial queries for indoor location-based services. It sum-
maries four research works. One is an experimental study on indoor spatial queries,
while the other three study three novel advanced indoor spatial queries. The contribu-
tions of each work are summarized as follows.

• Paper A [16] compares five indoor space models or indexes that support four
typical indoor spatial queries and give a comprehensive report on experimental
study. By analyzing the results, we summarize the pros and cons of all tech-
niques and give recommendations for different indoor typical scenarios.

• Paper B [8] studies a new spatial query called Indoor top-k Keyword-aware
Routing Query (IKRQ) which can find k routes that have optimal ranking scores
integrating keyword relevance and spatial distance constraint. To solve the prob-
lem, several techniques are proposed. We propose a keyword mapping method
to organize different types of words and manage the relationships between spa-
tial information and keywords. We design two IKRQ search algorithms that
expand differently in routing. Extensive experiments are conducted and the re-
sults demonstrate the efficiency of our proposals.

• Paper C [15] studies a novel routing query called Indoor Temporal-variation
aware Shortest Path Query (ITSPQ) which returns the valid shortest path from
given points ps to pt . We propose a graph (IT-GRAPH) and an index (IT-INDEX)
to process the query efficiently. The extensive experiments demonstrate that our
IT-INDEX based method performs best because it captures the main shortest
distance information in the corresponding tree nodes.

• Paper D [17] studies two types of crowd-aware indoor path planning queries.
The Indoor Crowd-Aware Fastest Path Query (FPQ) returns a path with the short-

41

Chapter 6. Conclusion and Future Work

est traveling time in the presence of crowds; the Indoor Least Crowded Path
Query (LCPQ) returns a path encountering the least objects en route. To answer
these two queries, we design a unified framework including an indoor crowd
model, a time-evolving population estimator, and two exact and two approxi-
mate query processing algorithms that each can process both query types. The
results of the experiments demonstrate the efficiency and scalability of the pro-
posals.

6.2 Future Work
For future work, several interesting directions could be considered.

• Extending the existing works. It is interesting to extend the existing work. For
example, for Paper C, we may consider designing an index with the automatic
update feature and making it more flexible. For Papers B and C, different indoor
spatial queries can be considered based on the existing foundations. For all of
these works, we could further improve the models or indexes to support other
practical issues like elevators/staircases.

• Using AI techniques. AI techniques like machine learning models and deep
learning models drive related innovation in multiple research areas. These tech-
niques can also be used in indoor spatial queries. For example, it can help
predict the indoor crowd or analyze the indoor trajectory, which will be further
used in spatial queries.

• Designing a unified visualization system for indoor space. Visualization sys-
tem could provide people with a visual image of indoor space. It is also a
tool for knowledge understanding and discovery, which has cognitive analysis
and communication functions, and can speed up data processing, e.g., flows
in indoor space. It is interesting and significant to design a powerful tool for
discovering and understanding scientific laws.

42

References

References
[1] https://github.com/indoorLBS/ISQEA.

[2] https://en.wikipedia.org/wiki/Walking.

[3] A. Basiri, E. S. Lohan, T. Moore, A. Winstanley, P. Peltola, C. Hill, P. Amirian,
and P. F. e Silva, “Indoor location based services challenges, requirements and
usability of current solutions,” Computer Science Review, vol. 24, pp. 1–12,
2017.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An
efficient and robust access method for points and rectangles,” in Proceedings of
the 1990 ACM SIGMOD international conference on Management of data, 1990,
pp. 322–331.

[5] M. A. Cheema, “Indoor location-based services: challenges and opportunities,”
SIGSPATIAL Special, vol. 10, no. 2, pp. 10–17, 2018.

[6] P. C. Consul and G. C. Jain, “A generalization of the poisson distribution,” Tech-
nometrics, vol. 15, no. 4, pp. 791–799, 1973.

[7] C. Costa, X. Ge, and P. Chrysanthis, “Caprio: Context-aware path recommen-
dation exploiting indoor and outdoor information,” in 2019 20th IEEE Inter-
national Conference on Mobile Data Management (MDM). IEEE, 2019, pp.
431–436.

[8] Z. Feng, T. Liu, H. Li, H. Lu, L. Shou, and J. Xu, “Indoor top-k keyword-aware
routing query,” in 2020 IEEE 36th International Conference on Data Engineer-
ing (ICDE). IEEE, 2020, pp. 1213–1224.

[9] M. Goetz and A. Zipf, “Formal definition of a user-adaptive and length-optimal
routing graph for complex indoor environments,” Geo-Spatial Information Sci-
ence, vol. 14, no. 2, pp. 119–128, 2011.

[10] S. Huang, J. Cheng, and H. Wu, “Temporal graph traversals: Definitions, algo-
rithms, and applications,” arXiv preprint arXiv:1401.1919, 2014.

[11] W. Huo and V. J. Tsotras, “Efficient temporal shortest path queries on evolving
social graphs,” in Proceedings of the 26th International Conference on Scientific
and Statistical Database Management, 2014, pp. 1–4.

[12] C. S. Jensen, H. Lu, and B. Yang, “Graph model based indoor tracking,” in
MDM, 2009, pp. 122–131.

[13] H. Li, H. Lu, L. Shou, G. Chen, and K. Chen, “In search of indoor dense regions:
An approach using indoor positioning data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 8, pp. 1481–1495, 2018.

43

https://github.com/indoorLBS/ISQEA
https://en.wikipedia.org/wiki/Walking

References

[14] T. Liu, Z. Feng, H. Li, H. Lu, M. A. Cheema, H. Cheng, and J. Xu, “Shortest
path queries for indoor venues with temporal variations,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 2020, pp. 2014–
2017.

[15] ——, “Towards indoor temporal-variation aware shortest path query,” IEEE
Transactions on Knowledge and Data Engineering, 2021.

[16] T. Liu, H. Li, H. Lu, M. A. Cheema, and L. Shou, “Indoor spatial queries: Model-
ing, indexing, and processing,” in Proceedings of the 24th International Confer-
ence on Extending Database Technology, EDBT 2021, Nicosia, Cyprus, March
23 - 26, 2021, 2021, pp. 181–192.

[17] ——, “Towards crowd-aware indoor path planning.” Proc. VLDB Endow.,
vol. 14, no. 8, pp. 1365–1377, 2021.

[18] ——, “Towards crowd-aware indoor path planning (extended version),” arXiv
preprint arXiv:2104.05480, 2021.

[19] H. Lu, X. Cao, and C. S. Jensen, “A foundation for efficient indoor distance-
aware query processing,” in 2012 IEEE 28th International Conference on Data
Engineering. IEEE, 2012, pp. 438–449.

[20] H. Lu, C. Guo, B. Yang, and C. S. Jensen, “Finding frequently visited indoor
pois using symbolic indoor tracking data,” in 19th International Conference on
Extending Database Technology. OpenProceedings. org, 2016, pp. 449–460.

[21] K. Semertzidis and E. Pitoura, “Time traveling in graphs using a graph database.”
in EDBT/ICDT Workshops, 2016, p. 96.

[22] K. Semertzidis, E. Pitoura, and K. Lillis, “Timereach: Historical reachability
queries on evolving graphs.” in EDBT, vol. 15, 2015, pp. 121–132.

[23] Z. Shao, M. A. Cheema, and D. Taniar, “Trip planning queries in indoor venues,”
The Computer Journal, vol. 61, no. 3, pp. 409–426, 2018.

[24] Z. Shao, M. A. Cheema, D. Taniar, and H. Lu, “Vip-tree: an effective index for
indoor spatial queries,” Proceedings of the VLDB Endowment, vol. 10, no. 4, pp.
325–336, 2016.

[25] X. Xie, H. Lu, and T. B. Pedersen, “Efficient distance-aware query evaluation on
indoor moving objects,” in 2013 IEEE 29th International Conference on Data
Engineering (ICDE). IEEE, 2013, pp. 434–445.

44

Part II

Papers

45

Paper A

Indoor Spatial Queries: Modeling, Indexing, and
Processing

Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, Lidan
Shou

The paper has been published in
24th International Conference on Extending Database Technology (EDBT),

pp. 181–192, 2021.

© 2021 EDBT
Reprinted, with permission, from Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir
Cheema, and Lidan Shou, “Indoor spatial queries: Modeling, indexing, and process-
ing,” in 24th International Conference on Extending Database Technology (EDBT),
2021, pp. 181–192.
The layout has been revised.

A.1. Introduction

Abstract
To support indoor spatial queries and indoor location-based services (LBS), multi-
ple techniques including model/indexes and search algorithms have been proposed.
In this work, we conduct an extensive experimental study on existing proposals for
indoor spatial queries. We survey five model/indexes, compare their algorithmic char-
acteristics, and analyze their space and time complexities. We also design an in-depth
benchmark with real and synthetic datasets, evaluation tasks and performance met-
rics. Enabled by the benchmark, we obtain and report the performance results of all
model/indexes under investigation. By analyzing the results, we summarize the pros
and cons of all techniques and suggest the best choice for typical scenarios.

A.1 Introduction
Indoor location-based services (LBS) are becoming increasingly popular [1, 2]. Rel-
evant applications, such as POI search [3, 4] and routing [5–7], are often built on
top of typical spatial queries like range query, k nearest neighbor query, shortest path
query, and shortest distance query. Therefore, the efficiency of processing such typical
indoor spatial queries plays a key role in the success of indoor LBS.

To facilitate query processing for indoor LBS, space models, indexes and algo-
rithms have been proposed. They all deal with indoor entities, e.g., rooms, doors, walls
and floors. These entities form distinct topology that determines indoor distances and
impacts indoor movement. As a result, the distances in indoor spatial queries must be
measured appropriately, e.g., without involving straight line segments through walls.
Also, indoor routing in shortest path/distance queries must consider connectivity and
reachability between indoor locations.

To support indoor distance computation, existing models and indexes [8–11] em-
ploy different approaches to integrate the geometry and topology information of an
indoor space. Though all these approaches can be used to process the aforementioned
indoor spatial queries, a comprehensive experimental study on all these proposals is
still missing. Consequently, indoor LBS application developers inevitably encounter
difficulties in choosing the appropriate technique for a given indoor space scenario.

To bridge this gap for LBS application development and disclose insights for fur-
ther research on indoor data management, we conduct a comprehensive experimental
study in this work. Our study focuses on five existing model/indexes that support
typical indoor spatial queries on static indoor objects (e.g., POIs) or indoor shortest
paths/distances. We compare the five proposals theoretically and empirically. Our
contributions are as follows.

• We survey the five proposals by scrutinizing their structures, algorithmic character-
istics, and space and time complexities.

• We design an in-depth benchmark with datasets, evaluation tasks, and performance

49

Paper A.

metrics. The datasets consist of real and synthetic data characterized by distinctive
indoor topology.

• Within the benchmark, we conduct extensive experiments to evaluate the perfor-
mance of the five proposals in terms of construction cost and query efficiency.

• By analyzing the results, we disclose the pros and cons of the proposals, analyze the
impact of different conditions, and recommend the best choice for typical applica-
tion scenarios.

All code, data and test cases are open-sourced [12]. To the best of our knowledge,
this work is the first that comparatively analyzes and evaluates the existing techniques
under a unified framework.

The paper is organized as follows. Section A.2 introduces indoor spatial queries
and related work. Sections A.3 and A.4 present the indoor space model/indexes and
query processing, respectively. Section A.5 details the experimentation benchmark.
Section A.6 reports and analyzes the evaluation results. Section A.7 concludes the
paper.

A.2 Indoor Spatial Queries
Table A.1 lists the frequently used notations.

Table A.1: Notations
Symbol Meaning
I An indoor space
p,q ∈ I Indoor points
o ∈ O A static indoor object
d ∈ D A door
v ∈V An indoor partition
|p,q|I Indoor distance from p to q
〈p,di, . . . ,d j,q〉 An indoor path
L(φ) Length of a path φ

A.2.1 Indoor Space Concepts

Indoor space features distinct entities such as walls, doors, and rooms, which alto-
gether form complex indoor topology that enables and constrains movements. Natu-
rally, an indoor space is divided by walls and doors into indoor partitions like rooms,
hallways or staircases. Two indoor partitions can be connected by a door or an open
segment between them. Referring to the example floorplan in Fig. A.1, partitions 30
and 40 (denoted as v30 and v40, respectively) are connected by an open segment d3, In
this paper, we refer to both doors and open segments as doors. We do not consider the

50

A.2. Indoor Spatial Queries

width of a door and represent a door by its center point. In other words, each door can
be generally regarded as an indoor point. Furthermore, a door can be unidirectional
such as a security checkpoint at the airport. The door directionality makes the indoor
distance between two points asymmetric. Referring to Fig. A.1, the shortest indoor
path from p to p′ and that from p′ to p are different due to the unidirectionality of d12.

Topology renders the indoor distance more complex than Euclidean distance. In
Fig. A.1, the indoor distance |p,o1|I from p to o1 is not subject to the straight line
segment between them; it is the total length of the polyline p→ d11→ o1.

11

12

13
14

40

20
21 23

22

33

30

32

31

50d11

d12

d13
d14

d15

d0

d1 d3

d4

d2

d21

d24

d22

d23

0

d31

d32

d33

o1

o2

o3

o4

q
1.1

1.2

1.9

2.0
1.8

2.7 3.0
0.5

p

d4

d11
Doors

Room

Staircase

Hallway

Unidirectional

p’ 10

Fig. A.1: Example Floorplan

Lu et al. [8] proposes mappings to capture the relationships between indoor parti-
tions and doors. In particular, D2PA(di) gives the set of partitions that one can enter
through door di and D2P@(d j) gives those that one can leave through door d j. Be-
sides, D2P(di) gives a set of a partition pair (v j,vk) such that one can go through
door di from partition v j to vk. Moreover, P2DA(vk) gives the set of enterable doors
through which one can enter partition vk, and P2D@(vk) gives the set of leaveable
doors through which one can leave partition vk. When doors are bidirectional, we use
P2D(vk)= P2DA(vk)∪P2D@(vk) to denote the set of doors associated to partition vk.

Example A.2.1 (Example of Indoor Space Concepts)
In Fig. A.1, given the unidirectional door d12, we have D2PA(d12)= {v10},
D2P@(d12)= {v12}, and D2P(d12)= {(v12,v10)}. Moreover, we have P2DA(v12)=
{d15}, P2D@(v12) = {d12}, and P2D(v12)= {d15,d12}.

51

Paper A.

A.2.2 Indoor Spatial Query Types

We focus on static indoor objects such as POIs and facilities. Our study covers four
fundamental indoor spatial query types.

Definition 1 (Range Query (RQ)). Given an indoor point p ∈ I, a set O of indoor
objects, and a distance value r, a range query RQ(p,r) returns all indoor objects from
O whose indoor distance from p is within r. Formally, RQ(p,r)= {o | |p,o|I ≤ r,o ∈
O}.

Definition 2 (k Nearest Neighbor Query (kNNQ)). Given an indoor point p ∈ I, a
set O of indoor objects, and an integer value k, a k nearest neighbor query kNNQ(p)
returns a set O′ of k indoor objects whose indoor distances from p are the smallest,
i.e., |O′|= k and ∀oi ∈ O′,o j ∈ O\O′, |p,oi|I ≤ |p,o j|I .

In Fig. A.1 where O = {o1, . . . ,o4}, a query RQ(p,1.9m) returns {o2,o3} since
the distances from p to o1 and o4 both exceed 1.9m.1 Furthermore, a query 3NNQ(p)
returns {o2,o3,o4}, since o1’s distance from p is the longest among all.

Definition 3 (Shortest Path Query (SPQ)). Given a source point p∈ I, a target point
q ∈ I, a shortest path query SPQ(p,q) returns the shortest path φ = 〈p,di, . . . ,d j, q〉
from p to q such that 1) di, . . . ,d j are door sequences and each two consecutive doors
are associated to the same partition, 2) p is in the partition having di as a leavable
door, 3) q is in the partition having d j as an enterable door, and 4) ∀φ ′ from p to q,
L(φ)≤ L(φ ′).2

Definition 4 (Shortest Distance Query (SDQ)). Given a source point p∈ I, a target
point q ∈ I, a shortest distance query SDQ(p,q) returns the shortest indoor distance
from p to q, i.e., the length of SPQ(p,q).

As indicated by the red dashed polyline in Fig. A.1, a query SPQ(p,q) returns
φ = 〈p,d1,d3,q〉 as the shortest path from p to q, and the result of SDQ(p,q) is 2.7m
+ 3.0m + 0.5m = 6.2m.

A.2.3 Related Work

Indoor Space Modeling. Many indoor space models [13–17] focus on symbolic
modeling of topological relationships between indoor partitions. Lacking of indoor
distances, they cannot support the aforementioned distance-aware queries.
Indoor Moving Objects. Alamri et al. [18] propose an index tree for indoor moving
objects based on connectivity between indoor cellular units. Kim et al. [19] propose
to index indoor moving objects based on grid cells. Lin et al. [20] design an indoor
moving object index to speed up complex semantic queries in multi-floor spaces. In

1Meter is the distance unit in all examples in this paper.
2L(φ)= Σk= j

k=0|dk ,dk+1|I where d0 = p and d j+1 = q.

52

A.3. Model and Indexes

the context of RFID indoor tracking, Yang et al. study continuous range monitoring
queries [21] and probabilistic k nearest neighbor queries [22]. To improve the query
result, Yu et al. [23] propose a particle filter-based method to infer the undetected
locations of indoor moving objects. Assuming a probabilistic sample based location
data format, Xie et al. [9, 10] process kNN query and range query for indoor moving
objects. Considering uncertain object movements between observed time and query
time, Li et al. [4] study searching the current top-k indoor dense regions. These works
consider indoor moving objects with uncertain positions at a particular time. Unlike
all these works on indoor moving objects, this study concerns spatial queries on static
indoor objects, e.g., printers or ATMs.
Indoor Trajectories. Jensen et al. [16] study historical trajectories of RFID-tracked
indoor objects. Delafontaine et al. [24] find sequential visiting patterns within his-
torical Bluetooth tracking data. Given a past time or a time interval, Lu et al. define
spatio-temporal joins [25] to find moving object pairs in the same indoor partition, and
top-k queries [3] to find the most frequently visited indoor POIs. Ahmed et al. [26, 27]
define threshold density query to find dense indoor semantic locations in a historical
time interval. Assuming probabilistic sample based location records, Li et al. [28] find
the top-k most popular indoor semantic regions with the highest object flow values.
Jin et al. [29] study the similarity search over indoor trajectories, considering both spa-
tial and semantic properties. By analyzing spatial constraints of indoor POIs, Jiang et
al. [30] study the restoration of indoor trajectories. Li et al. [31] propose a coupled
conditional Markov model to enrich indoor uncertain trajectories with mobility events
and stay regions. Unlike these works, the queries studied in this paper focus on static
objects or indoor paths.
Indoor Path Planning. Goetz and Zipf [5] study user-adaptive length-optimal indoor
routing based on a weighted routing graph. Salgado et al. [32] study indoor keyword-
aware skyline route query, considering the number of covered keywords and route
distances. Feng et al. [7] study indoor keyword-aware routing queries to find shortest
paths covering user-specified semantic keywords. Costa et al. [6] propose the context-
aware indoor-outdoor path recommendation that minimizes the outdoor exposure and
path distance. To enable navigation through movable obstacles, Sun et al. [33] study
semantic assisted path planning over a gridded map of an indoor environment. Wang
et al. [34] propose an obstacle-avoiding path planning algorithm to automate indoor
robots. These techniques consider additional query semantics, and thus are different
from the fundamental, pure shortest path/distance queries studied in this paper.

A.3 Model and Indexes
The aforementioned indoor spatial queries all involve indoor distances. To facilitate
such queries, indoor distances must be considered in modeling and indexing indoor
space.

53

Paper A.

A.3.1 Indoor Distance-Aware Model

Indoor distance-aware model [8] (IDMODEL) is a graph Gdist(V ,Ea,L, fdv, fd2d). The
first three elements capture indoor topology in an accessibility base graph Gaccs(V ,Ea,
L), where V is the set of vertexes each referring to an indoor partition, Ea = {(vi,v j,dk)
| dk ∈ D,vi ∈ D2PA(dk)∧ v j ∈ D2P@(dk)} is a set of labeled, directed edges, and L
is the set of edge labels each corresponding to a door in D. The additional two are
mapping functions defined as follows.

fdv(di,v j) =

{
maxp∈v j ||di, p||v j , if v j ∈ D2PA(di);

∞, otherwise.

Here, ||p,q||v j is the indoor distance from a point p to a point q within the partition
v j. Note that ||p,q||v j is not necessarily a Euclidean distance because even within the
same partition there may be obstacles in the line of sight between p and q. Specifically,
door-to-partition distance mapping fdv(di,v j) returns the longest distance one can
reach within partition v j from door di, if v j is an enterable partition of di. Otherwise,
it returns ∞.

fd2d(v j,di,d j) =



||di,d j||v j , if di ∈ P2DA(v j)

and d j ∈ P2D@(v j);

0, if di = d j

and di,d j ∈ P2D(v j);

∞, otherwise.

The door-to-door distance mapping fd2d(v j,di,d j) maps a partition v j and two
doors di and d j to a distance value. If both doors are associated to v j, it returns the
distance from di to d j within v j, i.e., ||di,d j||v j . If di and d j are identical and associated
to v j, we stipulate fd2d(v j,di,d j) = 0. Otherwise, fd2d(v j,di,d j) returns ∞, indicating
that one cannot go from di to d j via v j only.

Fig. A.2 illustrates the IDMODEL for the example shown in Fig. A.1. The outdoor
space is captured in a special graph vertex v0. Two hashmaps implement the mappings
fdv(di,v j) and fd2d(v j,di,d j). With directed edges, IDMODEL can support doors’
directionality and temporal variation when needed.

With the two mappings fdv(di,v j) and fd2d(vk,di,d j), a graph traversal algorithm
[8] on IDMODEL is designed to compute the shortest door-to-door distance d2d(ds,dt)
from a source door ds to a target door dt . The basic idea is to keep expanding to unvis-
ited doors based on the current shortest path until reaching the target door. Further, the
shortest indoor distance from any point p to any point q can be computed by finding
the minimum value of the distance summation ||p,dp||vp + d2d(dp,dq) + ||dq,q||vq ,
where vp and vq are the partitions that host p and q, respectively, dp ∈ P2D@(vp), and
dq ∈ P2DA(vq).

However, IDMODEL does not support fast determination of the host partition of

54

A.3. Model and Indexes

Key Value

(d0, v40) 3.5m

(d0, v30) 6.1m

…

Key Value

(v40, d0, d1) 1m

(v40, d0, d5) 1.2m

…

Door-to-partition distance map

Door-to-door distance map

12
0 50

40 30

20

33

32

31

21

22

23

10

11

13

14

d11
d11d12d15

d13

d1

d1

d0

d0 d5

d5
d3

d3

d33 d33

d31

d32

d32
d31

d13

d14 d14
d2

d2

d21d21

d24

d24 d22
d22

d23

d23

Fig. A.2: An Example of IDMODEL

a query/source point. It boils down to sequential scanning of all partitions if no ad-
ditional index, e.g., R-tree, is used for the partitions. Also, to manage indoor static
objects, IDMODEL needs additional object buckets each for a partition.

A.3.2 Indoor Distance-Aware Index

IDMODEL only captures the door-to-door and door-to-partition distances within a
local partition, which entails extra search to compute the indoor distance for two points
in different partitions.

To cut such costs, indoor distance-aware index [8] (IDINDEX) stores extra infor-
mation on top of IDMODEL, namely, precomputed global door-to-door distances and
their ordering in two matrices. The door-to-door distance matrix Md2d is an N-by-N
matrix where N = |D| is the total number of doors and Md2d[di,d j] gives the pre-
computed shortest indoor distance from di to d j. The distance index matrix Midx is
also an N-by-N matrix such that Midx[di,k] gives the identifier of a door whose indoor
distance from di is the k-th shortest among all the N doors.

The IDINDEX matrices for the top-left part in Fig. A.1 is illustrated in Fig. A.3.
Here, we have Md2d[d1,d15] = 4.6m. The first row of Md2d shows that d15 has the
longest indoor distance from d1. Accordingly, we have Midx[d1,6] = d15 in Midx.

As the shortest indoor distances to all doors are precomputed and sorted for each
door in IDINDEX, it is faster to compute the shortest indoor distance between any two
points p and q in the indoor space. To support the shortest path query, in addition to the
shortest distance value between any two points, IDINDEX also keeps the first-hop door
of the corresponding shortest path. In this way, the complete shortest path between
two points can be constructed by recursively concatenating the first-hop doors.

55

Paper A.



d1 d11 d12 d13 d14 d15
d1 0 1.7 2.7 3.6 2.8 4.6
d11 1.7 0 1.9 3.6 2.8 4.6
d12 2.7 1.9 0 2.6 1.8 1.6
d13 3.2 3.4 2 0 2 1
d14 2.8 2.8 1.8 1 0 2
d15 4.3 3.5 1.6 1 2 0


(a) Distance Matrix Md2d



1 2 3 4 5 6
d1 d1 d11 d12 d14 d13 d15
d11 d11 d1 d12 d14 d13 d15
d12 d12 d15 d14 d11 d13 d1
d13 d13 d15 d12 d14 d1 d11
d14 d14 d13 d12 d15 d1 d11
d15 d15 d13 d12 d14 d11 d1


(b) Distance Index Matrix Midx

Fig. A.3: An Example of IDINDEX

A.3.3 Composite Indoor Index

Composite indoor index [9] (CINDEX) is a layered structure for indexing indoor par-
titions and moving objects. It consists of three layers: geometric layer, topological
layer, and object layer. In this study, we adapt the object layer to index static indoor
objects. A partial example CINDEX for Fig. A.1 is given in Fig. A.4.

The geometric layer uses an R*-tree [35] to index all indoor partitions, with an
additional skeleton tier to maintain the distances between staircases at different floors.
To ease the geometrical computations, it decomposes each irregular partition3 into
regular ones using a decomposition algorithm [9]. Referring to the bottom-right of
Fig. A.4, the hallway v10 is divided into two regular indoor partitions v10a and v10b by
a door d16. Afterwards, each regular partition is represented by a Minimum Bounding
Rectangle (MBR). The MBRs are indexed by the R*-tree. As shown in the top-left of
Fig. A.4, a non-leaf node R1 is composed of six partitions in the leaf level, i.e., v10a,
v10b, and v11-v14.

The topological layer stores the connectivity information among indoor parti-
tions, and it is integrated to the tree by inter-partition links. In particular, a leaf node
vi in the R*-tree is linked with a pointer record (dk,↑v j) to indicate that one can move
from a partition vi to another partition v j through door dk. As shown in the top-right
of Fig. A.4, the two pointer records for v13 mean that v13 is adjacent to v10b and v12
via d13 and d15, respectively.

The object layer maintains a number of object buckets each for an indoor partition
at the leaf node level of the R*-tree. Each indoor object o is kept in the bucket of the
partition in which o is located. In addition, an object hashtable o-table : O→ ∗V maps
each object to its host partition’s pointer. Unlike [9, 10], the object buckets store static
objects in this study. As shown in the bottom-left of Fig. A.4, the leaf node v10a is
linked to its object bucket with two static objects o2 and o4. Also, two corresponding
records are kept in the object hashtable (o-table).

The R*-tree in CINDEX organizes partitions hierarchically, and thus enables search
space pruning for distance relevant computations. As a result, CINDEX does not cache
the precomputed door-to-door distances as IDINDEX does. Moreover, as the topolog-

3A partition is irregular if it is non-convex or imbalanced (long in one dimension but short in the other).

56

A.3. Model and Indexes

R2 R3 R4

R0

R1

v11 v12 v13 v14 v10a v10b

R1
R2

R3

R4 R0

v11

v12

v13 v14

v10a

v10b

(d11, ↑v10a)

(d12, ↑v10a)

(d13, ↑v10b), (d15, ↑v12)

(d14, ↑v10b)

(d13,↑v13), (d14,↑v14), (d16,↑v10a)

geometric

layer
topological

layer

object layer

v13

v14

v12

v11

↑v11o1

o2

↑v10ao4

o-table
*pidoid

o1

o3

v10b

↑v10a

↑v10bo3

o2 o4,

v10a

……

d16

Fig. A.4: CINDEX Example (Adapted from [9])

ical layer maintains the links between partitions and doors, which form an implicit
graph structure, CINDEX does not need an explicit graph model to keep connectivity
information. The topological layer’s dynamic link updating makes CINDEX adaptive
to possible temporal variations of doors.

A.3.4 IP-Tree and VIP-Tree

Indoor partitioning tree [11] (IP-TREE) is a tree-based indoor partition index with a
number of matrices each materializing the door-to-door distances within a local range.
In particular, each leaf node of IP-TREE covers a number of topologically adjacent
indoor partitions. The adjacent leaf nodes are combined to form a non-leaf node, and
adjacent non-leaf nodes are combined hierarchically until a root node is formed. Each
node N has a distance matrix and a number of access doors. An access door is a
border door that connects N to its external space. AD(N) denotes N’s access door set.
The distance matrix for a leaf node stores the shortest distance (as well as the first-
hop door on the shortest path) between every door of the leaf node to every access
door of the leaf node. The distance matrix for a non-leaf node only stores the shortest
distances and first-hop door between each pair of access doors of its child nodes. To
compute the indoor distance from a point p to a point q, IP-TREE locates the lowest
common ancestor of the leaf nodes Leaf(p) and Leaf(q), finds the access doors
constituting the shortest path in that ancestor, and connects the materialized indoor
distances involving p, the found access doors, and q.

Fig. A.5 shows an example of IP-TREE corresponding to Fig. A.1. The topo-
logically adjacent partitions v10-v14 form a leaf node N1. Another leaf node N2 is
composed of partitions v40 and v50. As N1 and N2 are connected by a border door d1,
d1 is put into AD(N1) and AD(N2). For the leaf node N1, the distance matrix stores

57

Paper A.

the distances from each of its doors to the access door d1 of N1. For instance, the dis-
tance from N1’s only door d15 to access door d1 contained by N1 is 4.3m. Moreover,
as the shortest path from d15 to d1 is 〈d15,d12,d1〉, the first-hop door of the path is kept
as d12 in the matrix. Differently, for the non-leaf node N0, the distance matrix only
keeps the distances between each pair of access doors. In the running example, each
pair of access doors are directly connected. Therefore, no first-hop door is recorded.
The storage space of each distance matrix will double when the door directionality
needs to be considered, i.e., both the distances d2d(di,d j) and d2d(d j,di) are kept in
each node.

As a variant of IP-TREE, vivid IP-Tree (VIP-TREE) [11] further accelerates the
distance computation by materializing more precomputed information. Specifically,
each leaf node N additionally maintains the shortest distance between each door con-
tained by N and each access door in N’s all ancestor nodes, along with the correspond-
ing first-hop door information.

IP-TREE and VIP-TREE materialize a small number of distances only related to
access doors that are critical in the overall topology of an indoor space. This design
eases the on-the-fly distance related computations in spatial query processing.

N0

d0

d0 d1 d2 d3
d0 0 1.4 2 3.9

d1 1.4 0 3 4

d2 3.9 4 4.4 0

d3 2 3 0 4.4

d1 d11 d12 d13 d14 d15
d1 0 1.7 2.7 3.2 2.8 4.3,

d12

Distance Matrix for N0 (a non-leaf node)

Distance Matrix for N1 (a leaf node)

N2

d0 ,d1 ,d2 ,d3

v40, v50

N1

d1

v10-v14

N3

d3

v30-v33

N4

d2

v20-v23

access
doors

Fig. A.5: An Example of IP-TREE

A.4 Query Processing
All the aforementioned model/indexes can be used to process indoor spatial queries.
Although query processing differs for different query types, all algorithms share a
general paradigm as follows. First, an algorithm finds the initial indoor partition for
a query. The initialization decides the indoor partition in which the query (or source)
point p is located for a given RQ(p,r) (kNNQ(p), SPQ(p,q), or SDQ(p,q)). Subse-
quently, an algorithm expands from the initial partition, searching adjacent partitions
via doors. Finally, the expansion stops when the search range is beyond the query
range r for a RQ(p,r), or kNNs have been found for a kNNQ(p), or the target point

58

A.4. Query Processing

Table A.2: Feature Comparison

Models IDMODEL IDINDEX CINDEX IP-TREE VIP-TREE

Precompute No Yes No Yes Yes
Structure Graph+Mappings Matrix Tree+Links Tree+Matrix Tree+Matrix
Initialization Sequential scan Sequential scan R*-Tree pruning Sequential scan Sequential scan
Expansion Dijkstra Loop Dijkstra LCA LCA
RQ 4 X X X X
kNNQ 4 X X X X
SPQ X 4 4 X X
SDQ X 4 4 X X

q is met for a SPQ(p,q) or SDQ(p,q). Algorithms based on different model/indexes
differ in their initializations and expansions. Below, we present a comprehensive ana-
lytical comparison of all model/indexes.

A.4.1 Algorithmic Comparison

Table A.2 summarizes the comparison.
Distance Precomputation. IDMODEL and CINDEX do not precompute any indoor
distances, whereas IDINDEX and IP-TREE/VIP-TREE maintain some door-to-door
distances before query processing. In particular, IDINDEX precomputes the shortest
indoor distances between every pair of doors, but IP-TREE/VIP-TREE only keeps a
small number of distances in each tree node.
Model/Index Structure. IDMODEL is a labeled graph with distance mapping func-
tions, whereas IDINDEX materializes two matrices for global door-to-door distances.
Employing a tree-based structure, CINDEX keeps topological information incremen-
tally by maintaining inter-partition links, whereas IP-TREE/VIP-TREE augments each
tree node with a local distance matrix. More importantly, CINDEX forms the non-
leaf tree nodes according to the geometrical proximity of partitions, whereas IP-
TREE/VIP-TREE do so based on the topological proximity of partitions.
Query Types. All model/indexes can support all the four query types. However,
IDMODEL [8] does not provide RQ and kNNQ algorithms. Therefore, we implement
the two algorithms and refer readers to the appendix in [36]. Also, there are no off-
the-shelf SPQ/SDQ algorithms for IDINDEX and CINDEX. Nevertheless, the global
door-to-door distances and the corresponding last-hop door information in IDMODEL

can be used to expand path searching in SPQ/SDQ algorithms for IDINDEX. For
CINDEX, the inter-partition links can be used for path expansion.
Initialization. To decide the initial indoor partition for a query, IDMODEL and IDIN-
DEX sequentially scan all partitions. Enabled by the R*-tree indexing partitions, CIN-
DEX can quickly find the host partition of any indoor point. In contrast, IP-TREE

and VIP-TREE are based on pure topological relationships among partitions, and thus
they also sequentially scan all partitions.
Expansion. As a graph-based model, IDMODEL expands to the next unvisited door
in the spirit of Dijkstra’s algorithm [37]. CINDEX does so as well since the next-

59

Paper A.

hop doors are captured in the inter-partition links on the topological layer. Instead of
expanding via directly connected doors, IP-TREE/VIP-TREE finds the lowest com-
mon ancestor (LCA) node of p and q and locates the intermediate access doors on the
shortest path straightforwardly. It is noteworthy that IDINDEX alone cannot support
topological door expansion. Instead, IDINDEX relies on an underlying IDMODEL to
loop through relevant indoor partitions’ doors.

A.4.2 Complexity Analysis

Let V, D, O be the total number of indoor partitions, doors, and indoor objects, re-
spectively. Let d and o be the average door number and average object number per
partition, respectively. Let w be the average number of door nodes on a shortest path.
For IP-TREE/VIP-TREE, we use f to denote the fan-out of the tree node, ρ the av-
erage access door number per node, and L the total number of leaf nodes. Table A.3
summarizes the space complexity of all model/indexes and their time complexity for
queries.
Space Complexity. IDMODEL (V ,Ea,L, fdv, fd2d)’s space complexity is O(V+Vd+
D+Vd+Vd2) = O(Vd2). IDINDEX’s space complexity is O(2D2) = O(D2) as it con-
sists of two door matrices. CINDEX’s space complexity is O(V+Vd+O) = O(Vd+O)
where V, Vd, and O correspond to partition R*-tree, inter-partition links, and object
hashtable, respectively. IP-TREE’s space cost mainly consists of the distance matri-
ces for leaf nodes and those for non-leaf nodes. The former’s complexity is O(ρD) and
the latter’s is O((ρf)2L) where ρf corresponds to the number of access doors from a
child node and L reflects the number of non-leaf nodes. In contrast, VIP-TREE’s space
cost on the distance matrices for leaf nodes is O(ρD logf L), where logf L corresponds
to the ancestor number of each leaf node.
Time Complexity for RQ and kNNQ. RQ and kNNQ have similar time complexity
as they both prune objects based on shortest distances. IDMODEL’s search expands
via qualified doors by graph traversal in O(V log D) and iterates on the objects in each
visited partition in O(o). Also based on graph traversal, the search on CINDEX ob-
tains a subgraph in O(V log D) and visits all objects in each partition of the subgraph
in O(o). IDINDEX’s search expands to the nearest partitions based on the sorted
result in Midx, and loops through each object in the expanded partition. So its time
complexity is O(od log D). The searches via IP-TREE and VIP-TREE work similarly.
They prune a tree node based on its distance from the query point in O(logf L ·ρ · c),
where c is the unit SDQ cost. Then, they qualify each object in the remaining nodes
in O(logf L · V/L · o · c). Given the SDQ complexity O(ρ2 logf L) for IP-TREE and
O(ρ2) for VIP-TREE (to be detailed below), their RQ and kNNQ complexities are
O((ρ logf L)

2(Vo/L+ρ)) and O(ρ2 logf L(Vo/L+ρ)), respectively.
Time Complexity for SDQ and SPQ. For the graph traversal algorithms of ID-
MODEL and CINDEX, the SDQ complexity is O(V log D) and SPQ complexity is
O(V log D+w) with additional cost to backtrack the shortest path in w hops. For IDIN-
DEX, the only cost of SDQ is to loop through two door sets corresponding to p and q by

60

A.4. Query Processing

Ta
bl

e
A

.3
:C

om
pl

ex
ity

A
na

ly
si

s

Sp
ac

e
R
Q

kN
N

Q
SD

Q
SP

Q

ID
M

O
D

E
L

O
(V

+
D
+

2V
d
+
V
d

2
)

O
(o
V

lo
g
D
)

O
(o
V

lo
g
D
)

O
(V

lo
g
D
)

O
(V

lo
g
D
+
w
)

ID
IN

D
E

X
O
(2
D

2
)

O
(o
d

lo
g
D
)

O
(o
d

lo
g
D
)

O
(d

2
)

O
(d

2
+
w
)

C
IN

D
E

X
O
(V

+
V
d
+
O
)

O
(o
V

lo
g
D
)

O
(o
V

lo
g
D
)

O
(V

lo
g
D
)

O
(V

lo
g
D
+
w
)

IP
-T

R
E

E
O
(ρ

2 f
2 L

+
ρ
D
)

O
((

ρ
lo

g f
L
)2
(V
o

/
L
+

ρ
))

O
((

ρ
lo

g f
L
)2
(V
o

/
L
+

ρ
))

O
(ρ

2
lo

g f
L
)

O
((

ρ
2
+
w
)

lo
g f

L
)

V
IP

-T
R

E
E

O
(ρ

2 f
2 L

+
ρ
D

lo
g f
L
)

O
(ρ

2
lo

g f
L
(V
o

/
L
+

ρ
))

O
(ρ

2
lo

g f
L
(V
o

/
L
+

ρ
))

O
(ρ

2
)

O
(ρ

2
+
w
)

61

Paper A.

a complexity of O(d2). The extra cost of SPQ to concatenate shortest path is of O(w).
For IP-TREE, SDQ needs to search the lowest common ancestor and then find a pair
of access doors from that ancestor node, resulting in a complexity of O(ρ2 logf L). In
contrast, VIP-TREE materializes the distances from a leaf node to each access door in
the ancestors. Its SDQ complexity is O(ρ2). The additional cost to construct shortest
path in SPQ is O(w logf L) for IP-TREE and O(w) for VIP-TREE.

A.4.3 Extensibility Analysis

Table A.4 summarizes the extensibility of all model/indexes.

Table A.4: Extensibility Analysis
IDMODEL IDINDEX CINDEX IP/VIP-TREE

Temporal Variation X X X X
Moving Objects X X X X

Uncertain Locations X X X X
Keywords X X X X

Temporal Variation. Indoor topology may feature temporal variations, e.g., doors
have open and close hours. To support indoor spatial queries in such cases, temporal
variations like open and close time of doors can be maintained as a table attached to the
accessibility base graph of IDMODEL or the topological layer of CINDEX [38]. How-
ever, frequent temporal variations are hard to handle for IDINDEX and IP-TREE/VIP-
TREE as they need to precompute door-to-door distances globally or locally.
Moving Objects. CINDEX [9, 10] is designed for managing indoor moving objects. It
supports distance-aware queries like kNNQ and RQ, and also distance-aware joins like
semi-range join and semi-neighborhood join. All other model/indexes can also index
moving objects by maintaining dynamic object buckets attached to indoor partitions
in a way similar to how we handle the static objects. Nevertheless, the buckets need
to be updated appropriately for indoor moving objects.
Uncertain Locations. In some settings, indoor points or objects are represented
as uncertain regions. To process indoor spatial queries over uncertain locations, a
model/index should support geometric operations on partitions. As a result, only CIN-
DEX with partition R*-tree excels at handling uncertain locations [9, 10].
Keywords. A spatial keyword query [39] returns objects or paths that are spatially and
textually relevant to the user-specified location(s) and keyword(s). Such queries can
be supported if we extend the model/indexes by additionally maintaining mappings
between partitions/objects and keywords. Especially, top-k keyword-aware shortest
path queries have been supported based on IDMODEL [7], and boolean kNN spatial
keyword queries have been supported based on VIP-TREE [40].

62

A.5. Benchmark

A.5 Benchmark
In this section, we detail the benchmark for evaluating the indoor spatial query tech-
niques (model/indexes and algorithms). All code, data, and test cases are available
online [12].

A.5.1 Datasets

We use four very different indoor space datasets, each featuring a distinctive indoor
topology. The floorplans are briefly represented and illustrated in Fig. A.6. The data
statistics are given in Table A.5.

(a) SYN

(b) MZB

(d) CPH (c) HSM

Fig. A.6: Floorplan of Datasets.

Table A.5: Statistics of Datasets

Datasets SYN MZB HZM CPH SYN5− SYN5+ SYN50 MZB0 MZB∆

Floors n 17 7 1 5 5 5 17 17
Doors 216n 1375 2093 211 840 1280 880 1308 1480
Partitions 141n 1344 1050 147 705 705 505 1276 1449
Hallways 41n 85 483 72 205 205 5 17 190
C-Pars 8n 52 133 20 20 40 5 19 157
Length(m) 1368 125 2700 2000 1368 1368 1368 125 125
Width(m) 1368 35 2000 600 1368 1368 1368 35 35

Q1(#dv) 2 1 2 1 1 2 1 1 1
Q2(#dv) 2 1 4 2 1 3 2 1 1
Q3(#dv) 4 1 5 4 3 4 3 1 1
max(#dv) 10 56 17 12 10 10 132 82 47

Synthetic Building (SYN) is a n-floor building. Its each floor is from a real-world
floorplan 4 of 1368m × 1368m with 141 partitions and 216 doors. Its each two adja-
cent floors are connected by four 20m long stairways. By default, we set n = 5 and

4https://deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406

63

Paper A.

get the default dataset SYN5. To study the effect of topological changes, from SYN5
we derived SYN5− with fewer doors and SYN5+ with more doors. Note that vary-
ing the door number will significantly change the connectivity and accessibility of the
partitions, leading to a major topological change. We also form SYN50 in which the
hallways are not decomposed 5.

Menzies Building (MZB) 6 is a landmark building at Clayton campus of Monash
University. Each floor takes approximately 125m × 35m and connects to adjacent
floors by two or four stairways each being 5m long. In total, there are 1344 partitions
(including 34 staircases and 85 hallways) and 1375 doors. By changing the hallway
decomposition, we form MZB0 in which the hallways are not decomposed and MZB∆

in which the hallways are decomposed into more partitions than default.
Hangzhou Shopping Mall (HSM) is a 7-floor mall in Hangzhou, China, occupying

2700m× 2000m. Ten stairways connect each two adjacent floors. Each floor contains
150 partitions and 299 doors on average. In total, there are 1050 partitions (including
70 staircases and 133 hallways) and 2093 doors.

Copenhagen Airport (CPH) refers to the ground floor of Copenhagen Airport 7,
taking around 2000m × 600m with 147 partitions (including 25 hallways) and 211
doors.
Overall Analysis of Different Datasets. The statistics of the datasets are given in
Table A.5. We use #dv to denote the number of doors in a partition, and conduct quar-
tile statistics [41] on #dv. In Table A.5, Q1(#dv), Q2(#dv), and Q3(#dv) denote the
first, second, third quartiles of #dv, respectively, and max(#dv) denotes the maximum
value of #dv. In addition, we also plot the distributions of #dv over all partitions in
each dataset in Fig. A.7.

Based on the space scale information and door distribution information from Ta-
ble A.5 and Fig. A.7, we summarize the characteristics of each dataset as follows.

• SYN: The overall space is square and regular. The number of doors and partitions
in each floor is medium (216 doors and 141 partitions per floor). The door density
within each partition is small (with Q2 equals only 2).

• MZB: The overall space is long and narrow with large scale crucial partitions (C-
Pars for short). The number of doors and partitions in each floor is relatively small
(80.4 doors and 76.8 partitions on average), whereas the overall size of doors and
partitions is large due to the floor number. The planning of doors is rather skewed
in that most partitions have only 1 or 2 doors while there are some C-Pars that
accommodate 56 doors (as shown in Fig. A.7(b)).

• HSM: The overall space is long and relatively narrow. The number of doors and
partitions in each floor is medium and the overall size of doors and partitions is
5We precompute the door-to-door distance matrix for each hallway when it is not decomposed. The

hallways are of irregular and concave shapes, and thus the door-to-door distance in a hallway can not use
the Euclidean distance.

6https://www.monash.edu/virtual-tours/menzies-building
7https://www.cph.dk/en/practical

64

A.5. Benchmark

1 2 3 4 5 6 7 8 9 1 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0 (a) S Y N 5

#P
art

itio
n

d v

 # P a r t i t i o n

1 6 1 1 1 6 2 1 2 6 3 1 3 6 4 1 4 6 5 1 5 61 0 0

1 0 1

1 0 2

1 0 3
(b) M Z B

#P
art

itio
n

d v

 # P a r t i t i o n

1 3 5 7 9 1 1 1 3 1 5 1 70
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

(c) H S M

#P
art

itio
n

d v

 # P a r t i t i o n

1 2 3 4 5 6 7 8 9 1 0 1 1 1 20
1 0
2 0
3 0
4 0
5 0 (d) C P H

#P
art

itio
n

d v

 # P a r t i t i o n

Fig. A.7: Distribution of #dv (number of doors in a partition) on (a) SYN5, (b) MZB, (c) HSM,
and (d) CPH.

large. The planning of doors is regular and door density in each partition is medium
(Q2 and Q3 are equal to 4 and 5, respectively).

• CPH: The space is long, narrow yet open, resulting in a small number of doors and
partitions. The door distribution is regular and door density in each partition is small
(Q2 equals 2).

A.5.2 Object/Query Workload Generation

For each dataset, we randomly generated a set O of valid points as static objects, each
object in O falling in an indoor partition. To test the effect of different object numbers,
we vary |O| as 500, 1000, 1500, 2000 and 2500.

The augment generation for each query type is detailed below.
RQ(p,r). We vary the range value r according to the predefined values in Ta-

ble A.6 (default values in bold). For each r, we generate ten RQ instances with a
random p in the indoor space.

kNNQ(p). Similar to RQ generation, we generate ten random kNNQ instances for
each k value given in Table A.6.

As SPQ and SDQ can be integrated into one search procedure, we use SPDQ(p,q)
to denote the integrated query that returns the shortest path from p to q along with the
corresponding shortest distance value. In the following sections, we evaluate search
performance of SPDQ only.

SPDQ(p,q). We use a parameter s2t to control the shortest distance from the
source p and target q. Its parameter values are listed in Table A.6. For each s2t,
we generate ten different (p,q) pairs to form SPDQ instances as follows. First, we
randomly select an indoor point p and find a door d whose indoor distance from p

65

Paper A.

approximates s2t. Next, we expand from d to find a random point q whose indoor
distance from p approximates s2t.

A.5.3 Model/Index Settings

IDMODEL. For each partition vi, we implemented the door-to-door distance mapping
fd2d(vi, ·, ·) as a 2D array, and door-to-partition distance mapping fdv(·,vi) as an 1D
array. Besides, the partition mappings P2DA(vi) and P2D@(vi) (cf. Section A.2.1)
were implemented as lists associated to vi. Moreover, the door mappings D2P(di),
D2PA(di), and D2P@(di) were implemented as lists associated to the door di.

IDINDEX. The distance matrix and distance index matrix were implemented as
2D arrays.

CINDEX. Since the partitions in the datasets rarely intersect, we used an R-tree
instead of R*-tree to index partitions while preserving roughly the same spatial search
performance. We set the tree fan-out to 20 as suggested in a previous work [9]. Each
partition’s inter-partition links were maintained in an inner list.

IP-TREE and VIP-TREE. We set the minimum fanout to 2 for non-leaf tree nodes,
as suggested in [11]. As each leaf node maintains the shortest distance for each pair
of doors in it, the computation will be complicated if a leaf node contains too many
C-Pars that each has many doors. Following work [11], we designate that each leaf
node can only contain one crucial partition and regard a partition as crucial partition
if its door number exceeds a threshold γ . Through tuning, we got optimal γ as 6, 4, 7,
and 5 for SYN, MZB, HZM, and CPH, respectively.

A.5.4 Performance Evaluation Procedure

Concerning model construction and query processing, the following tasks are imple-
mented to evaluate each model/index. For each task, a parameter is varied with others
fixed to default. Table A.6 lists all the evaluation settings. The code of following
evaluation procedures and their query instances are also available online [12].

A Model Construction. For each model/index, we evaluate its (a1) model/index size
and (a2) construction time. In this task, we vary the number of floors in synthetic
datasets.

B Query Processing. We evaluate the search efficiency of a given query type. The
metrics are (b1) running time, (b2) memory use, and (b3) number of visited doors
(NVD) for SPDQ.

B1 Effect of Floor Number n. Using SYN with floor number n varied from 3 to 9,
we test the search efficiency for each indoor spatial query algorithm.

B2 Effect of Object Number |O|. To test RQ and kNNQ, we vary |O| from 500 to
2500 in all datasets.

66

A.5. Benchmark

Ta
bl

e
A

.6
:E

va
lu

at
io

n
Se

tti
ng

s
(D

ef
au

lt
Pa

ra
m

et
er

s
in

B
ol

d)

Sy
m

bo
l&

M
ea

ni
ng

Ta
sk

M
et

ri
cs

Q
ue

ri
es

D
at

as
et

Pa
ra

m
et

er
Se

tt
in

g

n
flo

or
nu

m
be

r
A

a1
,a

2
-

SY
N

3,
5,

7,
9

B
1

b1
,b

2,
b3

(o
nl

y
fo

rS
P
D

Q
)

R
Q

,k
N

N
Q

,S
P
D

Q

|O
|

ob
je

ct
nu

m
be

r
B

2
b1

,b
2

R
Q

,k
N

N
Q

al
l

50
0,

10
00

,1
50

0,
20

00
,2

50
0

r
ra

ng
e

va
lu

e
B

3
b1

,b
2

R
Q

SY
N

5,
H

Z
M

,C
PH

20
0,

40
0,

60
0,

80
0,

10
00

M
Z

B
20

,4
0,

60
,8

0,
10

0

k
-

B
4

b1
,b

2
kN

N
Q

al
l

1,
5,

10
,5

0,
10

0

s2
t

so
ur

ce
-t

ar
ge

t
di

st
an

ce
B

5
b1

,b
2,

b3
SP

D
Q

SY
N

5,
H

Z
M

,C
PH

11
00

,1
30

0,
15

00
,1

70
0,

19
00

M
Z

B
30

,6
0,

90
,1

20
,1

50

-
to

po
lo

gi
ca

lc
ha

ng
e

B
6

b1
,b

2,
b3

(o
nl

y
fo

rS
P
D

Q
)

R
Q

,k
N

N
Q

,S
P
D

Q
SY

N
SY

N
5−

,S
Y

N
5,

SY
N

5+

-
de

co
m

po
si

tio
n

m
et

ho
d

B
7

b1
,b

2,
b3

(o
nl

y
fo

rS
P
D

Q
)

R
Q

,k
N

N
Q

,S
P
D

Q
SY

N
SY

N
50 ,S

Y
N

5
M

Z
B

M
Z

B
0 ,M

Z
B

,M
Z

B
∆

67

Paper A.

B3 Effect of Range Distance r. We vary and test the augment r of RQ. In particular,
we vary r from 200m to 1000m in SYN5, HZM and CPH, and from 20m to 100m
in MZB.

B4 Effect of k. We vary and test kNNQ’s augment k from 1 to 100 in all datasets.

B5 Effect of Source-Target Distance s2t. To test SPDQ, we vary s2t from 1100m to
1900m in SYN5, HZM, and CPH, and from 30m to 150m in MZB.

B6 Effect of Topological Change. We vary indoor topology by changing the door
number from 840 to 1280 in SYN5 and obtain SYN5− and SYN5+.

B7 Effect of Hallway’s Decomposition Method. We use SYN5 and MZB with the
derived datasets, SYN50, MZB0 and MZB∆.

A.6 Results Analysis
This section reports and analyzes the experimental results. All experiments are imple-
mented in Java and run on a MAC with a 2.30GHz Intel i5 CPU and 16 GB memory.

A.6.1 Model/Index Construction

We vary the floor number n on SYN and obtain four variants SYN3, SYN5, SYN7,
and SYN9. We construct the five model/indexes (cf. Section A.3) and report their size
and construction time in Figs. A.8 and A.9. The cost of maintaining static objects is
excluded as it is the same for all model/indexes.

• According to the results on SYN3 to SYN9 in Fig. A.8, each model/index’s size
increases steadily with a larger floor number. When there are more doors and parti-
tions, more storage space is needed to handle the indoor space.

• Among all, IDMODEL construction requires the least costs on storage (Fig. A.8) and
time (Fig. A.9). This is because IDMODEL is extended based on a simple graph
model and maintains only a small amount of geometric information locally. For
large-scale and complex-topology spaces (e.g., SYN9, MZB, and HZM), IDMODEL

has clearer advantages over the tree-based indexes (i.e., IP-TREE and VIP-TREE).

• As expected, IDINDEX always takes much time and storage to construct due to
its global door-to-door distance precomputation. When there are many doors, it is
difficult to fit the corresponding matrices in memory. In comparison, IP-TREE and
VIP-TREE precompute less information and therefore their consumptions on time
and storage are medium.

• In addition to maintaining the topology, CINDEX needs to construct a partition R-
tree. Therefore, it incurs extra time and space overheads compared to IDMODEL.

68

A.6. Results Analysis

S Y N 3 S Y N 5 S Y N 7 S Y N 9 M Z B H Z M C P H1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Mo
de

l S
ize

 (M
B.)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Fig. A.8: Model Size

S Y N 3 S Y N 5 S Y N 7 S Y N 9 M Z B H Z M C P H1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7
1 0 8
1 0 9

1 0 1 0

Co
ns

tru
ctio

n T
im

e (
ns

.)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Fig. A.9: Construction Time

A.6.2 Query Processing

All results are averaged over 10 queries (cf. Section A.5.2).
B1 Effect of Floor Number n (using SYN)
RQ and kNNQ: The query time and memory use for RQ are reported in Figs. A.10
and A.11, respectively, and those for kNNQ are reported in Figs. A.12 and A.13,
respectively.

• For both query types, IDINDEX always runs fastest as shown in Figs. A.10 and A.12,
unaffected by the varying floor number n. The price behind this is to maintain
the memory-resident distance matrices, which increases rapidly with n. Referring
to Figs. A.11 and A.13, when n grows to 9, IDINDEX requires up to 1600MB of
memory on both queries.

• On each SYN dataset, IP-TREE and VIP-TREE need more time to complete the
two queries. Through analysis, we found that the two indexes need to prune tree
nodes when searching for qualified objects. In the absence of global door-to-door
distances, they need a lot of on-the-fly calculations to get the shortest distance from
a query point to a tree node. Being consistent with the complexity analysis in Ta-
ble A.3, VIP-TREE outperforms IP-TREE for both queries. However, due to the
good scalability of the tree structure, both indexes’ running time is relatively stable
as shown in Figs. A.10 and A.12.

• IDMODEL and CINDEX perform similarly, and their execution time increases with a
larger n (Figs. A.10 and A.12). When n increases, IDMODEL has a slight advantage

69

Paper A.

as CINDEX costs more time in space pruning. In terms of memory overhead, the
two indexes are almost the same.

3 5 7 90

4 0 k

8 0 k

1 2 0 k
Ru

nn
ing

 Ti
me

 (u
s.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Fig. A.10: RQ Time vs. n

3 5 7 9
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0

Me
mo

ry
(M

B.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Fig. A.11: RQ Memory vs. n

3 5 7 90

8 k

1 6 k

2 4 k

3 2 k

Ru
nn

ing
 Ti

me
 (u

s.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Fig. A.12: kNNQ Time vs. n

3 5 7 9
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0

Me
mo

ry
(M

B.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Fig. A.13: kNNQ Memory vs. n

SPDQ: The running time, memory use, and number of visited doors (NVD) are re-
ported in Figs. A.14, A.15, and A.16, respectively.

3 5 7 90
2 0 k
4 0 k
6 0 k
8 0 k

Ru
nn

ing
 Ti

me
 (u

s.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Fig. A.14: SPDQ Time vs. n

3 5 7 90

6 0 0

1 2 0 0

1 8 0 0

Me
mo

ry
(M

B.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Fig. A.15: SPDQ Memory vs. n

3 5 7 90

6 k

1 2 k

1 8 k

NV
D

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Fig. A.16: NVD in SPDQ vs. n

70

A.6. Results Analysis

• IDINDEX’s running time and NVD are insensitive to the increasing floor number n.
However, its memory use grows moderately as n increases. In the case of SPQ and
SDQ, we recommend using IDINDEX when the door size is relatively small.

• In contrast to IDINDEX, the memory of IDMODEL and CINDEX is relatively stable
(Fig. A.15), and their query performance deteriorates as the space scale increases
(Fig. A.14).

• IP-TREE and VIP-TREE achieve clearly good performance on SPDQ, in both run-
ning time and memory use. Unlike IDINDEX that precomputes global door-to-door
distances or IDMODEL and CINDEX that compute distances on the fly, IP-TREE

and VIP-TREE cache relevant distance information only for those access doors on
shortest paths. Thus, without degrading query performance, they only incur slightly
more memory overhead than IDMODEL and CINDEX (Figs. A.14 and A.15).

B2 Effect of Object Number |O|
RQ: With different sizes of O, the running time and memory use are reported in
Figs. A.17 and A.18, respectively.

• Algorithms based on different model/indexes are almost insensitive to |O| in running
time, implying that each can prune irrelevant objects effectively and stop searching
early. A larger |O| results in higher object density. This tends to increase the query
processing time in general, as the query algorithms need to process larger object
buckets. However, this impact is negligible according to the results in Fig. A.17.
This implies that all model/indexes are good at pruning indoor partitions and thus
object buckets when processing RQ.

• Referring to Fig. A.17, IDINDEX runs faster than others by several orders of magni-
tude in all datasets, thanks to its precomputed global door-to-door distances. How-
ever, it also requires memory an order of magnitude higher to store the distance
matrix (Fig. A.18). A special case occurs on CPH (Fig. A.18(d)) that IP-TREE and
VIP-TREE consume more memory than others. First, the door number of CPH is
quite small such that the matrices of IDINDEX are not large. Second, as there are
fewer access doors, IP-TREE/VIP-TREE involves heavy on-the-fly computations
on distances between doors and non-leaf nodes and thus needs more memory for
the intermediate results.

• On each dataset, IDMODEL and CINDEX incur almost the same execution time (see
Fig. A.17), as they both use graph traversal to search for objects. Under complex
indoor topology, CINDEX using R-tree does not have much advantage in spatial
pruning.

• IP-TREE and VIP-TREE perform differently on different datasets. They outper-
form IDMODEL and CINDEX on MZB but are worse on the others (see Fig. A.17).
Recall that MZB features some C-Pars having up to 56 doors. In such a case, the ef-
ficiency of graph traversal is much lower than searching on the tree structure. On the

71

Paper A.

contrary, when the number of candidate doors for the next hop is relatively small,
the graph-based search algorithms are advantaged in range queries. Therefore, we
recommend using IP-TREE/VIP-TREE to perform RQ in spaces with very large
main corridors.

• Referring to Fig. A.17, VIP-TREE is generally faster than IP-TREE because of more
cached distances. IP-TREE needs to compute more intermediate results on the fly.
However, memory use is close between the two (see Fig. A.18).

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5
(a) S Y N 5

Ru
nn

ing
 Ti

me
 (u

s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 1

1 0 2

1 0 3

1 0 4

1 0 5 (b) M Z B

Ru
nn

ing
 Ti

me
 (u

s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7 (c) H S M

Ru
nn

ing
 Ti

me
 (u

s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00
5 k

1 0 k
1 5 k
2 0 k
2 5 k (d) C P H

Ru
nn

ing
 Ti

me
 (u

s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Fig. A.17: RQ Time vs. |O|

kNNQ: Figs. A.19 and A.20 report |O|’s impact on the time and memory costs, respec-
tively. In general, each model/index’s performance on kNNQ exhibits similar trend as
that on RQ.

• Referring to Fig. A.19, the time cost of each algorithm on each dataset remains
stable, showing that large object workloads (and high object density) have little
effect on all models.

• On datasets with relatively large numbers of doors and partitions (i.e., SYN5, MZB,
and HSM), IDINDEX runs faster by orders of magnitude. However, its memory use
is clearly larger.

• On one-floor CPH with small numbers of doors and partitions, IP-TREE and VIP-
TREE incur more running time as well as higher memory use (Figs. A.19(d) and
A.20(d)). However, they run faster on MZB (Fig. A.19(b)) in which many access
doors exist due to many C-Pars (see Table A.5).

72

A.6. Results Analysis

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

2 0 0

4 0 0

6 0 0

8 0 0 (a) S Y N 5

Me
mo

ry
(M

B.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

3 0 0

6 0 0

9 0 0

1 2 0 0

1 5 0 0 (b) M Z B

Me
mo

ry
(M

B.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0 (c) H S M

Me
mo

ry
(M

B.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0 (d) C P H

Me
mo

ry
(M

B.)
| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Fig. A.18: RQ Memory vs. |O|

• IDMODEL and CINDEX perform comparably as shown in Figs. A.19 and A.20.
Without a specially designed partition R-tree, IDMODEL achieves quite good object
pruning due to the efficient distance mapping maintained in its edges and vertexes.

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5
(a) S Y N 5

Ru
nn

ing
 Ti

me
 (u

s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5 (b) M Z B

Ru
nn

ing
 Ti

me
 (u

s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5

1 0 6 (c) H S M

Ru
nn

ing
 Ti

me
 (u

s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

3 k

6 k

9 k

1 2 k (d) C P H

Ru
nn

ing
 Ti

me
 (u

s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Fig. A.19: kNNQ Time vs. |O|

B3 Effect of Range Distance r
RQ: The time and memory costs with respect to varied r are reported in Figs. A.21
and A.22, respectively.

73

Paper A.

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

2 0 0

4 0 0

6 0 0

8 0 0 (a) S Y N 5

Me
mo

ry
(M

B.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
0

3 0 0

6 0 0

9 0 0

1 2 0 0
(b) M Z B

Me
mo

ry
(M

B.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0 (c) H S M

Me
mo

ry
(M

B.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00
1 0
2 0
3 0
4 0
5 0 (d) C P H

Me
mo

ry
(M

B.)
| O |

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Fig. A.20: kNNQ Memory vs. |O|

• On SYN5, MZB, and HSM with complex indoor topology, IDINDEX’s running
time reported in Fig. A.21 increases slowly with a growing r. In contrast, on the
simple-topology CPH, the advantage of IDINDEX over others is not marked.

• IDMODEL and CINDEX perform well on all datasets, except on MZB (Fig. A.21(b))
that has a large number of C-Pars. This again reflects the disadvantages of the
graph-based traversal algorithms when dealing with this particular topology type.
Nevertheless, through efficient node search and on-the-fly distance computation,
these two model/indexes always have the smallest memory overhead.

• When increasing r, the running time of IP-TREE and VIP-TREE in Fig. A.21 in-
crease steadily on all datasets. A larger r needs to consider a tree node farther from
the node where the query point is located, and thus introduces more computations
on the distance from a door to some non-leaf nodes. As the distance to the access
door of each ancestor node is materialized at the leaf node, VIP-TREE runs faster
than IP-TREE.

B4 Effect of k
kNNQ: The time and memory costs with respect to different k values are reported in
Figs. A.23 and A.24, respectively.

• Similar to increasing r value in RQ, increasing k leads to more search time by each
model/index according to the results reported in Fig. A.23. Among them, IDIN-
DEX’s running time increases slowest. In addition, IP-TREE/VIP-TREE show ex-
ponential growth on SYN, HSM, and CPH. This is because the two indexes need to
access the topologically far-away partitions and compute the distances to them on
the fly when k is large.

74

A.6. Results Analysis

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

6 0 k

1 2 0 k

1 8 0 k

2 4 0 k (a) S Y N 5
Ru

nn
ing

 Ti
me

 (u
s.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 4 0 6 0 8 0 1 0 00

1 0 k

2 0 k

3 0 k

4 0 k (b) M Z B

Ru
nn

ing
 Ti

me
 (u

s.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

1 E 6

2 E 6

3 E 6 (c) H S M

Ru
nn

ing
 Ti

me
 (u

s.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00
5 k

1 0 k
1 5 k
2 0 k
2 5 k
3 0 k
3 5 k
4 0 k
4 5 k (d) C P H

Ru
nn

ing
 Ti

me
 (u

s.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Fig. A.21: RQ Time vs. r

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00

2 0 0

4 0 0

6 0 0

8 0 0 (a) S Y N 5

Me
mo

ry
(M

B.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 4 0 6 0 8 0 1 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0 (b) M Z B

Me
mo

ry
(M

B.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0 (c) H S M

Me
mo

ry
(M

B.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00
1 0
2 0
3 0
4 0
5 0
6 0

(d) C P H

Me
mo

ry
(M

B.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Fig. A.22: RQ Memory vs. r

75

Paper A.

• Considering both time and memory costs, IDMODEL and CINDEX achieve a good
balance when searching for nearest neighbor objects (see Figs. A.23 and A.24).

1 5 1 0 5 0 1 0 00

3 0 k

6 0 k

9 0 k

1 2 0 k (a) S Y N 5
Ru

nn
ing

 Ti
me

 (u
s.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 00
5 k

1 0 k
1 5 k
2 0 k
2 5 k (b) M Z B

Ru
nn

ing
 Ti

me
 (u

s.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 00

2 0 0 k

4 0 0 k

6 0 0 k

8 0 0 k

1 M (c) H S M

Ru
nn

ing
 Ti

me
 (u

s.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 00
2 k
4 k
6 k
8 k

1 0 k
1 2 k
1 4 k (d) C P H

Ru
nn

ing
 Ti

me
 (u

s.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Fig. A.23: kNNQ Time vs. k

1 5 1 0 5 0 1 0 0
0

3 0 0

6 0 0

9 0 0 (a) S Y N 5

Me
mo

ry
(M

B.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 01 0 0

1 0 1

1 0 2

1 0 3

(b) M Z B

Me
mo

ry
(M

B.)

k

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0
(c) H S M

Me
mo

ry
(M

B.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 00
1 0
2 0
3 0
4 0
5 0
6 0 (d) C P H

Me
mo

ry
(M

B.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Fig. A.24: kNNQ Memory vs. k

B5 Effect of Source-Target Distance s2t
SPDQ: The time cost, memory use, and NVD for different s2t values are reported in
Figs. A.25, A.26, and A.27, respectively.

76

A.6. Results Analysis

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00
5 k

1 0 k
1 5 k
2 0 k
2 5 k
3 0 k
3 5 k
4 0 k (a) S Y N 5

Ru
nn

ing
 Ti

me
 (u

s.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

3 0 6 0 9 0 1 2 0 1 5 0
0

5 k
1 0 k
1 5 k
2 0 k
2 5 k
3 0 k
3 5 k
4 0 k
4 5 k
5 0 k
5 5 k
6 0 k (b) M Z B

Ru
nn

ing
 Ti

me
 (u

s.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 0
0

2 0 k
4 0 k
6 0 k
8 0 k

1 0 0 k
1 2 0 k
1 4 0 k (c) H S M

Ru
nn

ing
 Ti

me
 (u

s.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00
1 k
2 k
3 k
4 k
5 k
6 k
7 k
8 k (d) C P H

Ru
nn

ing
 Ti

me
 (u

s.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Fig. A.25: SPDQ Time vs. s2t

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 0
0

2 0 0

4 0 0

6 0 0 (a) S Y N 5

Me
mo

ry
(M

B.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

3 0 6 0 9 0 1 2 0 1 5 00

4 0 0

8 0 0

1 2 0 0 (b) M Z B

Me
mo

ry
(M

B.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0
(c) H S M

Me
mo

ry
(M

B.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00
5

1 0
1 5
2 0
2 5 (d) C P H

Me
mo

ry
(M

B.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Fig. A.26: SPDQ Memory vs. s2t

77

Paper A.

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 0
0

3 k

6 k

9 k

1 2 k (a) S Y N 5

NV
D

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

3 0 6 0 9 0 1 2 0 1 5 01 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5 (b) M Z B

NV
D

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00
5 k

1 0 k
1 5 k
2 0 k
2 5 k (c) H S M

NV
D

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 0
0

4 0 0

8 0 0

1 2 0 0

1 6 0 0

2 0 0 0

2 4 0 0 (d) C P H

NV
D

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Fig. A.27: NVD in SPDQ vs. s2t

• IDINDEX runs the fastest and is not affected by s2t as reported in Fig. A.25. As only
a small number of doors are required to process after the source point and before the
target point, its NVD is always small (Fig. A.27). Nevertheless, its global distance
matrix takes up a lot of memory (Fig. A.26).

• IDMODEL and CINDEX use the same graph search process. Note that because the
Euclidean distance is no larger than the indoor distance, using R-tree to prune space
by Euclidean distance does not really reduce the number of doors to visit. Therefore,
the two models’ NVDs in Fig. A.27 are almost the same. Also, as s2t increases, the
candidate space becomes larger and the running time of the two becomes longer
(see Fig. A.25).

• On MZB and HSM (Fig. A.25(b) and (c)), VIP-TREE achieves query performance
comparable to IDINDEX that precomputes door-to-door distances. Both MZB and
HSM are large-scale and have over 1000 doors. In the routing process based on
VIP-TREE, the precomputed distances in non-leaf nodes greatly accelerate the ex-
pansion to the target point. Therefore, VIP-TREE is particularly suitable for the
shortest path search in indoor spaces with complex structures.

B6 Effect of Topological Change
RQ and kNNQ: The time cost and memory use with respect to topology characteristics
are reported in Tables A.7 and A.8 respectively.

• IDINDEX runs fastest, but it needs large memory to store the door-to-door distance
matrix. With increasing number of doors, its time cost and memory use increase
steadily.

78

A.6. Results Analysis

• IDMODEL and CINDEX use the smallest memory when processing RQ and kNNQ.
Regarding the time cost, they perform medium. When the topology becomes more
complex, the memory use keeps stable and the time cost increases slightly.

• IP-TREE and VIP-TREE cost more time to process RQ and kNNQ. Moreover, when
the topology becomes more complex, the time cost rises rapidly. E.g., RQ’s time
cost using IP-TREE grows nearly 20 times from SYN5− to SYN5+.

Table A.7: Results of RQ with Topological Change

Model Time (us.) Memory (MB.)
SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+

IDMODEL 11111 12770 19893 2 4 4
IDINDEX 308 417 910 289 520 809
CINDEX 13697 14877 19285 4 3 4
IP-TREE 29004 136600 574069 85 95 194
VIP-TREE 18008 58369 195583 75 171 220

Table A.8: Results of kNNQ with Topological Change

Model Time (us.) Memory (MB.)
SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+

IDMODEL 5939 8180 10051 2 3 3
IDINDEX 165 146 181 469 573 1053
CINDEX 6865 8476 12998 4 4 4
IP-TREE 17341 36626 107798 74 89 139
VIP-TREE 14535 30145 75439 78 145 146

SPDQ: The time cost, memory use and NVD with respect to different topology char-
acteristics are reported in Table A.9.

• Like in the other cases, IDINDEX performs best in terms of the time cost but costs
most memory compared with others. When the topology becomes complex, IDIN-
DEX’s time cost increases relatively slightly, while the memory use grows fast.

• IP-TREE/VIP-TREE perform best with relatively less time cost and smaller memory
use. For time cost, VIP-TREE always outperforms IP-TREE because of the extra
precomputation, but it needs more memory. With the doors increasing, their time
and memory costs rise slightly.

• IDMODEL and CINDEX performs worst in both time and memory costs because
they have to visit many doors in search.

B7 Effect of Decomposition Methods for Hallways
RQ, kNNQ and SPDQ: For RQ and kNNQ, their time cost and memory use with
respect to different decomposition methods are reported in Tables A.10, A.11, A.12,
and A.13. For SPDQ, its time cost, memory use and NVD are reported in Tables A.14,
A.15, and A.16.

79

Paper A.

Table A.9: Results of SPDQ with Topological Change

Model Time (us.) Memory (MB.) NVD
SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+

IDMODEL 23009 33213 35522 58 59 91 6946 10074 11426
IDINDEX 40 65 79 182 416 748 6 8 9
CINDEX 20219 31635 40408 51 63 99 6946 10074 11426
IP-TREE 3717 6398 7252 43 44 74 236 843 1455
VIP-TREE 2349 2369 2493 55 43 105 52 61 90

Table A.10: Results (Time) of RQ with Decomposition Method

Model Time (us.)
SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 9695 14999 24065 23527 18917
IDINDEX 460 704 471 439 349
CINDEX 11283 15859 21840 21351 20267
IP-TREE 8923 123076 7957 17215 26110
VIP-TREE 6808 57988 4476 11079 19181

Table A.11: Results (Memory) of RQ with Decomposition Method

Model Memory (MB.)
SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 13 3 12 7 5
IDINDEX 414 437 815 841 1855
CINDEX 12 4 11 8 5
IP-TREE 88 92 61 58 76
VIP-TREE 111 150 62 59 78

Table A.12: Results (Time) of kNNQ with Decomposition Method

Model Time (us.)
SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 4773 9240 14318 14224 12828
IDINDEX 143 160 180 185 197
CINDEX 4907 9294 13115 13328 13225
IP-TREE 7272 33693 3904 7315 10369
VIP-TREE 6877 24522 3556 5207 7502

Table A.13: Results (Memory) of kNNQ with Decomposition Method

Model Memory (MB.)
SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 9 3 12 6 4
IDINDEX 461 457 679 796 974
CINDEX 16 4 11 8 6
IP-TREE 112 114 36 36 52
VIP-TREE 117 139 43 55 59

• IDINDEX runs fastest when processing RQ and kNNQ but uses most memory.
When hallways are decomposed into more partitions, IDINDEX’s time cost keeps

80

A.6. Results Analysis

Table A.14: Results (Time) of SPDQ with Decomposition Method

Model Time (us.)
SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 31242 31855 36220 33503 32396
IDINDEX 138 75 71 69 73
CINDEX 32823 26900 35307 33238 31806
IP-TREE 1610 7523 1252 1893 3257
VIP-TREE 856 2379 1091 1126 1474

Table A.15: Results (Memory) of SPDQ with Decomposition Method

Model Memory (MB.)
SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 44 63 54 73 92
IDINDEX 388 396 1096 1273 1489
CINDEX 43 65 52 97 110
IP-TREE 59 44 31 39 44
VIP-TREE 64 42 54 39 55

nearly stable but its memory cost increases. This is because there are more doors
connecting increased numbers of partitions, which leads to more door-to-door pairs
stored in the distance matrix.

• IDMODEL and CINDEX use the least memory but runs slowest. With more parti-
tions, both time cost and memory use decrease because hallways are decomposed
into more partitions each having less doors to process.

• IP-TREE and VIP-TREE perform best considering both time cost and memory use.
However, when hallways are decomposed into more partitions, the two methods
need more time and memory to process RQ and kNNQ. Regarding the performance
in RQ, IP-TREE and VIP-TREE cost more time than IDMODEL. There are more
nodes in IP-TREE and VIP-TREE when hallways are decomposed into more par-
titions, which entails more on-the-fly computations to prune tree nodes when pro-
cessing RQ and kNNQ. Moreover, the time cost of IP-TREE and VIP-TREE rises
faster when processing RQ and kNNQ than processing SPDQ. That is because there
is some extra cost to prune nodes when processing RQ and kNNQ. As the nodes in-
crease, this extra cost increases fast.

A.6.3 Summary of Findings

We summarize all five model/indexes’ performance in Table A.17 where more stars
imply a better performance (lower cost). IDMODEL incurs minimum time and space
costs in construction. It works well for RQ and kNNQ, and its performance for
SPQ/SDQ even improves when hallways are decomposed into more partitions. IDIN-
DEX runs fastest for all types of indoor spatial queries while requiring significantly

81

Paper A.

Table A.16: Results (NVD) of SPDQ with Decomposition Method

Model NVD
SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 82574 10074 24877 12718 4243
IDINDEX 58 8 22 9 8
CINDEX 82574 10074 24877 12718 4243
IP-TREE 416 843 97 87 139
VIP-TREE 136 61 37 24 26

large time to construct offline and high memory consumptions during search. CIN-
DEX performs only comparably to IDMODEL when processing the queries. IP-TREE

and VIP-TREE are optimized for SPQ/SDQ tasks—they stand out when there are
many C-Pars connected by so-called access doors; they decline when decomposition
reduces C-Pars.

In short, IDINDEX is preferred for small-scale spaces. VIP-TREE is recom-
mended if routing is the task or the space accommodates many C-Pars. Otherwise,
IDMODEL is recommended for non-routing queries due to its low construction cost
and good balance between storage and query time costs.

Table A.17: Summary of Findings

Model Construction Cost RQ/kNNQ Search SPQ/SDQ Search
Model Size Time Memory Time Memory Time

IDMODEL ????? ????? ????? ??? ????? ?

IDINDEX ? ? ? ????? ? ?????

CINDEX ???? ???? ????? ??? ????? ?

IP-TREE ??? ??? ???? ? ???? ???

VIP-TREE ?? ??? ??? ?? ??? ????

A.7 Conclusion and Future Work
This work reports on an extensive experimental evaluation of five indoor space model
or indexes that support four typical indoor spatial queries. Our evaluation concerns
the costs in model/index construction and query processing using a model/index. By
analyzing the results, we summarize the pros and cons of all techniques and suggest
the best choice for typical scenarios.

For future work, changes to existing methods may improve their performance.
First, heuristics like A∗ and IDA∗ algorithms can replace the Dijkstra-based expansion
in IDMODEL and CINDEX to speed up SPDQ processing. Second, intra-partition
indexes like grids can be combined with CINDEX and IP-TREE/VIP-TREE to achieve
local object pruning in processing RQ and kNNQ. Third, strategies to select crucial
doors/partitions can be developed to reduce the storage of door-to-door distances in
CINDEX and IP-TREE/VIP-TREE while preserving their search efficiency.

82

References

Acknowledgement
This work was supported by IRFD (No. 8022-00366B), ARC (No. FT180100140 and
DP180103411), the Key R&D Program (Zhejiang, China) (No. 2021C009) and NSFC
(No. 62050099).

References
[1] A. Basiri, E. S. Lohan, T. Moore, A. Winstanley, P. Peltola, C. Hill, P. Amirian,

and P. F. e Silva, “Indoor location based services challenges, requirements and
usability of current solutions,” Computer Science Review, vol. 24, pp. 1–12,
2017.

[2] M. A. Cheema, “Indoor location-based services: challenges and opportunities,”
SIGSPATIAL Special, vol. 10, no. 2, pp. 10–17, 2018.

[3] H. Lu, C. Guo, B. Yang, and C. S. Jensen, “Finding frequently visited indoor
pois using symbolic indoor tracking data,” in 19th International Conference on
Extending Database Technology. OpenProceedings. org, 2016, pp. 449–460.

[4] H. Li, H. Lu, L. Shou, G. Chen, and K. Chen, “In search of indoor dense regions:
An approach using indoor positioning data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 8, pp. 1481–1495, 2018.

[5] M. Goetz and A. Zipf, “Formal definition of a user-adaptive and length-optimal
routing graph for complex indoor environments,” Geo-Spatial Information Sci-
ence, vol. 14, no. 2, pp. 119–128, 2011.

[6] C. Costa, X. Ge, and P. Chrysanthis, “Caprio: Context-aware path recommen-
dation exploiting indoor and outdoor information,” in 2019 20th IEEE Inter-
national Conference on Mobile Data Management (MDM). IEEE, 2019, pp.
431–436.

[7] Z. Feng, T. Liu, H. Li, H. Lu, L. Shou, and J. Xu, “Indoor top-k keyword-aware
routing query,” in 2020 IEEE 36th International Conference on Data Engineer-
ing (ICDE). IEEE, 2020, pp. 1213–1224.

[8] H. Lu, X. Cao, and C. S. Jensen, “A foundation for efficient indoor distance-
aware query processing,” in 2012 IEEE 28th International Conference on Data
Engineering. IEEE, 2012, pp. 438–449.

[9] X. Xie, H. Lu, and T. B. Pedersen, “Efficient distance-aware query evaluation on
indoor moving objects,” in 2013 IEEE 29th International Conference on Data
Engineering (ICDE). IEEE, 2013, pp. 434–445.

83

References

[10] ——, “Distance-aware join for indoor moving objects,” IEEE Transactions on
Knowledge and Data Engineering, vol. 2, no. 27, pp. 428–442, 2015.

[11] Z. Shao, M. A. Cheema, D. Taniar, and H. Lu, “Vip-tree: an effective index for
indoor spatial queries,” Proceedings of the VLDB Endowment, vol. 10, no. 4, pp.
325–336, 2016.

[12] https://github.com/indoorLBS/ISQEA.

[13] J. Lee, “A spatial access-oriented implementation of a 3-d gis topological data
model for urban entities,” GeoInformatica, vol. 8, no. 3, pp. 237–264, 2004.

[14] E. Whiting, J. Battat, and S. Teller, “Topology of urban environments,” in
Computer-Aided Architectural Design Futures (CAADFutures) 2007. Springer,
2007, pp. 114–128.

[15] T. Becker, C. Nagel, and T. H. Kolbe, “A multilayered space-event model for
navigation in indoor spaces,” in 3D geo-information sciences. Springer, 2009,
pp. 61–77.

[16] C. S. Jensen, H. Lu, and B. Yang, “Indexing the trajectories of moving objects
in symbolic indoor space,” in International symposium on spatial and temporal
databases. Springer, 2009, pp. 208–227.

[17] M. Worboys, “Modeling indoor space,” in Proceedings of the 3rd ACM SIGSPA-
TIAL international workshop on indoor spatial awareness, 2011, pp. 1–6.

[18] S. Alamri, D. Taniar, and M. Safar, “Indexing moving objects in indoor cellular
space,” in 2012 15th International Conference on Network-Based Information
Systems. IEEE, 2012, pp. 38–44.

[19] Y. Kim, H. Jung, J. Jang, and U.-M. Kim, “An efficient grid index for moving
objects in indoor environments,” in Proceedings of the 10th international con-
ference on ubiquitous information management and communication, 2016, pp.
1–4.

[20] H. Lin, L. Peng, S. Chen, T. Liu, and T. Chi, “Indexing for moving objects in
multi-floor indoor spaces that supports complex semantic queries,” ISPRS Inter-
national Journal of Geo-Information, vol. 5, no. 10, p. 176, 2016.

[21] B. Yang, H. Lu, and C. S. Jensen, “Scalable continuous range monitoring of
moving objects in symbolic indoor space,” in Proceedings of the 18th ACM con-
ference on Information and knowledge management, 2009, pp. 671–680.

[22] ——, “Probabilistic threshold k nearest neighbor queries over moving objects in
symbolic indoor space,” in Proceedings of the 13th international conference on
extending database technology, 2010, pp. 335–346.

84

https://github.com/indoorLBS/ISQEA

References

[23] J. Yu, W.-S. Ku, M.-T. Sun, and H. Lu, “An rfid and particle filter-based indoor
spatial query evaluation system,” in Proceedings of the 16th International Con-
ference on Extending Database Technology, 2013, pp. 263–274.

[24] M. Delafontaine, M. Versichele, T. Neutens, and N. Van de Weghe, “Analysing
spatiotemporal sequences in bluetooth tracking data,” Applied Geography,
vol. 34, pp. 659–668, 2012.

[25] H. Lu, B. Yang, and C. S. Jensen, “Spatio-temporal joins on symbolic indoor
tracking data,” in 2011 IEEE 27th International Conference on Data Engineer-
ing. IEEE, 2011, pp. 816–827.

[26] T. Ahmed, T. B. Pedersen, and H. Lu, “Finding dense locations in indoor track-
ing data,” in 2014 IEEE 15th International Conference on Mobile Data Manage-
ment, vol. 1. IEEE, 2014, pp. 189–194.

[27] ——, “Finding dense locations in symbolic indoor tracking data: modeling, in-
dexing, and processing,” GeoInformatica, vol. 21, no. 1, pp. 119–150, 2017.

[28] H. Li, H. Lu, L. Shou, G. Chen, and K. Chen, “Finding most popular indoor
semantic locations using uncertain mobility data,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 31, no. 11, pp. 2108–2123, 2018.

[29] P. Jin, T. Cui, Q. Wang, and C. S. Jensen, “Effective similarity search on indoor
moving-object trajectories,” in International conference on database systems for
advanced applications. Springer, 2016, pp. 181–197.

[30] X. Jiang, Y. Xing, Y. Chen, Y. Gu, and J. Liu, “Indoor trajectory restoration
method based on poi relation constraints,” in 2019 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computing, Scalable Comput-
ing & Communications, Cloud & Big Data Computing, Internet of People and
Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).
IEEE, 2019, pp. 439–446.

[31] H. Li, H. Lu, M. A. Cheema, L. Shou, and G. Chen, “Indoor mobility seman-
tics annotation using coupled conditional markov networks,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 2020, pp. 1441–
1452.

[32] C. Salgado, “Keyword-aware skyline routes search in indoor venues,” in Pro-
ceedings of the 9th ACM SIGSPATIAL International Workshop on Indoor Spatial
Awareness, 2018, pp. 25–31.

[33] N. Sun, E. Yang, J. Corney, and Y. Chen, “Semantic path planning for indoor
navigation and household tasks,” in Annual Conference Towards Autonomous
Robotic Systems. Springer, 2019, pp. 191–201.

85

References

[34] Z. Wang, H. Xie, Z. Lin, T. Wen, C. Guo, and H. Chen, “The robot path planning
algorithm in indoor environment,” in IECON 2020 The 46th Annual Conference
of the IEEE Industrial Electronics Society. IEEE, 2020, pp. 5350–5355.

[35] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An
efficient and robust access method for points and rectangles,” in Proceedings of
the 1990 ACM SIGMOD international conference on Management of data, 1990,
pp. 322–331.

[36] T. Liu, H. Li, H. Lu, M. A. Cheema, and L. Shou, “An experimental analysis
of indoor spatial queries: Modeling, indexing, and processing,” arXiv preprint
arXiv:2010.03910, 2020.

[37] D. B. Johnson, “A note on dijkstra’s shortest path algorithm,” Journal of the
ACM (JACM), vol. 20, no. 3, pp. 385–388, 1973.

[38] T. Liu, Z. Feng, H. Li, H. Lu, M. A. Cheema, H. Cheng, and J. Xu, “Shortest
path queries for indoor venues with temporal variations,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 2020, pp. 2014–
2017.

[39] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query process-
ing: An experimental evaluation,” Proceedings of the VLDB Endowment, vol. 6,
no. 3, pp. 217–228, 2013.

[40] Z. Shao, M. A. Cheema, D. Taniar, H. Lu, and S. Yang, “Efficiently processing
spatial and keyword queries in indoor venues,” IEEE Transactions on Knowledge
and Data Engineering, 2020.

[41] D. G. Altman and J. M. Bland, “Statistics notes: quartiles, quintiles, centiles,
and other quantiles,” Bmj, vol. 309, no. 6960, pp. 996–996, 1994.

86

Paper B

Indoor Top-k Keyword-aware Routing Query

Zijin Feng, Tiantian Liu, Huan Li, Hua Lu, Lidan Shou, Jianliang Xu

The paper has been published in the
IEEE 36th International Conference on Data Engineering (ICDE), pp. 1213–1224,

2020.

© 2020 IEEE
Reprinted, with permission, from Zijin Feng, Tiantian Liu, Huan Li, Hua Lu, Li-
dan Shou, and Jianliang Xu, “Indoor top-k keyword-aware routing query,” in 2020
IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020, pp.
1213–1224.
The layout has been revised.

B.1. Introduction

Abstract
People have many activities indoors and there is an increasing demand of keyword-
aware route planning for indoor venues. In this paper, we study the indoor top-k
keyword-aware routing query (IKRQ). Given two indoor points s and t, an IKRQ re-
turns k s-to-t routes that do not exceed a given distance constraint but have optimal
ranking scores integrating keyword relevance and spatial distance. It is challeng-
ing to efficiently compute the ranking scores and find the best yet diverse routes in a
large indoor space with complex topology. We propose prime routes to diversify top-
k routes, devise mapping structures to organize indoor keywords and compute route
keyword relevances, and derive pruning rules to reduce search space in routing. With
these techniques, we design two search algorithms with different routing expansions.
Experiments on synthetic and real data demonstrate the efficiency of our proposals.

B.1 Introduction
Route planning is among the popular location-based services. Recently, it is increas-
ingly in demand in various indoor venues such as shopping malls, railway stations
and airports. As such venues accommodate significant parts of people’s daily life, ap-
propriate route planning can facilitate a huge number of people, especially when they
have to go through a large and/or unfamiliar indoor environment.

Take Copenhagen Airport as an example. Suppose Jesper has just passed the secu-
rity check for his flight to France. En route to his boarding gate, he wants to buy some
Danish cookies, draw some euros in cash, and eat a bowl of noodle. He wants to reach
the gate within 1.5 hours. His needs can be represented as an indoor routing query
from a start point (security check) to a terminal point (his boarding gate). A desirable
route should have a shop that sells cookies, an ATM or a bank that offers euros, and
a restaurant offers noodles. The route should not be too long, i.e., the route distance
should be less than a distance constraint.1

Indoor route planning is also applicable in other practical scenarios. For example,
by specifying a request with keywords of “coffee” and “print”, a person in an office
can have a service robot to fetch a cup of coffee and a printout document in one single
route. Moreover, in automatic warehouses of Amazon, JD.com and Alibaba, robots
can make use of indoor routing with keywords to accomplish operational tasks, e.g.,
fetching or delivering particular products at particular locations.

In this paper, we formulate and study indoor top-k keyword-aware routing query
(IKRQ). An IKRQ requires a start point s, a terminal point t, a distance constraint ∆,
and a query keyword list QW . It returns the k best routes from s to t that are not longer
than ∆ and have highest ranking scores. A route score integrates the route’s keyword
relevance w.r.t. QW and its route distance, i.e., length from s to t.

1A time constraint T , e.g., 1.5 hours, can easily be converted to a distance constraint ∆ =Vmax ·T , where
Vmax is the maximum indoor walking speed.

89

Paper B.

We differentiate two kinds of indoor keywords. An identity word (i-word) is the
semantic name for an indoor partition2; a thematic word (t-word) further describes an
i-word’s partition. In the airport example above, the specific shop names, restaurant
names, and ATM are i-words. T-words can be different things for different i-words. A
shop’s t-words can be the names of its goods. A restaurant’s t-words can be the dishes
on its menu. An ATM’s t-words can be Danish krone, euro and Swedish krone that
indicate available currencies in cash. This keyword differentiation makes more sense
indoors than outdoors. When inside an indoor venue, people tend to visit a point-of-
interest (POI) with a particular name, e.g., Apple or Samsung. In contrast, outdoor
routing cannot benefit from venue names as they carry little semantics; neither can
it work with keywords for indoor partitions as the partitions in the same venue are
regarded as co-located in outdoor space.

An IKRQ is non-trivial due to several factors. First, it needs to define keyword
relevance for routes w.r.t. query keywords, for which we need to consider both i-words
and t-words in the indoor context. Second, it needs to integrate keyword relevance and
spatial distance for ranking routes. A meaningful ranking score may be expensive to
compute for routes with multiple hops. Third, it needs to search for routes in an indoor
venue with a large number of partitions that form complex topology, which may result
in a large search space for routing.

To resolve IKRQs, we develop a set of techniques. First, the concept of prime
routes diversifies top-k routes in the query result, and enables a particular pruning
rule to reduce search space. Second, bi-directional mapping structures organize two-
level indoor keywords, which facilitates computing keyword relevances and ranking
scores for routes that involve indoor partitions. Third, other pruning rules are derived
based on the distance constraint and the bound of top-k result. Fourth, two search
algorithms are designed for routing, employing a topology-oriented expansion (ToE)
and a keyword-oriented expansion (KoE), respectively. All proposed techniques are
experimentally evaluated on synthetic and real data. The experimental results demon-
strate the efficiency of our proposals and disclose the respective suitable settings for
ToE and KoE.

We make the following contributions in this paper:

• We formulate indoor top-k keyword-aware routing query (IKRQ). We also pro-
pose prime routes that diversify top-k results and reduce search space. (Sec-
tion B.2)

• We propose a scheme to organize the indoor keywords, a method to compute
keyword relevance for routes, and a ranking score for routes. (Section B.3)

• We derive a set of pruning rules for IKRQ search, and design a unified search
framework with two algorithms that expand differently in routing. (Section B.4)

• We conduct extensive experiments on synthetic and real data sets to evaluate
our proposals. (Section B.5)

2A partition is a basic indoor region with clear boundaries. Examples are rooms, staircases, and booths.

90

B.2. Problem Formulation

In addition, we review the related work in Section B.6 and conclude the paper in
Section B.7.

B.2 Problem Formulation

B.2.1 Preliminaries

Table B.1 lists the frequently used notations.

Table B.1: Notations

Symbol Meaning
v, d, p partition, door, and point in an indoor space
wi, wt an identity word, a thematic word
PW(vi) partition words of partition vi
QW query keyword list
KP(Ri) sequence of key partitions on route Ri
RW(Ri) route words of route Ri
κ(wQ) candidate i-word set of query keyword wQ
ρQW(Ri) keyword relevance of route Ri w.r.t. QW
ψ(Ri) ranking score of route Ri

A previous work [1] defines mappings that capture indoor topology. In particular,
D2PA(di) gives the set of partitions that one can enter through door di and D2P@(d j)
gives those that one can leave through door d j. As a basic step, indoor routing needs
to move from one door to another through their common partition. To this end, we
have intra-partition door-to-door distance for two doors di and d j as

δd2d(di,d j) =

{
|di,d j|E , if D2PA(di)∩D2P@(d j) 6= ∅;

∞, otherwise.

Here, D2PA(di)∩D2P@(d j) 6= ∅ means di and d j are in the same partition that one
can enter via di and leave via d j. In this case, we measure the Euclidean distance
between di and d j. The case of di = d j is special. This happens when one needs to
enter a partition due to its keyword relevance but then leave it from the same door
for further routing. In this case, we set δd2d(di,d j) to be the double of the longest
non-loop distance one can reach inside the partition from the pertinent door. Note that
δd2d simplifies the fd2d function [1] such that no partition is explicitly specified.

Moreover, the previous work [1] uses v(pi) to denote point pi’s host partition,
P2DA(vk) the set of enterable doors through which one can enter partition vk, and
P2D@(vk) the set of leaveable doors through which one can leave partition vk. Still
within a partition, we define point-to-door distance and door-to-point distance, re-

91

Paper B.

spectively, as follows. Given a door dk, two points pi and p j, we have

δpt2d(pi,dk) =

{
|pi,dk|E , if dk ∈ P2D@(v(pi));

∞, otherwise.

δd2pt(dk, pi) =

{
|dk, p j|E , if dk ∈ P2DA(v(p j));

∞, otherwise.

The two distances also facilitate indoor routing: δpt2d(pi,dk) is the intra-partition
distance from point pi to door dk when one leaves the partition; δd2pt(dk, p j) is the
intra-partition distance from door dk to point pi when one enters the partition.

We generalize doors and points to items represented by x. When the specific item
types are unclear or not important, we use δ∗(xi,x j) to indicate one of δd2d, δd2pt and
δpt2d.

B.2.2 Principles and Definition of Routing Query

Definition 1 (Route and Route Distance). A route R = (xs,di, . . . ,dn,xt) is a path
through a sequence of doors from an item xs to an item xt , where xs and xt can be a
point or a door. Given routing request, R is a complete route if xs and xt are the start
and terminal points, respectively. Otherwise, we call it a partial route. A route R’s
route distance is δ (R) = δ∗(xs,di)+∑

n−1
k=i δ∗(dk,dk+1)+ δ∗(dn,xt).

zara watsons apple

starbucks

samsung

ecco
oppo

costa

1dd1d
2dd2d 3dd3d

4dd4d

5dd5d
6dd6d

1vv1v

2vv2v

3vv3v

4vv4v

11vv11v

12vv12v

10vv10v

8vv8v

7vv7v

6vv6v

5vv5v 9vv9v

ecco keyword

partition

hallway

door

directionality

s
pp
s

p

t
pp

t
p

7dd7d

8dd8d

9dd9d

12dd12d

doordoor

10dd10d

11dd11d

13dd13d 14dd14d

15dd15d

4.5m4.5m4.5m

1m1m1m

5m5m5m

8.3m8.3m8.3m

4.2m4.2m4.2m

6m6m6m

13m13m13m

7.1m7.1m7.1m

3.5m3.5m3.5m

16dd16d

17dd17d

1pp1p
2pp2p

path

Fig. B.1: An Example of Floorplan

Example B.2.1 (Example of Route and Route Distance)
Referring to Fig. B.1, one can start from ps in partition v1, pass doors d2 and d5,
and reach pt in partition v5. The complete route is R = (ps,d2,d5, pt), and a partial
route is R? = (ps,d2,d5). Assuming δpt2d(ps,d2) = 8.3m, δd2d(d2,d5) = 4.2m, and
δd2pt(d5, pt) = 6m, we have δ (R?) = δpt2d(ps,d2)+δd2d(d2,d5) = 12.5m and δ (R)
= 18.5m.

92

B.2. Problem Formulation

Using the topological mappings introduced in Section B.2.1, we can easily obtain
the partitions that a route R passes. For example, given R? = (ps,d2,d5) we know
that R? passes v1 between (ps,d2) and v2 between (d2,d5). Before we formulate our
indoor routing query, we discuss two principles of indoor route search.
Principle of Regularity. Traditional outdoor routing algorithms [2–5] usually ex-
clude loops in a route. This regularization avoids endless route searching. However,
a regular route in indoor space can have a loop of doors within one-hop. Referring
to Fig. B.1, anyone who needs to visit partition v10 must enter and then leave d15,
the only accessible door of v10. Accordingly, the principle of regularity disqualifies
a route that contains one or more doors between two identical doors. For example,
partial route (d13,d14,d14,d13) is not allowed, because of the doors between the two
appearances of door d13. This partial route means that one starts from d13, passes v7
twice and returns to d13 again.
Principle of Diversity. The idea of diversifying top-k results [6] inspires us to avoid
homogeneous routes in our indoor routing. Back to the example in Fig. B.1, suppose a
user wants routes from ps to pt while covering two keywords oppo and costa. Several
possible routes are listed in Table B.2. For ease of reading, we insert between each
two consecutive route items the partition that connects the two items.

Table B.2: Examples of Routes from ps to pt

R1 (ps
v1→d2

v2→d6
v3→d7

v5→pt)

R2 (ps
v1→d2

v2→d5
v5→d7

v3→d7
v5→pt)

R3 (ps
v1→d2

v2→d5
v5→d9

v6→d9
v5→d7

v3→d7
v5→pt)

R4 (ps
v1→d3

v5→d5
v2→d5

v5→d7
v3→d7

v5→pt)

We use key partition to refer to a partition that covers the start point ps, the ter-
minal point pt , or a subset of query keywords. We use KP(·) to denote the sequence
of key partitions on a route. In Table B.2, we can find KP(R1) = KP(R2) = KP(R3) =
KP(R4) = 〈v1,v2,v3,v5〉, where the four partitions correspond to ps, oppo, costa, and
pt , respectively. Routes R1 to R4 have the same start and terminal points, and they pass
the four key partitions in the same order with different partial routes in between. Con-
sequently, they are homogeneous but some of them have more complicated routing
forms. To this end, we have the following two definitions.

Definition 2 (Homogeneous Routes). Routes Ri and R j are homogeneous routes if
Ri.head = R j.head, Ri.tail = R j.tail, and KP(Ri) = KP(R j).

Definition 3 (Prime Route). Suppose HR is a complete set of homogeneous routes
for a routing query, we say a route Ri ∈HR is prime against R j ∈HR if δ (Ri)< δ (R j).
Ri is a prime route if Ri is prime against all other routes in HR.

93

Paper B.

By the concept of the prime route, we integrate the diversity principle into our
routing query such that only prime routes should be included to ensure the diversity
of search results.

Example B.2.2 (An Example of Prime Route)
Assuming R1 to R4 in Table B.2 are the only four regular routes from ps to pt having
the sequence of key partitions 〈v1,v2,v3,v5〉. Referring to the geometric depiction
of Fig. B.1, we have δ (R3) > δ (R4) > δ (R2) > δ (R1) and thus R1 is the prime
route among them. Consequently, only R1 should be considered for the routing
results.

Our study concentrates on finding qualified routes without exhaustive search. We
define our research problem as follows.

Problem (Indoor Top-k Keyword-aware Routing Query). Given a start point ps,
a terminal point pt , a distance constraint ∆, and a query keyword list QW, an in-
door top-k keyword-aware routing query IKRQ(ps, pt , ∆, QW, k) returns k reg-
ular and prime routes from ps to pt in a k-set Θ such that ∀R ∈ Θ, δ (R) ≤ ∆ and
Ψ(R,∆,QW) ≥ Ψ(R′,∆,QW) for any route R′ /∈ Θ from ps to pt with δ (R′) ≤ ∆.

Above, Ψ(R,∆,QW) captures the ranking score for a route R, which takes into
account both spatial distance and keyword relevance for R and a given routing query.
We proceed to detail the design of our ranking mechanism for routes.

B.3 Ranking Relevant Routes for IKRQ

B.3.1 Organization of Indoor Space Keywords

We differentiate two types of keywords associated with indoor partitions. An identity
word (i-word) identifies the specific name of a partition, while a thematic word (t-
word) [7] refers to a tag relevant to that partition. A partition can relate to one i-word
only but a set of t-words. For a specific indoor venue, i-words can be obtained from
floor map or the like, and t-words can be extracted from the semantic descriptions of
the indoor partitions or those of the corresponding i-words. For example, i-words in
a mall are shop names like starbucks and zara and function area names like frontdesk
and toilet. Meanwhile, a shop zara can be associated with many t-words such as pants,
sweater and coat.

Given an indoor venue, we organize its i-words and t-words in two disjoint sets.
If a word is in the i-word set Wi, it is excluded from the t-word set Wt to keep the
two keyword sets distinct. Given the full set V of partitions in an indoor venue, a P2I
mapping P2I(vk) maps a partition vk ∈V to its associated i-word wi ∈Wi, and an I2P
mapping I2P(wi) maps an i-word wi ∈Wi to a set of relevant partitions. Moreover, an

94

B.3. Ranking Relevant Routes for IKRQ

I2T mapping I2T(wi) maps an i-word wi ∈Wi to a set of relevant t-words, and a T2I
mapping T2I(wt) maps a t-word wt ∈Wt to a set of relevant i-words.

In our setting, we maintain P2I as a many-to-one mapping and I2P as a one-to-
many mapping such that an i-word can be associated to different partitions while a
partition can only be identified by one i-word. For example, there may be five cashiers
in a mall that are distributed in different partitions, but all these partitions are identified
by an i-word cashier. Moreover, we maintain I2T and T2I as two many-to-many map-
pings, meaning that one i-word can be associated to multiple t-words and vice versa.
For a partition vk, we define its partition words PW(vk) as {P2I(vk), I2T(P2I(vk))}
that consists of an i-word wi = P2I(vi) and a set of t-words relevant to wi as indicated
by I2T mapping. For simplicity of presentation, we assume two partitions with the
same i-word have the same set of t-words.

Example B.3.1 (Examples of Keyword Mapping)
Fig. B.2 illustrates parts of the indoor space keyword mappings for the example in
Fig. B.1. Partition v3 is mapped to an i-word costa via the P2I mapping. Reversely,
we can use the I2P mapping to find that the i-word apple is associated with partition
v10. According to the I2T and T2I mappings, t-words laptop and smartphone are
relevant to the i-word apple, and the i-word costa is relevant to t-words coffee and
mocha. Moreover, v3’s partition words PW(v3) = {costa,{coffee,mocha, . . .}}.

IW1 apple

IW2 costa

IW3 starbucks

IW4 samsung

… …

ID WORD

IW1 apple

IW2 costa

IW3 starbucks

IW4 samsung

… …

ID WORD

TW1 coffee

TW2 laptop

TW3 smartphone

TW4 mocha

… …

ID WORD

TW1 coffee

TW2 laptop

TW3 smartphone

TW4 mocha

… …

ID WORD

Identity Word Set Thematic Word Set

v12

v3

v7

v10

…

Partition

P2I mapping: partition → i-word (n:1)

I2P mapping: i-word → partition (1:n)

I2T mapping: i-word → t-word (m:n)

T2I mapping: t-word → i-word (n:m)

Fig. B.2: Indoor Space Keyword Mappings

In our organization, i-words act as the pivot between partitions and t-words, as
the vocabulary of i-words is much smaller than that of t-words, making the mappings
between i-words and partitions more concise. Using the mappings described above,
we are able to quantify the keyword relevance between query keywords and routes.

B.3.2 Keyword Relevance between Query Keywords and Routes

Given a query keyword list QW, we convert each query word wQ in QW into a set
of candidate i-words for facilitating a matching between query words and partitions

95

Paper B.

(and therefore routes). If a query word wQ is an i-word, we use the word itself as a
candidate. If wQ is a t-word, we use the T2I mapping to obtain a set of relevant i-
words that are called direct matching i-words. However, only using direct matching
i-words may lead to a very sparse candidate set. As each i-word is associated with a
set of t-words that can be regarded as word features, we can measure the similarity
between each direct matching i-word and other i-words, and retrieve those i-words
that is highly similar to the direct matching i-words. We called such i-words indirect
matching i-words. For example, in Fig. B.2, suppose a query word is laptop and
we can find a direct matching i-word apple. Next, for apple we find another i-word
samsung that shares some t-words with apple, e.g., both contain t-word smartphone.
In this sense, samsung is similar to apple, and samsung can be obtained as an indirect
matching i-word of laptop. By considering indirect matching i-words, we offer users
more choices in routing.

Definition 4 (Candidate I-word Set). Given a query keyword wQ ∈ QW, its candi-
date i-word set κ(wQ) is a set of entries each of which is in form of (wi,s), a pair
of a matching i-word wi and the similarity score s between wQ and wi. Two cases are
discussed in deriving κ(wQ).

• If wQ is an i-word, the matching i-word can only be wQ itself with the similarity
score 1, i.e., κ(wQ) = {(wQ,1)}.

• If wQ is a t-word, the matching i-word(s) should include

– each direct matching i-word w′i ∈ T2I(wQ) with the similarity score 1, denoted
as (w′i,1).

– each indirect matching i-word w′′i such that I2T(w′′i)∩
⋃

wi∈T2I(wQ)
I2T(wi) 6=

∅, where
⋃

wi∈T2I(wQ)
I2T(wi) is the union set of the t-words of each i-word

in T2I(wQ). In such a case, the similarity is measured in the form of Jaccard

Similarity as s(w′′i) =
|I2T(w′′i)∩

⋃
wi∈T2I(wQ) I2T(wi)|

|I2T(w′′i)∪
⋃

wi∈T2I(wQ) I2T(wi)|
.

To avoid long tails, we only keep the entries whose similarity scores are greater than a
certain threshold τ in κ(wQ). We use κ(wQ).Wi to denote the set of matching i-words
in κ(wQ).

Corresponding to Fig. B.2, some partitions and their partition words are listed
below.

partition i-word t-words
v3 costa {coffee,drinks,macha}
v10 apple {phone,mac, laptop,watch}
v7 starbucks {coffee,macha, latte,drinks}
v12 samsung {phone, laptop,earphone}

96

B.3. Ranking Relevant Routes for IKRQ

Example B.3.2 (An Example of Candidate I-word Set)
Given a query keyword list QW = 〈latte,apple〉, we set τ = 0.5. As keyword
latte is a t-word, we have T2I(latte) = {starbucks}. Thus, (starbucks,1) is in-
cluded as a candidate i-word since starbucks is a direct matching of latte. Further-
more, as i-word costa that is not a direct matching of latte, we have s(costa) =
|I2T(costa)∩

⋃
wi∈T2I(latte) I2T(wi)|

|I2T(costa)∪
⋃

wi∈T2I(latte) I2T(wi)|
. Since I2T(costa) = {coffee,drinks,macha} and⋃

wi∈T2I(latte) I2T(wi) = {coffee,drinks,macha, latte}, we have s(costa) = 3/4 =
0.75. Likewise, we have s(apple) = s(samsung) = 0. Consequently, κ(latte)
= {(starbucks,1), (costa,0.75)} and κ(latte).Wi = {starbucks,costa}. As the
other keyword apple is an i-word, we have κ(apple) = {(apple,1)} and
κ(apple).Wi = {apple}. Finally, the original query keyword list can be con-
verted to a list of candidate i-word sets: K(QW) = 〈κ(latte),κ(apple)〉 =
〈{(starbucks,1), (costa,0.75)},{(apple,1)}〉.

On the other hand, given an item x on a route R, we use an operator v∗(x) to obtain
its relevant partitions. If x is a door, we obtain all the partitions that one can leave
through door x, i.e., v∗(x) = D2P@(x). Otherwise, x is a point and we obtain the
partition that contains point x, i.e., v∗(x) = v(x). Accordingly, we look at i-words in a
route.

Definition 5 (Route Words). Given R = (xs,di, . . . ,dn,xt), its route words are the
union of all its relevant partitions’ associated i-words, computed as RW(R) =⋃

x∈RPW(v∗(x)).wi.

Example B.3.3 (Examples of Route Words)
Referring to the route R = (ps,d3, pt) in Fig. B.1, for point ps, we have
PW(v(ps)).wi = PW(v1).wi = {zara}. Likewise, we have PW(v(pt)).wi = ∅. For
door d3, we have PW(D2P@(d3)).wi = PW(v1).wi ∪PW(v5).wi = {zara} ∪ ∅ =
{zara}. Consequently, we have RW(R) = {zara}.

Next, route R’s keyword relevance is defined as follows.

Definition 6 (Keyword Relevance). Given a query keyword list QW, a route R’s key-
word relevance w.r.t. QW is

ρQW(R) =


0, if NQW (R) = 0;

NQW (R)+
∑

wQ∈QW

(
max

w′i∈M(wQ ,R)
s(w′i)

)
NQW (R) , otherwise.

97

Paper B.

Above, NQW (R) is the number of R’s route words that are relevant to query words
in QW , and M(wQ,R) = κ(wQ).Wi∩RW(R) denotes the set of wQ’s matching i-words
on R. When the context is clear, we use ρ(R) to denote the keyword relevance. Also,
ρ(R) is positive if there is at least one query keyword covered by R (i.e., NQW (R)> 0).
In such a case, the left part of the summation indicates the number of query keywords
that R covers, and the right part measures the average of each covered keyword wQ’s
maximum similarity score with its matching i-words on R (i.e., M(wQ,R)). In the best
case, all keywords in QW can match an i-word on R with similarity score 1. Thus, the
range of ρ(R) is 0∪ (1, |QW|+ 1]. The computation complexity of ρ(R) is O(mn),
where m is |QW | and n is the number of i-words in a route R.

Example B.3.4 (Examples of Keyword Relevance)
Referring to Fig. B.1, we have two routes R1 = (ps,d2,d5,d7,d7, pt) and R2 =
(d15,d15,d14,d13,d7,d6) and a query keyword list QW = {latte,apple}. For route
R1, we have RW(R1) = {zara,oppo,costa}, and κ(latte).Wi∩ RW(R1) = {costa}
with similarity score 0.75 and κ(apple).Wi∩RW(R1) = ∅, thus ρ(R1) = 1+ 0.75

1 =
1.75.

For route R2, we have RW(R2) = {apple,starbucks,costa}, κ(latte).Wi ∩
RW(R2) = {starbucks,costa}, and κ(apple).Wi∩RW(R2) = {apple}. Consider the
two candidate i-words of query keyword latte, we select i-word starbucks with the
maximum similarity score as s(starbucks) = 1 > s(costa) = 0.75. Consequently,
ρ(R2) = 2+ 1+1

2 = 3.

B.3.3 Ranking Score for Routes

Definition 7 (Ranking Score). Given a query IKRQ(ps, pt , ∆, QW, k) and a route
R from ps to pt , the ranking score of R is computed as a linear combination of the
normalized scores of keyword relevance and spatial relevance as follows.

ψ(R,∆,QW) = α · ρ(R)
|QW|+ 1

+(1−α) · (∆−δ (R)
∆

) (B.1)

We use ψ(R) for simplicity when the context is clear. Our ranking score can be
flexibly customized by the tradeoff parameter α ∈ [0,1] according to specific applica-
tion needs [8–11]. For example, a shopper in a mall may prefer the routes covering
the query keywords as much as possible for the sake of shopping, and the require-
ment for walking distance can be less important. In this case, a large α can boost the
keyword score. In contrast, passengers in airports are often more sensitive to distance
constraints and would accept some query keywords missing. Thus, a small α can be
used to emphasize the distance. The effect of α is studied experimentally.

98

B.4. Search Algorithms for IKRQ

B.4 Search Algorithms for IKRQ
A naive idea for our routing works as follows. We iteratively find candidate partial
routes from the start point, validate them using the distance constraint and the two
principles (Section B.2.2), and expand them through doors. After all complete routes
have been seen, we return the k routes with the highest ranking scores. This method
is inefficient as it finds all complete routes through expensive expansions. To improve
the efficiency, we can identify unpromising route branches and avoid expanding to
them, which is enabled by pruning rules.

B.4.1 Pruning Rules for Expansion

Our pruning rules use the skeleton distance [12] as the lower bound indoor distance
for two indoor items xi and x j.

|xi,x j|L =


|xi,x j|E , if xi and x j are on the same floor;

min
sdi∈SD(xi),sd j∈SD(x j)

(
|xi,sdi|E + δs2s(sdi,sd j)+

|sd j,x j|E
)
, otherwise.

Specifically, |xi,x j|L is the Euclidean distance if xi and x j are on the same floor. Other-
wise, one needs to go through a number of staircase doors (e.g., sdi ∈ SD(xi)) to reach
x j from xi, and there can be multiple such paths. In this case, |xi,x j|L is the shortest
path distance among all such paths.

With the lower bound distance, we derive the following pruning rules for a query
IKRQ(ps, pt ,∆,QW ,k).

Pruning Rule 6. A partial route R? = (ps,di, . . . ,dn) in the searching can be pruned
if δ (R?)+ |dn, pt |L > ∆.

Pruning Rule 7. A door dn can be pruned out of the search if |ps,dn|L+ |dn, pt |L > ∆.

Pruning Rule 8. An indoor partition vi can be pruned out of the search if its lower
bound distance δ (ps,vi, pt) =

min
di∈P2DA(vi),d j∈P2D@(vi)

(|ps,di|L + δd2d(di,d j)+ |d j, pt |L) > ∆.

Example B.4.1 (Examples of Pruning Rule 8)
Referring to Fig. B.1, suppose we need to route from ps to pt with the distance
constraint ∆ = 16m, and we have obtained a partial route R? = (ps,d2,d5) whose
distance is 12.5m. R? can be pruned according to Pruning Rule 6, since δ (R?) +
|d5, pt |E = 12.5m + 6m > ∆ = 16m. Also, suppose that |ps,d6|E + |d6, pt |E = 13m +
5m > ∆ = 16m, door d6 can be discarded according to Pruning Rule 7. Take a close

99

Paper B.

look at partition v3 whose only two doors are d6 and d7, and |ps,d6|E + |d6,d7|E
+ |d7, pt |E = 13m + 4.5m + 1m > ∆ = 16m, v3 can also be discarded according to
Pruning Rule 8.

Furthermore, we derive the upper bound of the ranking score to enable the follow-
ing pruning rule.

Pruning Rule 9. Given the current k-th highest ranking score ψk among the seen
complete routes, a partial route R? = (ps,di, . . . ,dn) can be pruned if its upper bound
ranking score ψU (R?) = α ·1+(1−α)(1− (δ (R?)+ |dn, pt |L)/∆) ≤ ψk.

In Pruning Rule 9, we upper bound a partial route’s final ranking score by an
overestimate of its keyword and spatial scores. The former is overestimated to 1 as a
full coverage of query keywords and the latter is computed based on the lower bound
indoor distance to pt (i.e., δ (R?) + |dn, pt |L). This pruning rule enables the kbound
pruning, i.e., we can discard a partial route if its upper bound ranking score is not
higher than the k-th best score among the routes already obtained.

Furthermore, recall that only a prime route should be returned among all homoge-
neous routes (see the diversity principle in Section B.2.2). To this end, we have the
following lemma and a corresponding pruning rule.

Lemma 1. Given a query IKRQ(ps, pt , ∆, QW, k), if route R = (ps,di, . . . ,dn, pt) is
a returned prime route, each of its partial route R? = (ps, . . . ,dk) (i≤ k ≤ n) is also a
prime route.

Proof. Without loss of generality, we represent R’s remaining route that continues
with R? as R` = (dk, . . . , pt). We prove the lemma by contradiction. Suppose that R?

is not a prime route and R?′ is R?’s homogeneous route such that δ (R?′)< δ (R?) and
KP(R?′) = KP(R?). According to Definition 2, we have R?′ .tail = R?.tail = dk. By
concatenating R?′ and R` at dk, we can obtain a complete route R′ from ps to pt . More-
over, we have its sequence of key partitions KP(R′) = concat(KP(R?′),KP(R`)) =
concat(KP(R?),KP(R`)) = KP(R). According to Definitions 2 and 3, we find R′ is a
homogeneous route of R and is prime against R. Thus, R cannot be a prime route. �

According to Lemma 1, a partial route cannot be a prime route if the search has
already found a homogeneous route that is prime against it. This enables the following
pruning rule.

Pruning Rule 10. A partial route R? = (ps,di, . . . ,dn) in the search can be pruned if
the search has already obtained a route R?′ from ps to dn that is prime against R?.

Combining the definition of the prime route with the regularity principle in Sec-
tion B.2.2, we have the following lemma.

100

B.4. Search Algorithms for IKRQ

Lemma 2. Given a route R returned by the IKRQ(ps, pt , ∆, QW, k), R can have a
loop of two consecutive identical doors (dk,dk) only if the loop passes a key partition
that covers at least one query keyword in QW.

Proof. (Sketch) We prove it by contradiction. Suppose that R = (ps, . . . ,dk,dk, . . . , pt)
contains a loop (dk,dk) that does not pass any key partition. According to Defini-
tion 3, there must be a homogeneous route R′ = (ps, . . . ,dk, . . . , pt) of R and R′ is
prime against R in that KP(R′) = KP(R) and δ (R′) < δ (R). This violates the diver-
sity principle. �

Example B.4.2 (Examples of Lemma 2)
Suppose IKRQ(ps, pt , 25m, {latte,apple}, 1) is issued in the setting shown in
Fig. B.1, the parameter α is 0.2, and the search has obtained a complete route
R1 = (ps,d2,d6,d7, pt) whose distance is 20m. According to Example B.3.4, we
have R1’s keyword relevance is 1.75 and its ranking score is 0.2 · 1.75

3 + 0.8 · 25−20
25

= 0.277 according to Equation B.1. Thus, the current kbound is updated to 0.277.
Next, the search expands to a route R?

2 = (ps,d2,d5,d7,d7) whose distance is 22.5m
and lower bound distance to pt is 22.5m + |d7, pt |E = 22.5m + 1m = 23.5m. Accord-
ing to Pruning Rule 9, R?

2’s ranking score is upper-bounded by 0.2 ·1+0.8 · 25−23.5
25

= 0.248. So R?
2 should be pruned as its upper bound ranking score is smaller than

the current kbound.
Suppose that two partial routes have been obtained between ps and d5, namely

R?
3 = (ps,d2,d5) and R?

4 = (ps,d3,d5,d5). Both routes pass a key partition v2 (its i-
word oppo is an indirect matching of apple) and we have δ (R?

3) = 12.5m and δ (R?
4)

= 23.2m. Currently, R?
3 is prime against R?

4 and therefore R?
4 should be pruned

according to Pruning Rule 10. Moreover, according to Lemma 2, when the search
has expanded to a door d9, the next hop cannot be d9 again as neither of its relevant
partitions (v5 and v6) covers a query keyword.

B.4.2 Overall Search Framework

Based on the above pruning rules and lemmas, we formalize our overall framework
in Algorithm 1. A priority queue Q (initialized in line 1) is used to control the order
of route expansion. The local information of the current expansion is kept in a five-
tuple stamp S(v,R,δ ,ρ ,ψ), where R is a route that has been expanded to a door or
the terminal point so far, v is the last partition that R reaches, and δ ,ρ ,ψ are R’s route
distance, keyword relevance, and ranking score, respectively. The architecture of our
search algorithms is depicted in Fig. B.3.

The initialization (lines 1–6) obtains a set Wci of all candidate i-words w.r.t. query
keyword list QW (line 2), and computes a set P of all key partitions covering at least
one keyword in QW (line 3). We exclude the partition v(ps) from P and add the

101

Paper B.

IKRQ_Search

(Algorithm 1)

prime_check

(Algorithm 3)

prime_update

(Algorithm 4)

find

(two versions)

connect

(Algorithm 5)

find

(two versions)

connect

(Algorithm 5)

Functions Enabled by Pruning Rule 5

route expansion

Pruning Rules 1,4 and 5

Pruning Rule 3

Pruning Rule 2

Pruning Rules 1,4 and 5

Pruning Rule 3

Pruning Rule 2

topology-oriented find

(Algorithm 2, TOE_find)

keyword-oriented find

(Algorithm 6, KOE_find)

topology-oriented find

(Algorithm 2, TOE_find)

keyword-oriented find

(Algorithm 6, KOE_find)

Fig. B.3: Architecture of the IKRQ Search Algorithms

partition v(pt) to P to regularize the route search. Sets Df and Dn hold the doors
already explored (line 4). Doors in Df are filtered by Pruning Rule 7, whereas those
in Dn are not.

Algorithm 1 IKRQ_Search (ps, pt , ∆, QW, k)

1: initialize priority queue Q
2: set of all candidate i-words Wci←

⋃
wQ∈QW κ(wQ).Wi

3: P←
(⋃

wQ∈QW I2P(κ(wQ).Wi)
)
\ v(ps)∪ v(pt)

4: door sets Dn←∅, Df ←∅
5: kbound← 0
6: initialize hashtable Hprime
7: R0← (ps)
8: S0← (v(ps),R0,0,ρ(R0),ψ(R0))
9: Q.push(S0)

10: while Q is not empty do
11: Si← Q.pop()
12: ES← find(Si) . find the next valid stamps
13: for each S j ∈ ES do
14: connect(S j) . connect each valid stamp to terminal
15: return current top-k results

Subsequent routing skips doors in Df , and exempts doors in Dn from repeated
checks by Pruning Rule 7. We initialize the kbound for Pruning Rule 9 (line 5),
and a hashtable Hprime to store the route temporarily prime against others for Pruning
Rule 10 (line 6). The algorithm then performs the expansion iteratively (lines 7–14).
It generates an initiate route (ps) and its corresponding stamp S0 (lines 7–8). Next, it
pushes S0 into Q and iterates on Q until all stamps have been expanded to pt (lines 9–
14). The search follows a find-and-connect paradigm. That is, in each iteration, it
fetches a stamp Si with the highest ranking score from Q (line 11), expands the cur-
rent stamp to find a set ES of valid stamps based on the pruning rules (calling function

102

B.4. Search Algorithms for IKRQ

find() in line 12), and attempts to connect each valid stamp in ES to the destination
if some condition is met (calling function connect() in line 14). The top-k results are
returned when Q is empty (lines 10 and 15).

Given a valid stamp Si, we propose two versions of strategies to find the next valid
stamps. One is based on the indoor topology information and the other is based on the
query keywords. The search algorithms using the two different strategies are called
topology-oriented expansion (ToE) and keyword-oriented expansion (KoE), respec-
tively. Function find() is instantiated as ToE_find() and KoE_find(), respectively.

B.4.3 Topology-oriented Expansion (ToE)

The idea of find() in ToE is to reach all accessible doors from the current door based
on indoor topology. We formalize this strategy in Algorithm 2.

Algorithm 2 ToE_find (Stamp Si)

1: set ES←∅
2: (vi,Ri,δi,ρi,ψi)← Si; dk← Ri.tail
3: if prime_check(Si, Hprime) is false then return . Pruning Rule 10
4: for each dl in P2D@(vi) \Df do
5: if dl ∈ Ri and dl 6= Ri.tail then continue . regularity check
6: if dl /∈ Dn then . Pruning Rule 7
7: if |ps,dl |L + |dl , pt |L > ∆ then
8: Df ← Df ∪dl ; continue
9: else

10: Dn← Dn∪dl

11: v j← D2PA(dl) \ vi
12: if dk == dl and PW(vi).wi /∈Wci then
13: continue . regularity check based on Lemma 2
14: if δi + δd2d(dk,dl) > ∆ then continue . distance constraint check
15: δLB← δi + δd2d(dk,dl)+ |dl , pt |L
16: if δLB > ∆ then continue . Pruning Rule 6
17: ψUB← α ·1+(1−α)(1−δLB/∆)
18: if ψUB ≤ kbound then continue . Pruning Rule 9
19: R j← append dl to Ri
20: S j← (v j,R j,δ (R j),ρ(R j),ψ(R j))
21: prime_update(S j, Hprime)
22: add S j to ES

23: return ES

In particular, line 1 initializes a set ES to save the valid stamps to be found, and
line 2 obtains the current stamp Si and the current door dk from the tail of the corre-
sponding route Ri. To determine if Si is a temporary prime route that does not need

103

Paper B.

to be pruned (c.f. Pruning Rule 10), ToE calls a function prime_check() to compare
Si’s route Ri to its homogeneous routes already recorded in a global hashtable Hprime

(line 3).
The function prime_check() is detailed in Algorithm 3. First, the key for identi-

fying Ri’s homogeneous routes is formed as (Ri.tail,KP(Ri)), a pair of Ri’s tail door
and Ri’s sequence of key partitions3 (line 2). The function returns true if the shortest
distance among all homogeneous routes in Hprime does not exist or is greater than Ri’s
distance δi. Otherwise, it returns false to indicate that Ri is not the temporary prime
route and should be pruned.

Algorithm 3 prime_check (Stamp Si, Hashtable Hprime)

1: (vi,Ri,δi,ρi,ψi)← Si
2: key← (Ri.tail,KP(Ri))
3: if Hprime[key] = ∅ or Hprime[key] > δi then return true else return false

Back to line 4 in Algorithm 2, ToE tests on each leavable door dl of Ri’s last
reached partition vi. It excludes those doors in the global set Df that have been pruned
by Pruning Rule 7. Before applying Pruning Rule 7, line 5 performs a regularity
check. Specifically, if dl has been visited by Ri before (dl ∈ Ri), it can be the next
door only when Ri’s last visited door is also dl (a loop within one-hop in regularity
principle). Hence, dl should be pruned if dl 6= Ri.tail. Afterwards, ToE examines dl
based on Pruning Rule 7. Specifically, if dl is not in Dn (line 6), ToE computes the
lower bound distance w.r.t. dl (line 7). If it exceeds ∆, ToE adds it to Df to make sure
it is not processed in subsequent routing. Otherwise, ToE adds it to Dn.

Next, ToE performs checks according to the query principles and pruning rules.
Particularly, lines 11-13 check the regularity for two identical doors according to
Lemma 2, in which v j is the partition that connects the dk and dl on the route. Line 14
checks the distance constraint for the route to be expanded to dl , and lines 15-16 fur-
ther derive its lower bound and verify it according to Pruning Rule 6. In the end,
ToE uses Pruning Rule 9 to remove the expansion whose derived upper bound ranking
score cannot exceed the kbound of the search (lines 17-18). Once the check is done,
ToE validates the expansion to dl by appending dl to the end of R j and generating the
corresponding stamp S j (lines 19-20). Moreover, it calls function prime_update() to
update the temporary prime route with S j (line 19). When each accessible door dl has
been explored, ToE_find() returns the set ES that contains all valid stamps.

Algorithm 4 prime_update (Stamp Si, Hashtable Hprime)

1: (vi,Ri,δi,ρi,ψi)← Si
2: key← (Ri.tail,KP(Ri))
3: if Hprime[key] = ∅ or Hprime[key] > δi then Hprime[key]← δi

3In our routing, all expanding routes have the same head item, i.e., ps.

104

B.4. Search Algorithms for IKRQ

Algorithm 4 formalizes the function prime_update(). The hash key generation is
the same as its counterpart of prime_check(). Their difference is that prime_update
puts the distance of the route Ri into Hprime if Ri is currently prime against its homo-
geneous routes.

We proceed to present how to connect each valid stamp returned by ToE_find().
The process is formalized in Algorithm 5.

Algorithm 5 connect (Stamp S j)

1: (v j,R j,δ (R j),ρ(R j),ψ(R j))← S j
2: if v j == v(pt) then . reach a door in the same partition with pt
3: R f ← append pt to R j
4: S f ← (v(pt),R f ,δ (R f),ρ(R f),ψ(R f))
5: if δ (R f)≤∆ and ψ(R f)> kbound and prime_check(S f , Hprime) is true then
6: update top-k results and kbound with R f
7: prime_update(S f , Hprime)

8: else
9: if prime_check(S j, Hprime) is false then

10: continue . Pruning Rule 10
11: if ρ(R j) = |QW|+ 1 then . all keywords has been covered
12: find shortest regular route (d j,dx, . . . , pt) . regularity check
13: R f ← append (dx, . . . , pt) to R j
14: S f ← (v(pt),R f ,δ (R f),ρ(R f),ψ(R f))
15: if δ (R f) ≤ ∆ and ψ(R f) > kbound and prime_check(S f , Hprime) is true

then
16: update top-k results and kbound with R f
17: prime_update(S f , Hprime)

18: else . can be further expanded
19: Q.push(S j)

For stamp S j to be connected, we first determine if it has reached the same par-
tition of the terminal point pt (line 2). If so, we immediately connect the end of
the corresponding route R j to pt and check if the resulting route R f meets the query
conditions (lines 3–5). If so, we add R f to the top-k results and update the current
kbound (lines 6–7). Otherwise, we explore how S j can be further processed (lines 8–
19). Here we call prime_check() again to verify if S j holds the temporary prime
route (lines 9–10). Afterwards, we check if the current route R j has already covered
all the query keywords (line 11). If so, there is no necessary to reach any other key
partitions. Therefore, we immediately connect the end of R j to pt by finding a short-
est regular route4, and obtain a final stamp S f (lines 12–14). Afterwards, we add the
qualified route R f to the top-k results and update the current kbound (lines 15–17). If
R j does not cover all the query keywords, we push S j into the queue for further expan-

4Note that a global regularity check is required when connecting R j to pt .

105

Paper B.

sion (lines 18–19). Lines 2–17 in Algorithm 5 utilize a heuristic rule that the current
stamp should connect to the destination directly when a certain condition is met, i.e.,
it has reached the destination partition or covered all query keywords. As a result, the
kbound and prime routes are updated as soon as possible, which in turn help to prune
more aggressively.

B.4.4 Keyword-oriented Expansion (KoE)

ToE always expands from the current door to the next enterable door within one
hop. However, such one-hop expansions cannot guarantee covering some query key-
word(s). An alternative is to focus on the query words that have not been covered
by the current stamp, and directly expand to one of the key partitions that can cover
some of those uncovered query words. This idea is called keyword-oriented expansion
(KoE), and its finding strategy is formalized in Algorithm 6.

Algorithm 6 KoE_find (Stamp Si)

1: set ES←∅
2: (vi,Ri,δi,ρi,ψi)← Si; dk← Ri.tail
3: if prime_check(Si, Hprime) is false then return . Pruning Rule 10
4: P′← P . find candidate key partitions
5: for wQ ∈ QW do
6: if κ(wQ).Wi∩RW(Ri) 6= ∅ and dk 6= ps then
7: P′← P′ \ I2P(κ(wQ).Wi)

8: for v j in P′ do
9: if δLB(ps,v j, pt) > ∆ then

10: P← P\ v j; continue . Pruning Rule 8
11: if δi + δLB(dk,v j, pt) > ∆ then continue . distance constraint check
12: for each dx ∈ P2D@(vi) and dl ∈ P2DA(v j) do
13: find shortest regular route (dk,dx, . . . ,dl) . regularity check
14: R j← append (dx, . . . ,dl) to Ri
15: δLB← δ (R j)+ |dl , pt |L
16: if δLB > ∆ then continue . Pruning Rule 6
17: ψUB← α ·1+(1−α)(1−δLB/∆)
18: if ψUB ≤ kbound then continue . Pruning Rule 9
19: S j← (v j,R j,δ (R j),ρ(R j),ψ(R j))
20: prime_update(S j, Hprime)
21: return ES

The processing on the current stamp Si (lines 1–3) is the same as the counter-
part in Algorithm 2. It is noteworthy that here vi must be a key partition and dk
must be an enterable door of vi since in each expansion KoE has to reach a key parti-
tion. Next, unlike ToE that iterates on each enterable door based on indoor topology,

106

B.4. Search Algorithms for IKRQ

KoE searches for the candidate partitions relevant to the uncovered query keywords
(lines 4–7). Specifically, it copies the key partition set P (initialized in line 2 of Algo-
rithm 1) to a local set P′ (line 4), iterates on each query word wQ ∈QW, and checks if
wQ has been covered by the current route Ri in Si (lines 5–6). If so, its corresponding
key partitions should be removed from P′ (line 7). In line 6, a case is handled sep-
arately. When the initial stamp S0 is encountered (dk = ps), we do not remove any
partition from P′. This ensures that no extra constraint on partitions is added.

Afterwards, KoE deals with each candidate partition v j ∈ P′ to find a route that can
reach one of the enterable doors of v j. For each candidate partition v j, KoE derives
the lower bound distance and checks it against Pruning Rule 8 (lines 9–10). If a
partition v j should be pruned, it is excluded from the global set P and never processed
in subsequent expansions. Furthermore, KoE checks the distance constraint for the
routes to be expanded to the doors of v j, whose lower bound distance is computed
as δi + δLB(dk,v j, pt) (line 11). Referring to Pruning Rule 8, δLB(xs,vi,xt) means the
minimum indoor distance from xs, through partition vi, to xt .

When v j becomes the next target partition to reach, KoE needs to find a route from
the current door dk through a leavable door dx in current partition vi to an enterable
door dl in the next partition v j. For each such combination of dk, dx and dl , we may
find a large number of qualified routes. However, the following lemma tells that we
only need to consider the one with the shortest distance in the expansion.

Lemma 3. Given Rp = (ps, . . . ,di,di+1, . . . ,d j, . . . , pt) as a prime route such that di

and d j refer to an enterable door of two consecutive key partitions vm and vm+1 ∈
KP(Rp), respectively, and di+1 refers to a leavable door of vm. Rp’s partial route
R?

p = (di,di+1, . . . ,d j) must also be a prime route.

Proof. (Sketch) We prove it by contradiction. Suppose Rp’s key partition sequence
is 〈vs, . . . ,ve〉. We segment Rp into three partial routes: Rap = (ps, . . . ,di), R?

p =

(di,di+1, . . . ,d j), and R`p = (d j, . . . , pt). The key partition sequences are 〈vs, . . . ,vm−1〉,
〈vm〉, 〈vm+1,vs〉, respectively. If R?

p is not a prime route, there must be a route R?′
p hav-

ing δ (R?′
p) < δ (R?

p) and KP(R?′
p) = KP(R?

p) = 〈vm〉. By concatenating Rap , R?′
p , and

R`p , we get a route R′p that has KP(R′p) = KP(Rp) = 〈vs, . . . ,ve〉 and δ (R′p)< δ (Rp).
Thus, Rp is not a prime route. �

Lemma 3 can be easily extended to the situation where global regularity needs
to be considered for the whole route. Therefore, given any combination of dk ∈
P2DA(vi), dx ∈ P2D@(vi) and dl ∈ P2DA(v j), we only need to find the shortest route
(dk,dx, . . . ,dl) with a regularity check (lines 12–13 in Algorithm 6). When each such
route has been expanded to dl , we generate a new route R j and check it based on
Pruning Rule 6 and 9 (lines 14–18). If those rules fail to prune anything, we form a
new stamp S j and call prime_update() (lines 19–20). When each candidate partition
v j has been explored, KoE_find() returns the set ES that contains all valid stamps.
Recall that such stamps will be processed in the search framework (lines 13–14 in
Algorithm 1) where the use of connect() is the same as that in the search of ToE.

107

Paper B.

B.5 Experimental Studies
We experimentally evaluate ToE, KoE and their variants. Table B.3 lists all routing
algorithms in comparison. Specifically, ToE\D and KoE\D involve no pruning rule
based on the distance constraint ∆, i.e., Pruning Rules 6, 7 and 8. ToE\B and KoE\B
skip the kbound-based Pruning Rule 9. ToE\P skips the prime-based Pruning Rule 10.
This variant does not apply to KoE, since it is formulated based on prime routes.
Instead, we design KoE∗ that precomputes the shortest route between any two doors,
which may speed up routing to the next key partition in KoE (line 13 in Algorithm 6).
Note that such a route should be re-computed when the regularity check fails. All
algorithms are implemented in Java and run on a PC with a 2.30GHz Intel i5 CPU and
16 GB memory.

Table B.3: Notations of Comparable Methods

Modification ToE family KoE family
– ToE KoE
no distance-based Pruning Rules 6-8 ToE\D KoE\D
no kbound-based Pruning Rule 9 ToE\B KoE\B
no prime-based Pruning Rule 10 ToE\P –
with precomputed shortest routes – KoE∗

B.5.1 Results on Synthetic Data

Settings

Indoor Space. Based on a real-world floorplan5, we generate a multi-floor indoor
space where each floor takes 1368m × 1368m with 96 rooms, 4 hallways, and 4
staircases. The irregular hallways are decomposed into smaller but regular partitions.
As a result, we obtain 141 partitions and 220 doors on each floor. We duplicate the
floorplan 3, 5, 7, or 9 times to simulate different indoor spaces. The four staircases
of each two adjacent floors are connected by stairways, each being 20m long. In the
default setting, we use a 5-floor indoor space with 705 partitions and 1100 doors.

Indoor Keywords. We assign keywords to the 96 rooms on each floor as follows.
We use Scrapy6 to crawl the online shop information from five shopping malls7 in
Hong Kong, obtaining 2074 documents for 1225 shop brands. All the 1225 brand
names are used as i-words. They are then fed into the RAKE algorithm [13] to extract
corresponding keywords from the documents. Only 1120 i-words yield extracted key-
words. For each such i-word, we use up to 60 extracted keywords with the highest

5deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
6https://scrapy.org/
7Refer to https://longaspire.github.io/s/hkdata.html for the details.

108

B.5. Experimental Studies

TF-IDF values as its t-words. In total, we have 9195 t-words and each i-word corre-
sponds to 16.6 t-words on average. We randomly assign an i-word and all its t-words
to each room. The indoor space keyword mappings are of approximately 4 MB and
thus kept in main memory.

Queries. For a valid IKRQ(ps, pt , ∆, QW, k), the distance constraint ∆ must be
larger than the indoor distance δs2t between ps and pt . Thus, we generate ps, pt , and
∆ in the following steps. 1) We fix δs2t to a certain value and randomly select a point
ps in the space. 2) We find a door d′ whose distance to ps approximates δs2t based on
the precomputed door-to-door matrix. 3) We expand from d′ to find a random point
pt whose distance to ps just meets δs2t . 4) We generate ∆ = η ·δs2t , where η > 1 is a
coefficient. Subsequently, we randomly select a set of keywords from the 1120 i-words
and 9195 t-words to form QW. A parameter β controls the fraction of i-words in QW.
The query keyword set size |QW| is varied from 1 to 5, as an analysis [14] discloses
that nearly all map queries contain at most 5 keywords, and statistics8 show that 65
percent of web searchers use 1 or 2 keywords and over 94 percent of web searchers use
at most 4 keywords. In addition, we also vary the tradeoff parameter α in the ranking
score (c.f. Equation B.1) and the similarity threshold τ (see Definition 4). Table B.4
gives the parameter settings with default values shown in bold. It is noteworthy that
users do not have to specify all of these parameters. For example, users do not need to
give i-words and t-words separately. Rather, they are recognized automatically in our
implementation.

Performance Metrics. We generate ten query instances with random QWs for
each parameter setting. We run each instance five times, and measure the average
running time and average memory cost per run of a single query instance.

Table B.4: Parameter Settings
Parameters Settings

k 1, . . . , 7, . . . , 11
|QW| 1, 2, 3, 4, 5

β (% of i-words in QW) 20%, 40%, 60%, 80%, 100%
δs2t (meter) 1100, 1300, 1500, . . . , 2100

η 1.4, 1.6, 1.8, 2.0
α 0.1, 0.3, 0.5, 0.7, 0.9
τ 0.05, 0.1, 0.2, 0.4

Efficiency Studies

Performance Overview. We run each algorithm in the default setting and report the
running time per query instance in Fig. B.4. Among all, ToE and KoE perform the best
because they make full use of all pruning rules. In general, ToE returns top-7 results

8http://www.keyworddiscovery.com/keyword-stats.html

109

Paper B.

within 117ms while KoE needs about 133ms. For ToE\D and KoE\D, the distance-
based pruning has a greater impact on their efficiency. Next, ToE\B and KoE\B are
basically equal to their original counterparts, showing that the kbound pruning barely
works in the default setting. The effect of parameter k is studied shortly in the next set
of experiments. Still in Fig. B.4, the KoE-based algorithms fluctuate more on different
query instances than KoE-based ones. This is because the expansion of KoE is highly
related to the query words, and thus is easily influenced by the randomly generated
QWs. In contrast, ToE’s expansion is relatively stable because it always finds the next
door according to indoor topology rather than QWs.

KoE∗ is much slower than others and it has a wider range of variations. This
indicates that its precomputing does not pay off. On the contrary, it needs to recompute
indoor distances when a route regularity check fails and the recomputed results cannot
be reused in a dynamic routing process. Fig. B.4 omits the results of ToE\P as it is
five to six orders of magnitude slower than the others. ToE\P increases the number
of routes exponentially due to its absence of prime route-based pruning. As ToE\P
and KoE∗ perform poorly, we omit them in further comparisons but discuss them
separately in Sections B.5.1 and B.5.1, respectively.

0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

A l g o r i t h m s

Tim
e (

mi
llis

ec
.)

 T o E T o E \ D T o E \ B
 K o E K o E \ D K o E \ B K o E *

Fig. B.4: Default parameters

1 3 5 7 9 1 15 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Tim
e (

mi
llis

ec
.)

k

 T o E T o E \ D T o E \ B
 K o E K o E \ D K o E \ B

Fig. B.5: Running time vs. k

Effect of k. We investigate the effect of k by varying it from 1 to 11. Referring
to Fig. B.5, the running time of each algorithm increases only slightly as k increases.
Each KoE variant outperforms its ToE counterpart. Moreover, ToE\D and KoE\D are
much slower than ToE and KoE, which again demonstrates the power of the distance-
based pruning. Consistent with the default parameter tests, the gap between ToE\B
(KoE\B) and ToE (KoE) is insignificant. Sometimes ToE\B is even faster than ToE.
When |QW| is at its default of 4, the overestimated keyword relevances of some partial
routes tend to be higher than the final keyword relevance of routes already obtained,
making the kbound less useful to prune those partial routes. Considering the extra
kbound maintenance costs, ToE can be slower than ToE\B. Nevertheless, both ToE
and KoE return the top-11 routes within 150ms.

Effect of |QW|. We vary |QW| from 1 to 5 and report the running time and memory
costs in Fig. B.6 and B.7, respectively. For all algorithms, both metrics increase when
|QW| is larger. Referring to Fig. B.6, all KoE-based algorithms slow down more
rapidly than ToE counterparts. When there are more query words, it is more difficult
for partial routes to achieve full coverage of query words and connect to the terminal

110

B.5. Experimental Studies

quickly. Therefore, both ToE and KoE are slower when |QW| increases. Moreover, a
larger |QW| leads to more candidate partitions and thus more keyword combinations
are considered in KoE. As a result, KoE’s running time grows faster than ToE. When
|QW| increases to 5, the maximum query keyword size, each KoE-based variant incurs
more time than its ToE counterpart. Nevertheless, KoE can still return the top-7 routes
within 300ms. Referring to Fig. B.7, KoE family cost less memory than ToE family
as KoE expansions are more aggressive, jumping directly from one key partition to
another without caching intermediate results, whereas KoE has the lowest memory
cost thanks to its efficient route pruning.

Effect of η . Referring to Fig. B.8, when increasing η from 1.6 to 2, both ToE
and ToE\B’s running time increase steadily since the distance constraint is larger. In
contrast, ToE\D is insensitive to η as it does not use any distance-related pruning. On
the other hand, KoE family’s time costs only slightly increase with η , showing that
they can work well with larger or looser distance constraints. Referring to Fig. B.9,
when increasing η , the memory costs of ToE family increase while those of KoE fam-
ily stay stable, which again demonstrates KoE family’s insensitiveness to the distance
constraint.

1 2 3 4 50
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

Tim
e (

mi
llis

ec
.)

| Q W |

 T o E K o E
 T o E \ D K o E \ D
 T o E \ B K o E \ B

Fig. B.6: Time vs. |QW|

1 2 3 4 50
5 0

1 0 0
1 5 0
2 0 0
2 5 0

Me
mo

ry
(M

B.)

| Q W |

 T o E K o E
 T o E \ D K o E \ D
 T o E \ B K o E \ B

Fig. B.7: Memory vs. |QW|

1 . 6 1 . 8 2 . 0

1 0 0

2 0 0

3 0 0
 T o E T o E \ D T o E \ B
 K o E K o E \ D K o E \ B

Tim
e (

mi
llis

ec
.)

η

Fig. B.8: Time vs. η

1 . 6 1 . 8 2 . 00
4 0
8 0

1 2 0
1 6 0
2 0 0
2 4 0

Me
mo

ry
(M

B.)

η

 T o E T o E \ D T o E \ B
 K o E K o E \ D K o E \ B

Fig. B.9: Memory vs. η

2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

Tim
e (

mi
llis

ec
.)

β

 T o E
 K o E

Fig. B.10: Time vs. β

3 5 7 90

2 0 0

4 0 0

6 0 0

8 0 0

Tim
e (

mi
llis

ec
.)

f l o o r s

 T o E
 K o E

Fig. B.11: Time vs. floor

Next, we concentrate on comparing ToE and KoE.
Effect of β . Referring to Fig. B.10, both algorithms speed up clearly when in-

creasing the i-word faction β . As each t-word may relate to more partitions than each
i-word in our setting, a larger β tends to exclude more t-words and thus more can-
didate partitions. Therefore, both algorithms return the results faster for queries with
more i-words. Still, ToE outperforms KoE and the gap enlarges rapidly when varying
β from 60% to 20%. That is because the candidate i-word set will be large with more
t-words, which more affects KoE.

111

Paper B.

Effect of floor number. We vary the floor number to test the scalability of our
algorithms. Referring to Fig. B.11, ToE’s time cost increases slowly but KoE dete-
riorates very fast when there are more floors. The distance between adjacent floors
in our dataset is set to 20m only, which means the distance between two points sep-
arated by several floors is still very small. Consequently, the distance constraint can
hardly help exclude the candidate partitions several floors away. Thus, both search
algorithms need to consider more candidates. Nevertheless, ToE can still finish within
250ms when there are 9 floors. As ToE keeps the intermediate results at each step, its
running time increases slower than KoE for more floors.

Effect of δs2t. We vary the route distance δs2t with η fixed to 1.6. Referring to
Fig. B.12, both algorithms slow down sightly with δs2t increased to 1900m. When
δs2t is small, ToE that expands based on topology can quickly find enough routes and
return. However, when ps and pt are separated further, ToE needs to expand more
partitions and thus costs more time. In contrast, KoE finds the next valid stamp based
on keywords and is less affected by the increase of δs2t.

Effect of α and τ . With varying α , all algorithms perform steadily with minor
fluctuations only. This implies that our ranking score is robust and insensitive to α .
The experiments with varying τ show that our search algorithms are also insensitive
to τ . The Jaccard similarity in our keyword relevance is rather long-tailed. Very
few indirect matching i-words are retrieved even τ is tuned to 0.05. Thus our search
algorithms stay stable. Due to page limit, we omit the result figures.

Summary. In general, KoE has better scalability when some distance-related pa-
rameters (e.g., η and δs2t) are enlarged. Conversely, ToE is more efficient when there
are more query words. In addition, KoE always has a lower memory cost.

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

Tim
e (

mi
llis

ec
.)

�s 2 t (m e t e r)

 T o E
 K o E

Fig. B.12: Time vs. δs2t

1 . 2 1 . 4 1 . 6 1 . 8 2 . 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0

Tim
e (

mi
llis

ec
.)

η

 K o E
 K o E *

Fig. B.13: Time of KoE∗
1 . 2 1 . 4 1 . 6 1 . 8 2 . 01 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Me
mo

ry
(M

B.)

η

 K o E K o E *

Fig. B.14: Memory of KoE∗

Effect of Precomputing in KoE

With others in default, we run KoE and KoE∗ at different η values. Referring to
Fig. B.13, KoE always outperforms KoE∗ except when η is as small as 1.2. A smaller
η leads to a tighter distance constraint, and KoE tends to directly connect to pt with
the shortest distance regardless of covering query words. In such a case, the precom-
puted shortest routes between key partitions are useful. However, once the distance
constraint becomes larger, more routing choices are included and the precomputed
results become useless. This leads to a lot of recomputations that clearly jeopardize

112

B.5. Experimental Studies

KoE∗’s efficiency. As shown in Fig. B.14, KoE∗’s memory cost is an order of mag-
nitude higher than that of KoE as it uses precomputing. In summary, we find that
KoE’s on-the-fly search nature yields much more performance gains in both time and
memory costs than KoE∗’s precomputing.

Effect of Prime Route-based Pruning

We compare ToE to ToE\P that does not employ the prime route-based pruning. Re-
ferring to Fig. B.15, when increasing η from 1.4 to 2, ToE\P slows down almost
exponentially whereas ToE stays stable. As ToE\P never checks and prunes those
non-prime routes during the search, its candidate routes can be extremely large even
when a small η is used. When η increases to 2, ToE\P is three orders of magnitude
slower than ToE.

Without the prime concept, ToE\P tends to return homogeneous routes. We mea-
sure the homogeneous rate as the fraction of homogeneous routes in the returned
top-k routes. The results w.r.t. different k values are reported in Fig. B.16. With a
larger k, ToE\P’s top-k routes become homogeneous at a rapid pace. For k ≥ 3, more
than 60% of returned routes are homogenous, and the percentage grows up 92% when
k is 15. Such top-k results are barely interesting to users. Since ToE\P also runs fast as
shown in Fig. B.15, it is of great importance to perform the prime route-based pruning
in our search.

1 . 4 1 . 6 1 . 8 2 . 01 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

Tim
e (

mi
llis

ec
.)

η

 T o E
 T o E \ P

Fig. B.15: Time of ToE\P

1 3 5 7 9 1 1 1 3 1 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ho
mo

ge
ne

ou
s r

ate

k
 T o E \ P

Fig. B.16: Homogeneous rate

1 2 3 4 50

2 0 0

4 0 0

6 0 0

8 0 0

Tim
e (

mi
llis

ec
.)

| Q W |

 T o E K o E
 T o E \ D K o E \ D
 T o E \ B K o E \ B

Fig. B.17: Time vs. |QW|

1 2 3 4 50
5 0

1 0 0
1 5 0
2 0 0
2 5 0

Me
mo

ry
(M

B.)

| Q W |

 T o E K o E
 T o E \ D K o E \ D
 T o E \ B K o E \ B

Fig. B.18: Memory vs. |QW|

1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 20

5 0 0

1 0 0 0

1 5 0 0

Tim
e (

mi
llis

ec
.)

η

 T o E K o E
 T o E \ D K o E \ D
 T o E \ B K o E \ B

Fig. B.19: Time vs. η

1 2 3 4 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Ho
mo

ge
ne

ou
s r

ate

| Q W |

 T o E \ P

Fig. B.20: Homogeneous rate

Search Result Quality

We use a typical example to show that our IKRQ can find more reasonable and de-
sirable routes in practice. Referring to Fig. B.1, we have I2T(Apple) = {phone, mac,

113

Paper B.

laptop, watch} and I2T(Samsung) = {phone, laptop, earphone}. Assuming α is 0.5
and τ is 0.1, query (p1, p2,100,earphone,2) returns routes R1 = (p1,d4,d15,d15, p2)
and R2 = (p1,d4,d17,d17, p2), although earphone is not in Apple’s t-words in R1. In
particular, δ (R1) = 10m, δ (R2) = 20m, ρ(R1) = 1.667 and ρ(R2) = 2, so ψ(R1) =
0.867 and ψ(R2) = 0.9. Although R3 = (p1,d4, p2) has a shorter distance of 9.5m, it
lacks words similar with earphone and is not returned with ψ(R3) = 0.4525. Appar-
ently, Apple offers earphones. Its route R1 will be excluded and users will miss useful
choices if we use exact keyword matching.

B.5.2 Results on Real Data

We collect a dataset with real indoor topology and keyword distributions from a seven-
floor, 2700m× 2000m shopping mall in Hangzhou, China. There are ten staircases in
which each stairway roughly 20m long. Among all the 639 stores, those of the same
category, e.g., cosmetics and men’s wear, are on the same floor(s). We extract the
keywords from the store descriptions on the mall’s website and obtain 5036 t-words
for 533 i-words (stores). There are 103 stores with no t-words but only one i-word.
An i-word corresponds to 31 t-words maximum and 9.4 ones on average. We use the
same parameter settings as in Table B.4, except that α is adjusted to 0.7 to suit the
needs of keyword-awareness in shopping. Like on the synthetic data, we still generate
10 query instances for each parameter setting, run each instance 5 times, and measure
the average cost per run for each query instance.

First, we vary |QW|. Referring to Fig. B.17, all algorithms but ToE\D moderately
incur more time with increasing |QW|. Those without distance-based pruning worsen
rapidly, e.g., ToE\D cannot return within 1 second when |QW| exceeds 3. Consistent
with the results in synthetic data, KoE worsens faster than ToE as |QW| increases, and
it becomes less efficient when |QW|= 5. In the real mall, shops of the same category
are spatially adjacent, resulting in a dense distribution of the candidate partitions that
refer to the same query keyword. When distance constraint is certain, KoE needs to
consider more partition combinations that complicate the search. In contrast, ToE
always expands based on topology and is less affected. As shown in Fig. B.18, the
memory cost of each algorithm increases moderately with a larger |QW|. However,
KoE is always the most space-efficient one.

Also, we study the effect of η on running time. Referring to Fig. B.19, when η

increases, i.e., the distance constraint is looser or larger, ToE family needs to access
more doors and thus takes more time to return. With looser distance constraints, KoE
gradually approaches KoE\D. In this case, all KoE algorithms tend to cover more
query words, and therefore they become similar in processing candidate partitions. In
general, ToE and KoE can always return the results less than 500ms, showing they are
both efficient in finding routes in real applications.

Fig. B.20 reports ToE\P’s homogeneous rate in the real data. Without the use
of prime routes, ToE\P always returns homogeneous routes, not to mention its high
running time.

114

B.6. Related Work

B.6 Related Work
Indoor Routing and Path Finding. Goetz and Zipf [15] define a routing graph for
indoor environments with obstacles. Lu et al. [1] design an indoor space model that fa-
cilitates shortest path finding. To speed up distance-aware indoor path finding, Shao et
al. [16] design VIP-tree that enables more aggressive pruning. VIP-tree also supports
indoor trip planning based on neighbour expansion [17]. Li et al. [18] construct indoor
possible paths based on probabilistic location samples of moving objects and search
for the most popular indoor semantic regions using the constructed paths. Costa et
al. [19] propose context-aware indoor-outdoor path recommendation that minimizes
the outdoor exposure and path distance. Li et al. [20] design vision-based mobile
indoor navigation that helps blind and visually impaired people walk indoors. In con-
trast to our IKRQ, these works do not consider indoor semantic keywords. A recent
work [21] studies indoor keyword-aware skyline route query that considers the num-
ber of covered keywords and route distances, whereas our IKRQ does not count key-
words but use prime routes to exclude routes through the same partitions. Also, unlike
work [21], our setting allows a partition to have more than one keyword.

Outdoor Keyword-aware Routing. Given a source s, a destination e, and a cate-
gory set C, the trip planning query [22] finds the shortest s-to-e path that covers at least
one object from each category in C, whereas the optimal sequenced route query [23]
finds the shortest path covering all categories in a total order. Partial order is con-
sidered elsewhere [4]. The multi-approximate-keyword routing query [5] changes the
strict category coverage to an approximate matching using edit distances between a
keyword and a location. The geographical route search [3] finds routes whose length
is within a threshold and keyword-dependent scores are highest. The keyword-aware
optimal routing [2] considers keyword coverage, route score, and travel cost bud-
get. The optimal route search [24] finds one route whose word coverage is maximum
within a budget constraint. The clue-based route search [25] supports an order of key-
words to cover, and requires that the network distance from one matched keyword to
next is within a corresponding user-specified limit. However, all these works fall short
for indoor topology considered in our IKRQ queries. Also, none of them distinguishes
identity and content words that carry different semantics. Moreover, most works do
not consider routing diversity, and works [2, 3, 5, 22, 24] are approximate solutions.

B.7 Conclusion
Given two indoor points s and t, indoor top-k keyword-aware routing query (IKRQ)
finds k s-to-t routes that have optimal ranking scores integrating keyword relevance
and spatial distance constraint. We propose prime routes to increase result diversity,
devise data structures for computing route keyword relevances, and derive pruning
rules to reduce search space. Further, we design two IKRQ search algorithms that
expand differently in routing. Experiments demonstrate the efficiency of our proposals

115

References

and the performance characteristics of them.
For future work, we can use a soft distance constraint to support approximate

routing. With indoor mobility data, it is possible to incorporate route popularity into
routing. Also, it is useful to consider special entities like lifts in routing.

Acknowledgement
This work was supported by HK-RGC (Nos. 12200817 and 12201018), Independent
Research Fund Denmark (No. 8022-00366B), and National Science Foundation of
China (No. 61672455). The authors would like to thank Ronghao Ni and Yijie Xie
for preprocessing the real dataset.

References
[1] H. Lu, X. Cao, and C. S. Jensen, “A foundation for efficient indoor distance-

aware query processing,” in 2012 IEEE 28th International Conference on Data
Engineering. IEEE, 2012, pp. 438–449.

[2] X. Cao, L. Chen, G. Cong, and X. Xiao, “Keyword-aware optimal route search,”
Proceedings of the VLDB Endowment, vol. 5, no. 11, 2012.

[3] Y. Kanza, E. Safra, Y. Sagiv, and Y. Doytsher, “Heuristic algorithms for route-
search queries over geographical data,” in Proceedings of the 16th ACM SIGSPA-
TIAL international conference on Advances in geographic information systems,
2008, pp. 1–10.

[4] J. Li, Y. Yang, and N. Mamoulis, “Optimal route queries with arbitrary order
constraints,” IEEE Transactions on Knowledge and Data Engineering, vol. 25,
no. 5, pp. 1097–1110, 2013.

[5] B. Yao, M. Tang, and F. Li, “Multi-approximate-keyword routing in gis data,”
in Proceedings of the 19th ACM SIGSPATIAL international conference on ad-
vances in geographic information systems, 2011, pp. 201–210.

[6] L. Qin, J. X. Yu, and L. Chang, “Diversifying top-k results,” Proceedings of the
VLDB Endowment, vol. 5, no. 11, 2012.

[7] G. J. Fakas, Y. Cai, Z. Cai, and N. Mamoulis, “Thematic ranking of object sum-
maries for keyword search,” Data & Knowledge Engineering, vol. 113, pp. 1–17,
2018.

[8] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most relevant
spatial web objects,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp.
337–348, 2009.

116

References

[9] D. Wu, G. Cong, and C. S. Jensen, “A framework for efficient spatial web object
retrieval,” The VLDB Journal, vol. 21, no. 6, pp. 797–822, 2012.

[10] Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee, and X. Wang, “Ir-tree: An effi-
cient index for geographic document search,” IEEE transactions on knowledge
and data engineering, vol. 23, no. 4, pp. 585–599, 2010.

[11] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, “Processing spatial-keyword (sk)
queries in geographic information retrieval (gir) systems,” in 19th International
Conference on Scientific and Statistical Database Management (SSDBM 2007).
IEEE, 2007, pp. 16–16.

[12] X. Xie, H. Lu, and T. B. Pedersen, “Efficient distance-aware query evaluation on
indoor moving objects,” in 2013 IEEE 29th International Conference on Data
Engineering (ICDE). IEEE, 2013, pp. 434–445.

[13] S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic keyword extraction
from individual documents,” Text mining: applications and theory, vol. 1, pp.
1–20, 2010.

[14] X. Xiao, Q. Luo, Z. Li, X. Xie, and W.-Y. Ma, “A large-scale study on map
search logs,” ACM Transactions on the Web (TWEB), vol. 4, no. 3, pp. 1–33,
2010.

[15] M. Goetz and A. Zipf, “Formal definition of a user-adaptive and length-optimal
routing graph for complex indoor environments,” Geo-Spatial Information Sci-
ence, vol. 14, no. 2, pp. 119–128, 2011.

[16] Z. Shao, M. A. Cheema, D. Taniar, and H. Lu, “Vip-tree: an effective index for
indoor spatial queries,” Proceedings of the VLDB Endowment, vol. 10, no. 4, pp.
325–336, 2016.

[17] Z. Shao, M. A. Cheema, and D. Taniar, “Trip planning queries in indoor venues,”
The Computer Journal, vol. 61, no. 3, pp. 409–426, 2018.

[18] H. Li, H. Lu, L. Shou, G. Chen, and K. Chen, “Finding most popular indoor
semantic locations using uncertain mobility data,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 31, no. 11, pp. 2108–2123, 2018.

[19] C. Costa, X. Ge, and P. Chrysanthis, “Caprio: Context-aware path recommen-
dation exploiting indoor and outdoor information,” in 2019 20th IEEE Inter-
national Conference on Mobile Data Management (MDM). IEEE, 2019, pp.
431–436.

[20] B. Li, J. P. Munoz, X. Rong, Q. Chen, J. Xiao, Y. Tian, A. Arditi, and M. Yousuf,
“Vision-based mobile indoor assistive navigation aid for blind people,” IEEE
transactions on mobile computing, vol. 18, no. 3, pp. 702–714, 2018.

117

References

[21] C. Salgado, “Keyword-aware skyline routes search in indoor venues,” in Pro-
ceedings of the 9th ACM SIGSPATIAL International Workshop on Indoor Spatial
Awareness, 2018, pp. 25–31.

[22] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng, “On trip plan-
ning queries in spatial databases,” in International symposium on spatial and
temporal databases. Springer, 2005, pp. 273–290.

[23] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi, “The optimal sequenced route
query,” The VLDB journal, vol. 17, no. 4, pp. 765–787, 2008.

[24] Y. Zeng, X. Chen, X. Cao, S. Qin, M. Cavazza, and Y. Xiang, “Optimal route
search with the coverage of users’ preferences,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

[25] B. Zheng, H. Su, W. Hua, K. Zheng, X. Zhou, and G. Li, “Efficient clue-based
route search on road networks,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 9, pp. 1846–1859, 2017.

118

Paper C

Towards Indoor Temporal-variation aware Shortest Path
Query

Tiantian Liu, Zijin Feng, Huan Li, Hua Lu, Muhammad Aamir
Cheema, Hong Cheng, Jianliang Xu

The paper has been published in the
IEEE Transactions on Knowledge and Data Engineering, 2021.

© 2021 IEEE
Reprinted, with permission, from Tiantian Liu, Zijin Feng, Huan Li, Hua Lu, Muham-
mad Aamir Cheema, Hong Cheng, and Jianliang Xu, “Towards indoor temporal-
variation aware shortest path query,” IEEE Transactions on Knowledge and Data En-
gineering (TKDE), 2021.
The layout has been revised.

C.1. Introduction

Abstract
The recent years have witnessed the growing popularity of indoor location-based
services (LBS) in practice and research. Among others, indoor shortest path query
(ISPQ) is of fundamental importance for indoor LBS. However, existing works on
ISPQ ignore indoor temporal variations, e.g., the open and close times associated
with entities like doors and rooms. In this paper, we define a new type of query called
Indoor Temporal-variation aware Shortest Path Query (ITSPQ). It returns the valid
shortest path based on the up-to-date indoor topology at the query time. A set of
techniques is designed to answer ITSPQ efficiently. We design a graph structure (IT-
Graph) that captures indoor temporal variations. To process ITSPQ using IT-Graph,
we design two algorithms that check a door’s accessibility synchronously and asyn-
chronously. Furthermore, we propose a novel index structure (IT-Index) that extends
the state-of-the-art index significantly by storing dynamic door-to-door distances in
a compact distance cube associated with tree nodes. When processing ITSPQ using
IT-Index, we make use of the distance cube to avoid time-consuming indoor distance
computation on-the-fly. We evaluate the proposed techniques using extensive experi-
ments on synthetic and real data. The results show that our IT-Index based method is
the most efficient for processing ITSPQ at a modest cost of index memory consump-
tion.

C.1 Introduction
With the recent advancements in indoor positioning technologies and the increasing
availability of digital indoor maps, indoor location-based services are becoming in-
creasingly popular. This trend has enabled a wide variety of applications such as help-
ing people navigate through complex buildings, directing people to safe exits during
emergency evacuations, tracking staff and equipment in hospitals, and location-based
shopping assistance for customers [1–6].

Shortest distance and shortest path queries are among the most fundamental queries
for providing various indoor location-based services. Such queries can facilitate peo-
ple in need. For example, passengers in an airport would like to find the shortest path
from his/her current position to the boarding gate. Shortest distance or shortest path
queries can also be applied to indoor robots. For example, in automatic warehouses
of Amazon, JD.com, and Alibaba, robots can accomplish operational tasks along the
shortest paths, e.g., delivering products from one location to another. To support such
real-life applications, indoor shortest distance/path queries have received significant
research attention [7–9] in the past few years. Shortest distance/path queries in in-
door venues pose unique challenges compared to outdoor space (e.g., road networks)
because, in the indoor space, movement is enabled and constrained by unique indoor
features such as doors, walls, and staircases. Previous research [9] points out that the
outdoor techniques are not effective when extended for indoor venues because they

121

Paper C.

fail to exploit the unique properties of indoor venues. The basic idea behind the exist-
ing techniques to answer indoor queries is to model the indoor space as a graph and
optionally precompute and materialize distances between certain pairs of doors to en-
able efficient query processing. For example, the distance matrix [7] precomputes and
stores the distances between all pairs of doors in an indoor venue. The state-of-the-art
technique, IP-Tree/VIP-Tree [9], reduces the storage requirement by materializing the
distances between some selected pairs of doors instead of all pairs.

A major limitation of the existing techniques [3, 7] is that they assume that the
whole indoor venue is accessible for navigation and the indoor topology does not
change with time. These assumptions do not hold in many real-world scenarios. For
example, it is typically desirable to restrict navigation through certain areas of a build-
ing, e.g., private offices and meeting rooms in an office building, security areas in an
airport, and storage areas in a shopping mall, etc. Similarly, access to some doors
may be restricted at certain times of the day, e.g., doors leading to patient wards may
only open during visiting hours or certain doors of a shopping mall may close in the
evening restricting access to only the shops that are open till late. Such temporal varia-
tions significantly affect the indoor topology, which entails a change in the way people
can navigate through the building.

Motivated by the aforementioned factors, in this paper, we propose to study indoor
temporal-variation aware shortest path query (ITSPQ) which returns a shortest path
from a source ps to a target pt while disallowing navigation through private partitions
and ensuring that the doors along the path are open when the user reaches there. Un-
fortunately, the existing techniques cannot handle such queries because 1) the graphs
used to model the indoor space do not consider temporal variations; and 2) the pre-
computed and materialized door-to-door distances become invalid when one or more
doors open or close at certain times. For example, the distance matrix may need to
be re-computed (or updated) when some doors open or close. The cost to update the
existing indexes in real-time may be prohibitive especially for large indoor venues,
e.g., the shopping mall that we use in our experimental study has more than 2,000
doors and it is not feasible to update the distance matrix containing over 4 million
door-to-door distance entries.

To address the above challenges, we propose an indoor temporal-variation graph
(IT-GRAPH) which models the indoor topology, semantic properties of indoor entities
(e.g., private partitions), geometric information, and temporal variation information
in a composite structure. Furthermore, we propose a hierarchical index called in-
door temporal-variation index (IT-INDEX) which exploits the unique characteristics
of the indoor space to facilitate efficient query processing. Additionally, we use dis-
tance cubes for the nodes of the IT-INDEX to materialize temporal-variation aware
distances between certain pairs of doors in each node. We design algorithms that
exploit IT-GRAPH and IT-INDEX to efficiently answer the indoor temporal-variation
aware shortest path queries. Our experimental study on real and synthetic data sets
shows that our proposed algorithms are efficient and the size of our proposed indexes
increases linearly with the size of indoor venue (in contrast to the distance matrix

122

C.2. Preliminaries

which has a quadratic cost to the number of doors in the indoor venue).
Below we summarize the contributions made in this paper.

• To the best of our knowledge, this is the first study on indoor temporal-variation
aware shortest path queries (ITSPQ). We formally define ITSPQ and summa-
rize why the existing techniques are not fit for ITSPQ (Section C.2).

• We present IT-GRAPH that effectively captures temporal changes and semantic
properties of indoor venues (Section C.3).

• We propose the novel index IT-INDEX to materialize temporal-variation aware
distances between door pairs, followed by efficient query algorithms for ITSPQ
(Section C.4).

• We conduct extensive experiments on both real and synthetic data (Section C.5).
The results demonstrate that IT-INDEX incurs low storage cost and short con-
struction time but enables highly efficient processing of ITSPQ.

In addition, we review the related work in Section C.6 and conclude the paper and
discuss future directions in Section C.7.

In contrast to our preliminary work [10], this paper contains substantial exten-
sions. First, it provides a technical discussion on why the state-of-the-art techniques
fail to work for ITSPQ (Section C.2.3). Second, it presents more technical details
with a concrete example of the IT-GRAPH based approaches (Section C.3.2). Third, it
proposes the new index IT-INDEX (Section C.4.1), an efficient index based query pro-
cessing algorithm (Section C.4.2), and a complexity analysis of all algorithms (Sec-
tion C.4.3). Fourth, it reports on significantly more extensive experimental studies that
use both synthetic and real data to evaluate all proposed techniques in a wide variety
of settings (Section C.5).

C.2 Preliminaries
Table C.1 lists the frequently used notations in this paper.

Table C.1: Notations

Symbol Meaning

v, d, p partition, door, and point in an indoor space
PRD, PBD private door, public door
PRP, PBP private partition, public partition
ATI active time interval
GIT indoor temporal-variation graph
ADA(N) enterable access doors in a tree node N
AD@(N) leavable access doors in a tree node N

123

Paper C.

C.2.1 Differentiation of Indoor Entities

In this paper, we distinguish two types of indoor partitions. Private partitions are
occupied for a specific use and not used for routing, e.g., someone’s office room or
a meeting room. On the contrary, public partitions can be used in routing, e.g.,
hallways and staircases. We treat different partition types as a special kind of temporal
variation in that they can be used differently at different times. For example, a private
office room is not used as an intermediate partition in routing at normal time but it
may be used at emergency time. Accordingly, a door that interconnects two public
partitions is a public door while a door that connects to one or more private partitions
is a private door. In this sense, a private door can only be the first or the last door in
an indoor path.

Example C.2.1 (Partitions)
Referring to the floorplan of an office building in Fig. C.1, someone at point p1 can
get to point p2 through doors d3 and d17, but cannot go through d6 and d7 to reach
p2 as v6 is a private office that cannot be passed. Moreover, d6 is a private door as
it connects to a private office v6 whereas d3 is a public door as it connects partitions
v3 and v16 that are both public hallways.

v1 v3 v4

v7

v2

v17

v5

v6 v8

v9

v10

v11

v16 v12 v13 v15

v14

d1
d4 d8

d2
d6

d7

d10

d9

d12

d13

d19
d21 d20

d16 d15

d11

d5

d14

d17

door
directionality

doors

public
partition

private
partition

p1

p2

10m

5m

4m

6m

d3
2m

p3

p4

8m

4m

5m

3md18

2m

d14

d2

v8

v10

Fig. C.1: An Example of Indoor FloorPlan

For ease of presentation, we show only one floor in Fig. C.1. Nevertheless, our
model supports multiple floors where two adjacent floors are connected by a staircase.
Specifically, a staircase works as a special partition with two doors—each connects to
an adjacent partition at one of the two adjacent floors.

124

C.2. Preliminaries

C.2.2 Problem Definition

In real life, we may encounter temporal variations of doors, which can significantly
change indoor topology and therefore affect the routing process. For example, the
doors in the space illustrated in Figure C.1 may be open and closed at different times
as listed in Table C.2. In our setting, we use [open-time, close-time) to represent an
active time interval (ATI) of a door. Thus, [8:00, 16:00) means a door is open at
8:00 and closed at 16:00. If a door features multiple ATIs, we use an array to store
them. Intuitively, the temporal variation of a private door may have little impact on
the indoor topology while that of a public door can significantly change the topology.

Table C.2: Active Time Intervals (ATIs) of Doors

Door, ATIs Door, ATIs

d1, 〈[5:00, 23:00)〉 d2, 〈[8:00, 16:00)〉
d3, 〈[6:00, 23:00)〉 d4, 〈[9:00, 18:00)〉
d5, 〈[6:30, 23:00)〉 d6, 〈[8:00, 16:00)〉
d7, 〈[6:00, 23:30)〉 d8, 〈[9:00, 18:00)〉
d9, 〈[0:00, 6:00), [6:30, 23:00)〉 d10, 〈[8:00, 16:00)〉
d11, 〈[5:00, 23:00)〉 d12, 〈[5:00, 23:00)〉
d13, 〈[5:00, 17:00), [18:00, 23:00)〉 d14, 〈[0:00, 24:00)〉
d15, 〈[8:00, 16:00)〉 d16, 〈[8:00, 17:00)〉
d17, 〈[0:00, 24:00)〉 d18, 〈[0:00, 23:00)〉
d19, 〈[8:00, 16:00)〉 d20, 〈[5:00, 23:00)〉
d21, 〈[8:00, 16:00)〉

Example C.2.2 (Open Time)
In Table C.2, the door d1 is open during the time interval [5:00, 23:00). The door
d9 is open at 0:00 and closed at 6:00. It is open again at 6:30 and closed at 23:00.
Moreover, closing the private door d1 only affects those who want to enter or leave
the partition v1. In contrast, closing the public door d9 will block the direct path
between the hallways v5 and v10, forcing people in nearby partitions to choose al-
ternative paths.

It is noteworthy that the doors may have different ATIs for different days (e.g.,
weekdays vs weekends). Our techniques can handle such cases by maintaining the
date information. Considering the door directionality, a door may also have different
ATIs for its two directions. This can be addressed by replacing a door d with two
unidirectional doors din and dout and associating specific ATIs to each of them. To ease
the presentation in our setting, we assume that each door features the same ATIs daily,
and the ATIs are the same for each door’s two directions. Nevertheless, the techniques
proposed in this paper can be extended to handle practicalities in real-world scenarios.

125

Paper C.

On top of the temporal variations of indoor entities, we formulate our research
problem as follows.

Problem (Indoor Temporal-variation aware Shortest Path Query). Given a static
start point ps, a static target point pt , and a current timestamp t, an indoor temporal-
variation aware shortest path query ITSPQ(ps, pt , t) returns the valid shortest path
from ps to pt that meets the following rules:

1. Each door di in the path should be open at t +∆t1, where ∆t is the walking time
from ps to di and it is computed based on human’s average walking speed [11]
— 5km/h;

2. The path should not go through any private partition except the private parti-
tions that contain ps and/or pt .

Example C.2.3 (Examples of ITSPQ)
Given a query ITSPQ(p3, p4, 9:00), we consider two candidate indoor paths, i.e.,
(p3,d15,d16, p4) with length 10m and (p3,d18, p4) with length 12m. Although
(p3,d15,d16, p4) is the shorter one, it goes through a private partition v15 that breaks
rule 2) in the problem definition. Therefore, the query returns (p3,d18, p4) as the
result. In contrast, another query ITSPQ(p3, p4, 23:30) returns null because d18 is
closed at 23:00 and no path can meet both rules in the problem definition.

ITSPQ is useful in pertinent indoor applications as it considers the use of indoor
space and temporal variations of indoor topology in real life. For example, in an air-
port or a hospital where rooms fulfill different purposes and doors are dynamically
open and closed, a path returned by ITSPQ can help a user quickly reach her destina-
tion in the right way at the right time.

C.2.3 Indoor Shortest Distance/Path Query Techniques

Indoor distance computation and path query have been studied in the literature [7, 9].
Indoor Distance-Aware Model [7] considers both geometric and topological infor-
mation of indoor space as a directed graph (V , Ea, L, fdv, fd2d). Specifically, V is a
set of partitions represented as a vertex set, Ea is a set of directed edges, L is doors as
edge labels, fdv is a function to compute the maximum distance from a door to all po-
sitions within a partition, and fd2d is a function to compute the door-to-door distance.
In addition, a distance matrix stores the shortest distances between each door pair. It
speeds up the shortest path queries at the costs of extra storage and precomputing.

1In this paper, we do not consider the waiting tolerance in the routing, i.e., someone reaches a door and
waits there until the door opens.

126

C.3. ITSPQ using Temporal-Variation Graph

VIP-Tree [9] is an improved model for indoor shortest distance/path queries. In a
VIP-tree, each leaf node consists of a number of adjacent indoor partitions. The adja-
cent leaf nodes are combined to form a non-leaf node, and adjacent non-leaf nodes are
combined hierarchically until a root node is formed. Access doors and a distance ma-
trix are maintained in each node. The access door of a node N is a border door which
can connect N to the space outside of N. The distance matrix for a leaf node stores the
shortest distance (and the first hop door on the shortest path) between every door of
the leaf node to every access door of the leaf node. The distance matrix for a non-leaf
node only stores the shortest distances and first-hop door between each pair of access
doors of its child nodes. Given a shortest path query from ps to pt , VIP-tree finds
the lowest common ancestor of the leaf nodes Leaf(ps) and Leaf(pt) that connects
the shortest paths from ps to pt by access doors. Since only local shortest paths and
relevant access doors are maintained at each node, VIP-tree has lower preprocessing
costs than the indoor distance-aware model [7].

However, unlike this work, neither the indoor distance-aware model nor VIP-Tree
supports temporal variations on doors and different types of partitions. Consequently,
the two approaches’ materialized shortest distance/path information becomes invalid
for ITSPQ and the two approaches fall short in processing ITSPQ. Next, we introduce
the indoor temporal-variation graph that can facilitate ITSPQ.

C.3 ITSPQ using Temporal-Variation Graph
We present the structure of the indoor temporal-variation graph (IT-GRAPH) in
Section C.3.1, and the query processing algorithms based on IT-GRAPH in Section C.3.2.

C.3.1 Indoor Temporal-Variation Graph

To integrate the temporal variations of doors into the indoor topology, we design IT-
GRAPH GIT (V , E, Lv, LE) where

1. V is the set of vertices. Each vertex v ∈V is an indoor partition.

2. E is the set of directed edges. Each edge (vi,v j,dk) ∈ E means one can reach v j

from vi through a door dk. We use πD(E) to denote the set of doors associated
with the edges of E.

3. LV is the set of vertex labels. Each vertex label is a 3-tuple(IDv, p-type, DM)
where IDv identifies the partition in the vertex, p-type = {PBP,PRP} indicates
if the partition is a public partition (PBP) or a private partition (PRP), and DM
is a distance matrix that stores the intra-partition distance between each pair of
doors of that partition. DM is set to null if the partition has only one door.

4. LE is the set of edge labels. Each edge label is a 3-tuple (IDd , d-type, ATIs)
where IDd identifies the door on the edge, d-type = {PBD,PRD} indicates if

127

Paper C.

the door is a public door (PBD) or a private door (PRD), and ATIs are the ATIs
(see Section C.2.2) of the door.

The IT-GRAPH corresponding to Fig. C.1 is depicted in Fig. C.2. The partitions
are represented by circular vertices. The solid and hollow ones are public and private
partitions, respectively. We use a square vertex to denote the outdoor space. The
arrows of an edge represent the directionality of the corresponding door. We use a door
table and a partition table to store LV and LE in IT-GRAPH, respectively. Referring
to the tables in Fig. C.2, a record (d1, PRD, 〈[5:00, 23:00)〉) means d1 is a private
door and is open from 5:00 to 23:00. Also, we know v16 is a public partition and the
distance between its doors d3 and d17 is 2m.

In general, IT-GRAPH combines indoor topology (i.e., graph structure), semantic
properties of indoor entities (i.e., d-type and p-type), geometric information (i.e., DM),
and temporal variation information (i.e., ATIs) in a composite structure.

Following the previous work [7], we also use several mapping functions to facil-
itate searching between partitions and doors. Specifically, P2D(vk) maps a partition
vk to the set of doors connected to vk and D2P(di) maps a door di to the pair of par-
titions connected by di. Considering the door directionality, P2DA(vk) gives the set
of enterable doors through which one can enter partition vk, P2D@(vk) gives the set
of leavable doors through which one can leave partition vk, D2PA(di) gives the set of
partitions that one can enter through door di, and D2P@(d j) gives those that one can
leave through door d j. Those mappings can be easily obtained based on the connec-
tivity information in IT-GRAPH. Referring to Fig. C.2, we have D2P(d3) = {v3,v16},
D2P@(d3) = v3, and D2PA(d3) = v16. Also, we have P2D(v3) = P2D@(v3) =
{d1,d2,d3,d5,d6} whereas P2DA(v3) = {d1,d2,d5,d6}.

IDd d-type ATIs

d
7

PRD [6:00, 23:30)

d
3

PBD [6:00, 23:00)

… … …

Door Table

IDv p-type DM

v
1

PRP [[(d
1
, d
1
), 0]]

v
16

PBP [[(d
3
, d
17

), 2], [(d
3
, d
21

),

4], [(d
17

, d
21

), 5]]

… … …

Partition Table

v1

v3

v2

v4

v5

v6

v7

v8

v9

v10

v11

v12
v14

v15

v16

v17

v0

v13

d5d1

public partition private partition

outdoors

d2 d3

d6

Fig. C.2: Example of Indoor Temporal-Variation Graph

C.3.2 IT-GRAPH based ITSPQ Processing

The overall framework for processing ITSPQ based on IT-GRAPH is presented in
Algorithm 7.

128

C.3. ITSPQ using Temporal-Variation Graph

Algorithm 7 ITSPQ_ITGraph(ps, pt , t, GIT)

Require: Start point ps, taget point pt , query time t, and IT-GRAPH GIT
Ensure: A valid shortest path from ps to pt at t

1: initialize a min-heap H
2: for each door di ∈ πD(GIT .E) do
3: dist[di]← ∞

4: enheap(H, 〈di,dist[di]〉)
5: prev[di]← null
6: dist[ps]← 0; enheap(H, 〈ps,dist[ps]〉)
7: dist[pt]← ∞; enheap(H, 〈pt ,dist[pt]〉)
8: while H is not empty do
9: 〈di,dist[di]〉 ← deheap(H)

10: if dist[di] = ∞ then return no such routes
11: if di = pt then
12: path← pt
13: while prev[di] 6= ps do
14: path← prev[di]+ ”,”+ path
15: di← prev[di]

16: path← ps + ”,”+ path
17: return path
18: if di = ps then v← P(ps) else v← D2PA(di)\ visited partitions
19: mark di and v as visited
20: if di ∈ P2DA(P(pt)) then
21: if dist[di]+ |di, pt |E < dist[pt] then
22: dist[pt]← dist[di]+ |di, pt |E
23: enheap(H, 〈pt ,dist[pt]〉)
24: prev[pt]← (v,di)

25: else
26: for each unvisited door d j ∈ P2D@(v) do
27: v′← D2PA(d j)\v
28: if v′.d-type is PRP then continue
29: dist j← dist[di]+DM(v,di,d j); tc← t + dist[di]/velocity
30: if !TV_Check(d j,DM(v,di,d j), tc) then continue
31: if dist j < dist[d j] then
32: dist[d j]← dist j
33: enheap(H,

〈
d j,dist[d j]

〉
)

34: prev[d j]← (v,di)

129

Paper C.

The algorithm first initializes a min-heap H to keep the pairs of a door and the
distance from ps to this door (line 1). The min-heap is prioritized according to the
distance. The framework then goes through each door di in GIT (line 2), initializes
dist[di] that is the current shortest distance from ps to di (line 3), and enheaps all of
them into H (line 4). Besides, prev[di] keeps the last hop door of the shortest path from
ps to di and is initialized to null for each door di (line 5). The algorithm also initializes
the shortest distance information for ps and pt , and enheaps them into H (lines 6–7).
It then iterates on H to search for the shortest path from ps to pt (lines 8–34). First, it
deheaps a door (or a point) di with the minimum distance dist[di] (line 9). If dist[di] is
∞, meaning all remaining unvisited doors cannot get to pt , “no such routes” is returned
(line 10). If di equals pt , the shortest path will be returned by iteratively concatenating
the last hops from prev[di] (lines 11–17). Otherwise, the framework searches the next
partition v for the current di. In particular, if di equals ps, v is ps’s covering partition
P(ps). If not, v is obtained as the enterable partition of di that has not been visited
(line 18). After that, di and v are marked as visited (line 19).

Next, if di is an enterable door of pt ’s covering partition P(pt) (line 20), the
next hop of the shortest path should be pt . In this case, the framework directly up-
dates dist[pt] and prev[pt] if dist[pt] is smaller than the current shortest path distance
in dist[pt] (lines 21–24). Otherwise, the framework tests each unvisited door d j in
v’s leavable door set (lines 25–34). In particular, the next partition v′ after d j is ob-
tained (line 27) and d j is immediately discarded if v′ is private (line 28). Then, the
current path distance dist j from ps to d j is obtained as the sum of dist[di] and the
distance from di to d j through v, and the current time tc is obtained as query time
t plus the time cost from ps to di (line 29). Next, the framework calls a function
TV_Check(d j,DM(v,di,d j), tc) to check if d j is open at the arrival time relative to the
current time tc (line 30). Two different strategies, namely Syn_Check() (Algorithm 8)
and Asyn_Check() (Algorithm 10) are used for this function. Their details are to be
given below. Afterwards, the shortest distance and last hop information of the vali-
dated door d j is updated if the current path distance dist j is smaller than d j’s best one
so far (lines 31–34).

Example C.3.1 (An Example of IT-GRAPH based ITSPQ Processing)
Corresponding to the ATIs information in Table C.2, we want to find the shortest
path from p1 to p2 at 11:00 in Fig. C.1. To this end, we first find all the doors
through which one can leave v3 (the host partition of p1), i.e., d1, d2, d3, d5, and
d6. As d1 and d6 connect to private partitions that are not p2’s host partition, they
are filtered out. Then, we compute the distances from the current node p1 to the
remaining doors d2, d3, and d5, and push each door and its distance from p1 to a
min-heap. Next, the nearest door from p1 (i.e., d5) is deheaped as the new current
node. Such an expansion to the next node is repeated until a deheaped door is an
enterable door of p2’s host partition. By connecting the last node to p2, we obtain a
satisfactory path (p1,d3,d17, p2).

130

C.3. ITSPQ using Temporal-Variation Graph

Synchronous Check. The idea of is to look up a door d’s ATIs and compare it
to the arrival time when one just leaves for d. In Algorithm 8, the arrival time tarr is
computed as the current time tc plus the travel time (dist/velocity) to go through the
distance dist from the previous door to d (line 1). The function returns false if tarr is
not in the door d’s ATIs, and true otherwise.

Algorithm 8 Syn_Check(d, dist, tc)

Require: A door d, the distance dist, and current time tc
Ensure: A result whether the door is valid

1: tarr← tc + dist/velocity
2: if tarr /∈ d.ATIs then return false else return true

Asynchronous Check. The synchronous check needs to validate each encoun-
tered door by comparing the arrival time with the door’s active time intervals. How-
ever, in usual scenarios, the temporal variation of doors in IT-GRAPH can only happen
at several particular open or close times. We call such time points checkpoints. The
topology information will not change between two consecutive checkpoints. For ex-
ample, in Table C.2 we can find a set T of the checkpoints as (0:00, 5:00, 6:00, 6:30,
8:00, 9:00, 16:00, 17:00, 18:00, 23:00, 23:30, 24:00). The topology between 9:00 to
16:00 remains the same as depicted in the left of Fig. C.2. In contrast, when time
goes between 16:00 and 17:00, the topology will be changed to the one illustrated in
Fig. C.3. A red cross on an edge means the corresponding door is closed between
16:00 and 17:00. As such, an alternative checking strategy is to directly refer to a

public partition private partition outdoors

v1

v3

v2

v4

v5

v6

v7

v8

v9

v10

v11

v12
v14

v15

v16

v17

v0

v13

d5d1

d2 d3
d6

d10

d13

d15
d19d21

Fig. C.3: Indoor Temporal-Variation Graph within [16:00,17:00)

time-dependent IT-GRAPH that only keeps all currently open doors. The information
of IT-GRAPH only needs to be updated asynchronously at the next checkpoint. Given
the set T of checkpoints, model updating procedure at a time tarr is presented in Algo-
rithm 9. First, it initializes a new graph G′IT using the initial graph G0

IT that keeps the
original indoor topology without considering temporal variations. Next, it searches
the previous checkpoint cp relative to tarr (line 2), and obtains the set Dc of doors

131

Paper C.

that have been closed at cp (line 3). Afterwards, it goes through each such door di in
Dc and removes its every relevant edge (·, ·,di) in G′IT (lines 4–5). Note that we only
need to remove the closed doors at checkpoint cp from the complete topology G′IT ,
and it has nothing to do with graph instances at other time points. Finally, it returns
cp along with the new model G′IT (line 6). G′IT takes effect in the further iteractions of
Algorithm 7.

Algorithm 9 Graph_Update(tarr, T)

Require: Arrival time tarr and checkpoints set T
Ensure: An updated graph G′IT along with tarr’s previous checkpoint cp

1: G′IT ← G0
IT

2: cp← Find_Previous_Checkpoint(tarr,T)
3: Dc← Get_Closed_Door(cp)
4: for each door di ∈ Dc do
5: remove all edges (·, ·,di) from G′IT .E
6: return (cp, G′IT)

Based on the graph updating in Algorithm 9, we present the asynchronous check
in Algorithm 10. It first gets the current GIT and its corresponding checkpoint cp (see
line 6 in Algorithm 9) and the arrival time tarr (lines 1–2). Next, if tarr to get to d is
later than the next checkpoint in T , it updates GIT using G′IT returned by Algorithm 9
(lines 3–5). Here, we directly update the graph to the latest checkpoint to tarr because
the object will not leave the current partition during [tc, tarr) (see line 2). In other
words, any topology changes within [tc, tarr) make no difference to the routing. A true
is returned to keep consistent with the interface of Algorithm 8 (line 6). It ensures that
the expansion in lines 31-34 of Algorithm 7 will be executed.

Algorithm 10 Asyn_Check(d, dist, tc)

Require: A door d, the distance dist, and current time tc
Ensure: A result whether the door is valid

1: get the current GIT and its corresponding cp for time tc
2: tarr← tc + dist/velocity
3: if tarr > Find_Next_Checkpoint(cp,T) then
4: (cp∗,G′IT)← Graph_Update(tarr,T)
5: (cp,GIT)← (cp∗,G′IT)
6: return true

Compared to the search using the synchronous check, the search using the asyn-
chronous check involves reduced versions of IT-GRAPH in the outward expansion
(lines 18–34 in Algorithm 7), thus pruning some impossibly opening doors in advance
and reducing the costs of checking temporal variations.

In general, the two searches are suitable for different scenarios. The search using
the synchronous check can deal with improvised variations, e.g., when a fire happens

132

C.4. ITSPQ using Temporal-Variation Index

in a building and some doors close urgently. The search using the asynchronous is
more suitable for the scenario where doors are opened and closed at fixed time points.
In this case, an asynchronous check saves more search costs without on-the-fly han-
dling of ATIs. These two searches are experimentally compared in Section C.5.1.

C.4 ITSPQ using Temporal-Variation Index
In Section C.4.1, we present the indoor temporal-variation index (IT-INDEX) that
organizes indoor partitions into a tree structure based on indoor topology. The in-
door topology here refers to physical layout only and does not involve temporal vari-
ations and directionality of doors. Subsequently, we present a query processing algo-
rithm based on IT-INDEX in Section C.4.2. Finally, we analyze the complexity for all
ITSPQ approaches in Section C.4.3.

C.4.1 Indoor Temporal-Variation Index

(doors)

d1→d7

d1

d6
d7

N7 N8

N9

v1, v2, v3,

v6

d3, d5,

d7

N1

v4, v5, v7,

v8

d5, d9

N2

v9, v10

d9, d13,

d14

N3

d3, d7,

d13 , d14

v16, v17

d3, d17

N4

v14, v15

d11, d15,

d18

N5

v11, v12,

v13

d7, d14, d15
d17, d18

N6

d3, d7,

d11, d14

d11, d13

Doors and Life Interval Shortest Distance

and Path

(d1, d7, (22:29:51, 24:00:00)) null

(d1, d7, [5:59:51, 22:29:51)) (16, (d1, d3, d7))

(d1, d7, [0:00:00, 5:59:51)) null

…

Information in Cube (N1)

0: 00

24: 00

d7 d6 d5 d3 d2 d1

(time)

(doors)

(a) Tree Structure (b) Distance Cube for N1

…

Fig. C.4: Indoor Temporal-Variation Index

Considering indoor topology, we find that a valid shortest path should never go
through public partitions with only one door (except the partitions that contain ps

and/or pt). Therefore, we further differentiate partitions into two types for indexing
use. In particular, impassable partitions include all private partitions and those public
partitions with only one door. In contrast, passable partitions are public partitions
with two or more doors. Referring to Fig. C.1, the private partition v1 and the one-
door public partition v2 are both impassable partitions, whereas v3 and v11 are passable
partitions.

We proceed to present the structure of IT-INDEX. In particular, a set of topologi-
cally interconnected partitions form a leaf node, and a set of interconnected leaf nodes
further form a non-leaf node. The non-leaf nodes are hierarchically merged to form
a non-leaf node at a higher level until one root node at the highest level is formed.
Corresponding to Fig. C.1, the tree structure of IT-INDEX is illustrated in Fig. C.4(a).

In IT-INDEX, each leaf node Ni maintains a set of access doors [9]. Based on
door directionality, we distinguish enterable access doors and leavable access doors
for Ni, the doors through which one can enter and leave Ni, respectively. A non-leaf
node maintains the pointers for its access doors. It can be shown that the children of

133

Paper C.

a non-leaf node are interconnected by the access doors of its children. We omit the
proof due to the page limit.

The tree construction of IT-INDEX follows the same overall procedure of IP-
tree [9]. However, as a special rule, each leaf node in IT-INDEX must contain at
least one passable partition. This rule guarantees that any partition in a leaf node can
be physically reached (without considering temporal variations and door directional-
ity) via a passable partition that connects to it in that node. Moreover, as a leaf node
maintains the shortest distance information for each pair of doors in it, the shortest
distance computation will be complicated if a leaf node contains too many passable
partitions with multiple public doors. Therefore, we set another rule that only one of
the passable partitions in a leaf node can have more than k public doors. We chose
k = 4 in our implementation according to the evaluation in previous work [9].

Example C.4.1 (An Example of IT-INDEX)
Referring to the tree structure in Fig. C.4(a) that corresponds to the example in
Fig. C.1, four interconnected partitions v1, v2, v3, v6 form a leaf node N1 and the
access doors of N1 are d3,d5,d7. Particularly, N1 connects to another leaf node N2
via the access door d5. Note that d5 is also an access door for N2. Moreover, d3 is a
leavable access door for N1 due to its door directionality. Three interconnected leaf
nodes N1, N2, and N3 form a non-leaf node N7. N7’s access doors to its outside, i.e.,
d3,d7,d13,d14, are stored.

Each tree node also maintains a three-dimensional structure called distance cube
to store the shortest path information relevant to that node. One dimension of the cube
refers to time and the other two refer to doors. Specifically, we use a 3-tuple (di, d j,
L) to denote the index of a distance cube, where di,d j are two doors, and L is a life
interval during which the shortest path is valid (considering temporal variation). The
value in each cell indexed by (di, d j, L) is denoted as (dist, φ), where φ = (di, . . . ,d j)
is the shortest path from di to d j within the life interval L and dist is corresponding
path distance. The shortest path here conforms to our rule that one can not pass any
private door. An example of distance cube for Ni in the tree is depicted in Fig. C.4(b).
Given the door pair of d1 and d7, the shortest path information is divided into three
parts due to the temporal variation of doors. For example, the second record in the
table indicates that the shortest path from d1 to d7 during the life interval [5:59:51,
22:29:51) is (d1,d3,d7) and its path length is 16m. Compared to IP-tree [9], IT-INDEX

maintains semantic properties and temporal variations of indoor entities, together with
the distance cube that keeps the shortest distance information with respect to temporal
variations. Next, we detail the construction of distance cube.

Construction of Distance Cube. Algorithm 11 constructs the distance cube DC
(initialized in line 1) for a leaf node Ni by calling a function Cell_Build to compute
the shortest path for each pair of an access door and a door in Ni (lines 2–4). Note
that we do not need to keep the shortest path for a pair of non-access doors. If Ni is a

134

C.4. ITSPQ using Temporal-Variation Index

Algorithm 11 Cube_Build(Ni)
Require: A node Ni
Ensure: The distance cube for node Ni

1: initialize cube DC : (door×door× [ts, te])→ (dist,φ)
2: for each access door di ∈ Ni do
3: for each door dk ∈ Ni do
4: Cell_Build(di, dk, DC); Cell_Build(dk, di, DC)
5: function Cell_Build(ds, dt , DC)
6: t1← 0; t2← 0
7: while t2 < 24:00 do
8: initialize a min-heap H; initialize set R←∅
9: for each door di ∈ πD(GIT .E) do

10: if di 6= ds then
11: di.dist← ∞; di.tarr← ∞, di.tl ← ∞

12: else
13: di.dist← 0; di.tarr← t1; di.tl ← t1
14: enheap(H,〈di,di.dist〉)
15: while H is not empty do
16: 〈di,di.dist〉 ← deheap(H)
17: if di.dist = ∞ then
18: t2← min(R); DC[ds,dt , [t1, t2)]← (null,∞)
19: break
20: if di = dt then
21: φ ← concatenate shortest paths from ds to di
22: t2← di.tl
23: DC[ds,dt , [t1, t2)]← (di.dist,φ)
24: break
25: mark di as visited
26: if di.tarr /∈ di.ATIs then
27: to← Get_Next_Open_Time(di,di.tarr)
28: R.add(to−di.dist/velocity)
29: continue
30: for each partition v ∈ D2PA(di) do
31: if di 6= dt and v.d−type is PRD then continue
32: for each unvisited door d j ∈ P2D@(v) do
33: if di.dist+DM(v,di,d j) < d j.dist then
34: d j.dist← di.dist+DM(v,di,d j)
35: d j.tarr← DM(v,di,d j)/velocity+ di.tarr
36: if d j .tarr /∈ d j.ATIs then d j.tl ← di.tl
37: else
38: tc← Get_Next_Close_Time(d j,d j.tarr)
39: d j.tl ← min(tc−d j.dist/velocity,di.tl)

40: enheap(H,〈d j,d j.dist〉)
41: t1← t2

135

Paper C.

non-leaf node, the shortest path is computed for each pair of access doors of Ni’s child
nodes instead.

Function Cell_Build (lines 5–41) updates DC for a door pair (ds,dt) by going
through the time range using two variables t1 and t2 (lines 6–7 and 41). In particular,
a min-heap H is initialized by inserting each door di in IT-GRAPH (line 8), and each
di is associated with a shortest distance di.dist from ds to di, an arrival time tarr to
get to di, and a latest departure time tl from ds at which one can get to di (lines 9–
13). H is prioritized according to di.dist (line 14). A set R is also initialized to keep
the next earliest open timestamps of close doors. The function then iterates through
each di deheaped from H. If di’s shortest distance from ds is infinity, the end time
t2 is obtained as the current minimum timestamp in R, and the path from ds to pt

during the life interval [t1, t2) is set to null (lines 17–19). If di equals pt , the function
constructs the shortest path φ in the same way as does the counterpart (see lines 12–
16) of Algorithm 7, setting t2 as the lastest departure time of di, and updates DC with φ

in the life interval [t1, t2) (lines 20-24). If di is closed when a path reaches it (line 26),
the function obtains the next open time to of di, computes the earliest time at which
one can reach di from ds, i.e., to−di.dist/velocity, and adds it to the set R (lines 26–
29). Otherwise, the function goes through each enterable partition v of di and finds
the next unvisited door d j (lines 30–32). The latest departure time tl of d j is updated
in two different cases: If d j is closed when a path gets to it, tl of d j should be the same
as its previous-hop door di (line 36). Otherwise, tl of d j is obtained as the earlier one
between the latest time to get to d j before d j closes and the lastest departure time of
di (lines 37–39).

C.4.2 IT-INDEX based ITSPQ Processing

Fig. C.5 illustrates the three different methods introduced in this paper, including the
aforementioned two methods based on IT-GRAPH (i.e., ITG/S using synchronous
check and ITG/A using asynchronous check) and ITI to be detailed in this section.

ITSPQ

Get_Dist_S2N()
(Algorithm 7)

Get_Dist_D2E()
(Algorithm 8)

ITSPQ_ITIndex
(Algorithm 6)

Syn_Check()
(Algorithm 2)

Graph_Update()
(Algorithm 3)

Asyn_Check()
(Algorithm 4)

ITSPQ_ITGraph
(Algorithm 1)

TV_Check() instantiated

Method 1: ITG/S

Method 2: ITG/A

Method 3: ITI

IT-Graph

IT-Index

Cube_Build()
(Algorithm 5)

Fig. C.5: Different Methods for ITSPQ Processing

The overall framework of ITI is given in Algorithm 12. It first searches IT-INDEX

IndexIT for the lowest common ancestor NLCA for the points ps and pt (line 1). Next,

136

C.4. ITSPQ using Temporal-Variation Index

it obtains two children of NLCA, namely Ns the ancestor of Leaf(ps) and Nt the ances-
tor of Leaf(pt) (lines 2–3). Two variables dist∗ and path∗ are initialized to keep the
shortest distance and path found so far (line 4). It then calls a function Get_Dist_S2N
to compute the shortest paths from ps to each leavable access door of Ns (line 5).
Afterwards, it iterates through each such leavable access door di and checks its tem-
poral variation and semantic properties (line 8). For each qualified di, it computes
the shortest distance from di to each enterable access door of Nt , using the distance
cube maintained at NLCA (line 9–10). For each qualified d j (line 11), it computes the
shortest distance from d j to pt by calling a function Get_Dist_D2E (line 9–10). Con-
sequently, the shortest distance dist from ps to pt through di and d j is computed as the
sum of the shortest distances of ps → di, di → d j and d j → pt (line 13). It updates
the shortest path path∗ if the current distance dist is smaller than dist∗ (lines 14–17).
Finally, it returns the path∗ when the loop is complete. Next, we detail functions
Get_Dist_S2N and Get_Dist_D2E, respectively.

Algorithm 12 ITSPQ_Index(ps, pt , t, IndexIT)

Require: Start point ps, target point pt , query time t, and IndexIT
Ensure: The valid shortest path from ps to pt at t

1: NLCA← LCA(Leaf(ps),Leaf(pt)) in IndexIT
2: Ns← children of NLCA ∩ ancestors of Leaf(ps)
3: Nt ← children of NLCA ∩ ancestors of Leaf(pt)
4: dist∗← ∞; path∗← null
5: S2N← Get_Dist_S2N(ps, Ns, t)
6: for di ∈ AD@(Ns) do
7: ∆t1← S2N[di]/velocity+ t
8: if ∆t1 6∈ di.ATIs or di.d-type is PRD then continue
9: for d j ∈ ADA(Nt) do

10: ∆t2← NLCA.DC[di,d j,∆t1]/velocity+∆t1
11: if ∆t2 6∈ d j.ATIs or d j.d-type is PRD then continue
12: d2e← Get_Dist_D2E(d j, pt , t +∆t2)
13: dist← S2N[di]+NLCA.DC[di,d j,∆t1]+ d2e
14: if dist < dist∗ then
15: dist∗← dist
16: path∗← concatenate shortest paths of
17: ps→ di, di→ d j and d j→ pt

18: return path∗

Get_Dist_S2N (Algorithm 13) returns an array S2N (initialized in line 1) that
keeps the shortest distance from a point s to each leavable access door of Ns at a
current time tc. The algorithm finds the shortest distance from s to Ns towards the root
node by using variables Nc and PNc (lines 2–3 and 12). Here, Nc is the current node
in process and PNc is Nc’s parent node to be processed next. For each Nc, we obtain
a candidate leavable access door set CAD@(Nc) by removing those unqualified doors

137

Paper C.

in its leavable access door set AD@(Nc). If the time at which one reaches a leavable
access door di is not in the ATIs of di, di should be removed (line 7). Here, TSD(s,d, tc)
is a time-dependent shortest distance function that returns the shortest distance from a
point pt (either the point s or an access door) to an access door d with respect to current
time tc. Its details are to be given shortly. If di is a private door and is not the first
door when one leaves the partition containing s, di should also be removed (line 8).
Afterwards, the algorithm iterates over each leavable access door d in the parent node
PNc (lines 9–11). It marks d as processed and computes its shortest distance from s.
If d is a door in CAD@(Nc), it records the shortest distance in S2N accordingly.

Algorithm 13 Get_Dist_S2N(s, Ns, tc)

Require: A point s, a node Ns, and current time tc
Ensure: The shortest distance from s to Ns at tc

1: initialize an array S2N : door→ dist
2: Nc← Leaf(s)
3: PNc← the parent node of Leaf(s)
4: while Nc 6= Ns do
5: CAD@(Nc)← AD@(Nc)
6: for di in AD@(Nc) do
7: if TSD(s,di, tc)/velocity+ tc 6∈ di.ATIs then CAD@(Nc) \di

8: if di.d-type is PRD and di 6∈ P2D(P(s)) then CAD@(Nc) \di

9: for each unmarked d ∈ AD@(PNc) do
10: mark d; compute TSD(s,d, tc)
11: if d ∈ AD@(Ns) then S2N[d]← TSD(s,d, tc)
12: Nc← PNc; PNc← the parent node of PNc

13: return S2N
14: function TSD(pt, d, tc)
15: return the cached result if computed
16: Nd ← d’s current corresponding node
17: if pt is a door then return Nd .DC[pt,d, tc]
18: if Nd is a leaf node then
19: if d ∈ P(pt) then return |pt,d|E
20: else
21: Do← obtain doors that one can leave P(pt) from pt at tc
22: if Do 6= ∅ then
23: return mind j∈Do(|pt,d j|E +TSD(d j,d, tc))
24: else
25: return ∞

26: else
27: CNd ← Nd’s child node that contains pt
28: return mind j∈CAD@(CNd)

(
TSD(pt,d j, tc)+TSD(d j,d, tc)

)
Function TSD (lines 14–28) computes the shortest distance as follows. If the dis-

138

C.4. ITSPQ using Temporal-Variation Index

tance was previously computed, it just returns the cached result (line 15). If pt is a
door, it obtains the corresponding node Nd of d (line 16), and directly obtains the
shortest distance from pt to d from the distance cube (line 17). Otherwise, pt is a
point. Two different cases are discussed. If Nd is a leaf node that means pt and d are
in the same leaf node. In such a case, it returns the Euclidean distance between pt and
d if they are in the same partition (line 19). If pt and d are not in the same partition,
TSD first validates each possible door of the current partition if the door is still open
when one gets it from pt, and then adds the valid ones in a set Do. If Do is not empty,
the shortest distance is computed as the minimum of the sum of the distance from pt
to a door d j ∈ Do and TSD(d j,d, tc). Otherwise, the shortest distance is returned as ∞.
If Nd is a non-leaf node (line 26), we decompose the shortest distance into two parts:
one from pt to an access door d j in Nd’s child node, and the other from d j to d. Both
parts are recursively computed by calling TSD (lines 27–28). In our implementation,
we keep and share all intermediate results in the recursive calling of TSD to speed up
the overall distance computation.

Algorithm 14 Get_Dist_D2E(d, e, tc)
Require: A point s, a point e, and current time tc
Ensure: The shortest distance from d to e at tc

1: Nc← children of Nt ∩ ancestors of Leaf(e)
2: CNc← children of Nc ∩ ancestors of Leaf(e)
3: while CNc 6= Leaf(e) do
4: for di ∈ ADA(Nc) do
5: if TSD2(d,di, tc)/velocity+ tc /∈ di.ATIs or di.d-type is PRD then
6: CAD@(Nc) \di

7: for each unmarked d j ∈ ADA(CNc) do
8: mark d j; TSD2(d,d j, tc)

9: Nc← CNc; CNc← children of CNc and ancestors of Leaf(e)
10: return TSD2(d, e, tc)
11: function TSD2(d, pt, tc)
12: return the cached result if computed
13: Nd ← d’s corresponding node
14: if pt is a door then return Nd .DC[d,pt, tc]
15: if Nd is a leaf node then
16: if d ∈ P(pt) then return |d,pt|E
17: else
18: Do← obtain doors that one can enter P(pt) from d at tc
19: if Do 6= ∅ then
20: return mind j∈Do (TSD2(d,d j, tc)+ |d j,pt|E)
21: else
22: return ∞

23: else
24: CNd ← Nd’s child node that contains pt
25: return mind j∈CADA(CNd)

(
TSD2(d,d j, tc)+TSD2(d j,pt, tc)

)

139

Paper C.

Get_Dist_D2E (Algorithm 14) returns the shortest distance (line 10) from an ac-
cess door d of Nt to a point e for a current time tc. The idea here is similar to that
of Algorithm 13. The difference is that it starts from the current door d and searches
in the direction towards the terminal point e. At the beginning, the current node Nc

is set to Nt ’s child node that contains Leaf(e), and CNc is set to Nc’s child node that
contains Leaf(e) (lines 1–2). In each step of processing Nc, each leavable access door
di of Nc is checked if it is closed upon arrival or it is a private door (lines 4–6), and
each enterable access door d j of CNc is processed to compute the shortest distance
from d to d j. By iteratively computing and caching the distances between the leavable
access doors of Nc and the enterable access doors of CNc, the algorithm can finally
return the distance from d to e in a recursive manner (line 10).

Function TSD2 (lines 11–25) computes the shortest distance from an access door
d to a point pt (either an access door or a point e) with respect to current time tc. Its
processing is similar to TSD in Algorithm 13 but the direction is reversed such that the
search starts from a door to a point in the leaf node.

Note that Algorithms 13 and 14 only compute the shortest distance, whereas the
corresponding shortest path can also be constructed by keeping the last hop of each
visited door. We omit the details due to the page limit.

Example C.4.2 (An Example of IT-INDEX based ITSPQ Processing)
Assuming the same ITSPQ from p1 to p2 as in Example C.3.1, we first find the
host nodes of p1 and p2 in IT-INDEX, i.e., N1 and N6, respectively. Second, we find
NLCA of N1 and N6 as N9, and then find the children of N9, i.e., N7 (the ancestor of
N1) and N8 (the ancestor of N6). Third, we find the paths from p1 to each available
access door of N7, i.e., (p1, d3) with length 7m, (p1, d5, d9, d13) with length 19m,
and (p1, d5, d9, d14) with length 22m. We do not consider (p1, d6, d7) as it goes
through a private partition v6. Fourth, we find all paths from one available access
door of N8 to p2, i.e, (d3, p2) with length 7m, (d7, p2) with length 2m, (d14, p2)
with length 13m, and (d11, d18, p2) with length 13m. Finally, we concatenate each
path found in the third step and each path found in the fourth step. As a result, we
return (p1, d3, p2) with the shortest overall length 14m.

C.4.3 Complexity Analysis

Let V be the total partition number, D the total door number, Vo the number of open
partitions at a time point, Do the number of open doors at a time point, d the average
door number per partition, and w the average number of doors on a shortest path. Let f
be the fan-out of IT-INDEX nodes, L the number of leaf nodes, ρ the average number
of access doors per node, and T the average number of life intervals per door.

The space complexity of IT-GRAPH is O(V+Vd+Vd2+D) = O(Vd2). The space
complexity of IT-INDEX is O(ρDT)+ (ρf)2LT). Specifically, O(ρDT) captures the

140

C.5. Experimental Studies

space cost of the distance cubes in leaf nodes, whereas O((ρf)2LT) is that of the
distance cubes in non-leaf nodes. For a non-leaf node, ρf corresponds to the number
of access doors from a child node and L reflects the number of non-leaf nodes.

The time complexity of ITG/S is O(V log D+w). It consists of the distance com-
puting cost O(V log D) and the cost of backtracking the shortest path in w hops. The
time complexity of ITG/A is generally O(Vo log Do + w). The difference between
ITG/S and ITG/A is that ITG/A only considers the open doors/partitions in the cur-
rent reduced graph instance. The time complexity of ITI is O(ρ2 logf L+ w logf L).
Specifically, O(ρ2 logf L) refers to the cost of searching for the lowest common an-
cestor and finding a pair of access doors from that ancestor node, and O(w logf L)
refers to the cost of constructing the shortest path.

C.5 Experimental Studies
Using both synthetic and real data, we evaluate the cost of constructing IT-INDEX

(see Section C.4.1) and the search efficiency of our proposed methods ITG/S, ITG/A
and ITI (see Fig. C.5). All experiments are implemented in Java and run on a PC with
a 2.30GHz Intel i5 CPU and 16 GB memory.

C.5.1 Results on Synthetic Data

Settings

Indoor Space. Based on a real-world floorplan [12], we generate a multi-floor indoor
space where each floor takes 1368m× 1368m. The irregular hallways are decomposed
into smaller but regular partitions2. As a result, we obtain 141 partitions and 224 (vir-
tual) doors that connect these partitions. We treat each room partition in the floorplan
as a private partition and each hallway or staircase partition as a public partition. Con-
sequently, on each floor, we have 53 public partitions and 88 private partitions. We
duplicate the floorplan 3, 5, 7, 9 or 11 times to simulate different indoor spaces. Ev-
ery two adjacent floors are connected by four staircases, each having a stairway 20m
long. In the default setting, we use a 7-floor indoor space with 987 partitions and 1568
doors.

Temporal Variations. We generate the ATIs for each door as follows. First, we
crawl the online shop information of five shopping malls in Hong Kong, China, and
parse the open and close times of those shops. We select random pairs of open time
and close time to form the checkpoint set T in size of 4, 8, 12, or 16. We then select a
temporal door ratio (TDR) (20%, 40%, 60%, 80% or 100%) of doors to be the varied
doors that open and close from time to time. For each such temporally varying door,
we assign it with up to three ATIs, each corresponding to a pair of open time and close
time selected from T . The remaining doors are always open.

2The decomposition algorithm is given in [8].

141

Paper C.

Query Instances. Given a parameter s2t that controls the indoor distance from
the start point ps to the target point pt , we generate query instances of ITSPQ(ps, pt ,
t) as follows. First, we randomly select a point ps from the indoor space. Second, we
find a door d whose indoor distance to ps approximates s2t. Then, we expand from d
to find a random point pt whose indoor distance to ps approaches s2t. For each setting
of s2t, we generate five pairs of ps and pt to form the query instances. In each query
instance, query time t is fixed to 12:00 to make a fair comparison. We also study the
effect of using different values of t in query processing. The results are to be reported
in Section C.5.1. Table C.3 lists the parameter settings in our experiments, where the
default values are shown in bold.

Table C.3: Parameter Settings for Synthetic Data
Parameters Settings
Floor Number 3, 5, 7, 9, 11
|T | 4, 8, 12, 16
TDR (% of varied doors) 20%, 40%, 60%, 80%, 100%
s2t (m) 1100, 1300, 1500, 1700, 1900
t 0:00, 2:00, . . . , 12:00, . . . , 22:00

Baseline Method. We use a general temporal graph (GTG) [13–16] to form a
baseline. Each vertex in GTG represents a door labeled with door type and active time
intervals, and the weight of each edge is the distance between two doors. This way
results in many door-to-door edges for the same partition and leads to large size of the
graph. We adapt the synchronous check to GTG.3 We may capture door directionality
in a GTG’s node as partition pairs, each implying that one can leave a partition to
enter the other via the corresponding door. As this leads to considerably more space
cost and search time cost, we assume all doors are bidirectional in the comparative
experiments.

Performance Metrics. For IT-INDEX, we measure its construction time and in-
dex size. To compare the efficiency of different search algorithms, we run each query
instance ten times, and measure the average running time, memory cost, and the num-
ber of door visits (NDV) per run of a single query instance.

Cost of Index Construction

In the default parameter setting, IT-GRAPH can be built within 310 ms and its size is
around 3.5 MB, while IT-INDEX can be built within 30 minutes and its size is around
7 MB. The main cost of constructing IT-INDEX results from building the distance
cubes associated with its tree nodes. Next, we vary and test different parameters in the
performance evaluation of IT-INDEX construction. As the construction of IT-GRAPH

is relatively steady in different parameter settings, we omit its evaluation result.
3Our preliminary experiments found that the difference of the searches using synchronous and asyn-

chronous checks on GTG is similar to that on ITG. Therefore, we omit the GTG variant using asynchronous
check.

142

C.5. Experimental Studies

Effect of Number of Floors. We vary the number of floors and report the cor-
responding construction time and index size in Figs. C.6(a) and C.6(b), respectively.
When the number of floors increases, more doors and partitions will be involved in the
indoor space. On the one hand, more partitions lead to more nodes in the tree structure
of IT-INDEX. On the other hand, the number of doors contained by a tree node will
also increase, which results in more time and space consumption for maintaining the
distance cube of the tree node. Because of these two factors, both index construction
time and index size increase steadily with an increasing number of floors. Neverthe-
less, when the number of floors increases to 11, the size of IT-INDEX is only 16.1 MB
and the time of index construction is around 7.65 hours.

3 5 7 9 11
10

5

10
6

10
7

C
o
n
s
tr

u
c
ti
o
n

T
im

e
(m

s
.)

FloorNumber

(a) Time vs. Floor

3 5 7 9 11
0

3

6

9

12

15

18

In
d
e
x

S
iz

e
(M

B
.)

FloorNumber

(b) Size vs. Floor

Fig. C.6: Effect of Number of Floors

Effect of |T |. With other parameters fixed to default, we vary the checkpoint set
size of T and report the time cost and size of the index construction in Figs. C.7(a)
and C.7(b), respectively. Clearly, both IT-INDEX’s time and space consumption in-
crease moderately when |T | increases. A larger |T | results in more diversified door
ATIs and more active temporal variations of indoor topology. In such a case, the
construction of a distance cube may need to involve more life intervals on its time
dimension, incurring larger memory cost and corresponding computation time. How-
ever, this trend flattens when |T | grows at 12. At this point, the distance cube has
maintained enough life interval information, and therefore increasing the number of
checkpoints in T will not bring a significant lift in the index construction costs. For a
large |T |= 16, IT-INDEX of 7.4 MB can be built within 1.25 hours.

Effect of TDR. We also measure the time and memory costs of the index con-
struction for different values of TDR. Referring to Fig. C.8(a), the index construction
time is insensitive to an increasing TDR. Since the doors with temporal variations
are randomly picked out from the space, the topology in a local range is not signifi-
cantly affected by an increasing TDR. As the index is constructed based on the shortest
path search within each local node, the construction time only changes slightly. On
the other hand, the index size in Fig. C.8(b) increases first and then decreases when
TDR becomes larger. In the beginning, the increase in TDR diversifies the temporal
variations of doors. Consequently, the number of life intervals in the distance cube

143

Paper C.

4 8 12 16
10

5

10
6

10
7

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

m
s
.)

|T|

(a) Time vs. T

4 8 12 16
4

5

6

7

8

In
d
e
x
 S

iz
e
 (

M
B

.)

|T|

(b) Size vs. T

Fig. C.7: Effect of |T |

increases. When the TDR is increased at a large rate, doors may open and close more
frequently at different times, resulting in that more pairs of doors in the distance cube
correspond to empty records. Therefore, the index size decreases instead when TDR
is larger than 60%.

20 40 60 80 100
10

5

10
6

10
7

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

m
s
.)

TDR (%)

(a) Time vs. TDR

20 40 60 80 100
4

5

6

7

8

In
d
e
x
 S

iz
e
 (

M
B

.)

TDR (%)

(b) Size vs. TDR

Fig. C.8: Effect of TDR

Summary. Overall, the index construction time and index size increase when the
floor number and |T | increase. However, the index construction cost is insensitive to
the ratio of doors with temporal variations. The index size is sometimes even reduced
when most doors are associated with temporal variations. These findings disclose that
our IT-INDEX design is effective at indexing indoor venues with temporal variations.

Efficiency of Search Methods

We investigate the search time and memory cost of our proposed methods (ITG/S,
ITG/A, and ITI) and the baseline method (GTG) under different parameter settings.

Effect of Number of Floors. Referring to Fig. C.9(a), GTG is the slowest due to
its large graph size, whereas ITI always outperforms the others by an order of mag-
nitude. Compared to its alternatives that iterate on the IT-GRAPH for the shortest

144

C.5. Experimental Studies

path search, ITI can quickly construct a set of local shortest paths stored in the rel-
evant distance cubes of IT-INDEX. The precomputed results in IT-INDEX help re-
duce the overhead of the online search even when involving dynamic indoor topology
changes. When the floor number increases, the search time of ITI only increases
slightly, whereas that of ITG/S and ITG/A increases very rapidly. A larger floor
number leads to more partitions and doors in a more complex IT-GRAPH structure,
thus incurring more execution time for the two methods to explore the next hop door
based on graph topology. In contrast, ITI only needs to search IT-GRAPH for a small
number of path junctions (i.e., the access doors) when necessary. The explanation
also applies to the trends of different methods’ NDVs reported in Fig. C.9(c). Refer-
ring to the memory consumption in Fig. C.9(b), ITI uses the least memory because it
does not require additional memory space for graph search. When the floor number
is up to 5, the memory cost of ITG/A is slightly higher than that of ITG/S as ITG/A
needs to maintain multiple versions of IT-GRAPH corresponding to different check-
points. However, when the floor is greater than 5, ITG/A’s memory cost is smaller
than ITG/S’s because ITG/S has to search a much more complex complete graph in
this case. GTG requires more memory than ITG/S and ITG/A because it visits more
doors (i.e., nodes in its graph).

3 5 7 9 11
10

3

10
4

10
5

ITG/S

ITG/A

ITI

GTG

S
e
a
rc

h
T

im
e

(u
s
.)

FloorNumber

(a) Time vs. Floor

3 5 7 9 11
0

500

1000

1500

2000

M
e
m
o
ry
C
o
s
t
(K
B
.)

FloorNumber

ITG/S

ITG/A

ITI

GTG

(b) Memory vs. Floor

3 5 7 9 11
0

4k

8k

12k

16k

20k

N
u
m

b
e
r

o
f

D
o
o
r

V
is

it
s

FloorNumber

ITG/S

ITG/A

ITI

GTG

(c) NDV vs. Floor

Fig. C.9: Effect of Number of Floors

Effect of |T |. Referring to Fig. C.10(a), the search time of each method is insen-
sitive to |T | when query time t is fixed to 12:00, a time nearly all doors in the space
are open. In such a case, adding more checkpoints to T has little impact on the graph
topology at query time. We add a group of tests with t fixed to 9:00. At this time, vary-
ing |T | makes the size of active doors different, impacting the cost of graph search.
Nevertheless, ITI still outperforms the other two by an order of magnitude. Referring
to Fig. C.10(b), the memory cost of ITI is stable whenever at 12:00 or 9:00. When |T |
is 4, ITI cost more memory than ITG/S and ITG/A at 9:00. In this setting, there is
nearly no route for the query instances at 9:00 with many doors closed, so ITG/S and
ITG/A cost a few memory, whereas ITI stores the distance cube which leads to more
memory cost than others. The NDV in Fig. C.10(c) exhibit trends consistent with
those in the search time reported in Fig. C.10(a). Our experiments show that GTG al-
ways performs the worst when varying |T |. We exclude GTG in Figs. C.10(a), C.10(b)

145

Paper C.

and C.10(c) to avoid distraction.

4 8 12 16
10

2

10
3

10
4

10
5

ITI(t=12) ITI(t=9)

ITG/A(t=12) ITG/A(t=9)

ITG/S(t=12) ITG/S(t=9)

S
e
a
rc

h
T

im
e

(u
s
.)

|T|

(a) Time vs. T

4 8 12 16
0

500

1000

1500

2000
ITG/S(t=12) ITG/S(t=9)

ITG/A(t=12) ITG/A(t=9)

ITI(t=12) ITI(t=9)

M
e
m
o
ry
C
o
s
t
(K
B
.)

|T|

(b) Memory vs. T

4 8 12 16
0

1k

2k

3k

4k

5k

6k

ITG/S(t=12) ITG/S(t=9)

ITG/A(t=12) ITG/A(t=9)

ITI(t=12) ITI(t=9)

N
u
m

b
e
r

o
f
D

o
o
r

V
is

it
s

|T|

(c) NDV vs. T

Fig. C.10: Effect of |T |

Effect of TDR. Referring to Figs. C.11(a) and C.11(c), the search time and NVD
of each method are stable for t = 12:00 in different settings of TDR. Compared to
the testing for t = 12:00, the search time and NVD for t = 9:00 decline because the
topology are reduced. When TDR increases to 80%, there is nearly no routes for the
query instances because more door are closed. In this case, ITG/A costs less time
than ITG/S due to reduced topology. Still, ITI performs best in terms of the search
time and NVD whenever at 12:00 and 9:00. Referring to Fig. C.11(b), ITI’s memory
cost is less than ITG/S and ITG/A. However, when TDR = 80% or 100% at 9:00, ITI
costs more memory than others because it stores the distance cube, while ITG/S and
ITG/A just cost a few memory because it expands a few doors.

20 40 60 80 100
10

2

10
3

10
4

10
5

ITG/A(t=12) ITG/A(t=9)

ITI(t=12) ITI(t=9)

ITG/S(t=12)

ITG/S(t=9)

S
e
a
rc

h
T

im
e

(u
s
.)

TDR (%)

(a) Time vs. TDR

20 40 60 80 100
0

500

1000

1500

2000

M
e
m
o
ry
C
o
s
t
(K
B
.)

TDR (%)

ITG/S(t=12) ITG/S(t=9)

ITG/A(t=12) ITG/A(t=9)

ITI(t=12) ITI(t=9)

(b) Memory vs. TDR

20 40 60 80 100
0

2k

4k

6k

ITG/S(t=12) ITG/S(t=9)

ITG/A(t=12) ITG/A(t=9)

ITI(t=12) ITI(t=9)

N
u
m

b
e
r

o
f

D
o
o
r

V
is

it
s

TDR (%)

(c) NDV vs. TDR

Fig. C.11: Effect of TDR

Effect of s2t. When we increase s2t, each method’s search time increases slightly,
as shown in Fig. C.12(a). A similar trend is seen for the NVDs reported in Fig. C.12(b).
Nevertheless, ITI can still be several times faster than the other two, showing that the
IT-INDEX is very efficient in the shortest path search using the pre-stored door-to-door
information.

Effect of t. We also test the search methods’ performance at different query times
(t) in a day. Referring to Fig. C.13(a), the search time of each method increases before
t comes to 9:00 and then decreases when t is over 18:00. In our setting, a large number

146

C.5. Experimental Studies

1100 1300 1500 1700 1900
0

10k

20k

30k

40k

50k

60k

ITG/S ITI

ITG/A GTG

S
e
a
rc

h
T

im
e

(u
s
.)

s2t (m)

(a) Time vs. s2t

1100 1300 1500 1700 1900
0

4k

8k

12k

16k

ITG/S ITI

ITG/A GTG

N
u
m

b
e
r

o
f

D
o
o
r

V
is

it
s

s2t (m)

(b) NDV vs. s2t

Fig. C.12: Effect of s2t

of doors have been closed for the time before 9:00 or after 18:00, and the correspond-
ing graph, i.e., IT-GRAPH or GTG, becomes simpler due to the reduced temporal
variations. On the contrary, the graph structure becomes more complex when more
doors are open during the period from 12:00 to 15:00. A complex graph structure
costs ITG/A, ITG/S and GTG more time to search for accessible doors. The time cost
of ITI increases as well but more slowly, as it only searches for a small set of access
doors that connect the local shortest paths. Referring to Fig. C.13(b), ITI’s memory
cost before 9:00 is the highest as it needs to maintain an additional IT-INDEX. Be-
tween 12:00 and 15:00, the memory costs of all methods stay constant because nearly
all doors are open and the indoor topology is relatively stable. After 18:00, the mem-
ory costs of all methods decrease as the graph structure becomes simpler. Referring
to Fig. C.13(c), after 9:00, NDV grows rapidly for ITG/S and ITG/A, especially for
GTG because more doors are open. In contrast, ITI’s NDV only increases very slightly
as it only needs to explore several access doors during its search.

0 3 6 9 12 15 18 21
10

2

10
3

10
4

10
5

ITG/S ITI

ITG/A GTG

S
e
a
rc

h
T

im
e

(u
s
.)

t (o'clock)

(a) Time vs. t

0 3 6 9 12 15 18 21
0

500

1000

1500

M
e
m
o
ry
C
o
s
t
(K
B
.)

t (o'clock)

ITG/S

ITG/A

ITI

GTG

(b) Memory vs. t

0 3 6 9 12 15 18 21
0

3k

6k

9k

12k

15k

ITG/S

ITG/A

ITI

GTG

N
u
m

b
e
r

o
f

D
o
o
r

V
is

it
s

t (o'clock)

(c) NDV vs. t

Fig. C.13: Effect of t

Summary. In general, ITI always has the highest search efficiency with the aid
of IT-INDEX. It is faster than the other three by an order of magnitude in most tests.
The search time and memory cost of ITI increase slowly when the graph topology
becomes more complex, whereas those of ITG/S, ITG/A and GTG increase rapidly

147

Paper C.

as these methods rely heavily on the graph search. Moreover, GTG performs the worst
due to its large graph size.

Comparison of ITG/A and ITG/S

We scrutinize the difference between ITG/A and ITG/S. Two parameters in our setting
determines the number of close and open doors, namely the temporal door ratio TDR
and the checkpoint set size |T |. We use the control variates method, which stipulates
that T is an empty set such that all temporal doors controlled by TDR keep closed.
This reduces the fluctuation of query search time due to uneven distribution of ATIs.
As a result, we can analyze the impact of varying TDR on ITG/A and ITG/S.

We conduct the comparative experiments under the default settings and report the
results in Figs. C.14(a) and C.14(b). As we can see, both measures of ITG/A and
ITG/S decrease steadily with an increasing TDR. However, when TDR increases to
80%, i.e., 80% doors are closed at a query time, ITG/A shows great advantages over
ITG/S in both search time and memory consumption. In general, if there are many
doors with temporal variations in the space, ITG/A is more efficient because it in-
volves search in only several reduced graph instances maintained asynchronously,
without expensive on-the-fly door checks over the full topology graph. Therefore,
for usual scenarios without urgencies like a fire, we recommend ITG/A with asyn-
chronous checks.

0 20 40 60 80
0

10k

20k

30k

ITG/S

ITG/A

S
e
a
rc

h
T

im
e

(u
s
.)

TDR (%)

(a) Time vs. TDR

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200
ITG/S

ITG/A

M
e
m
o
ry
C
o
s
t
(K
B
.)

TDR (%)

(b) Memory vs. TDR

Fig. C.14: Comparison of ITG/A and ITG/S

C.5.2 Results on Real Data

We collect a dataset with real indoor topology and temporal variation information
from a seven-floor, 2700m × 2000m shopping mall in Hangzhou, China. There are
ten staircases in which each stairway between two adjacent floors is roughly 20m
long. In our setting, we treat all stores and equipment rooms as private partitions, and
hallways and staircases as public partitions. As a result, we obtain 497 private and
553 public partitions connected by 2093 doors. We set the default values of |T | and

148

C.5. Experimental Studies

4 8 12 16
12

14

16

18

In
d
e
x
 S

iz
e
 (

M
B

.)

|T|

(a) Size vs. T

20 40 60 80 100
10

12

14

16

In
d
e
x
 S

iz
e
 (

M
B

.)

TDR (%)

(b) Size vs. TDR

4 8 12 16

0

30k

60k

90k

ITG/S ITI

ITG/A GTG

S
e
a
rc

h
T

im
e

(u
s
.)

|T|

(c) Time vs. T

20 40 60 80 100
0

30k

60k

90k

ITG/S ITI

ITG/A GTG

S
e
a
rc

h
T

im
e

(u
s
.)

TDR (%)

(d) Time vs. TDR

0 3 6 9 12 15 18 21
10

2

10
3

10
4

10
5

ITG/S ITI

ITG/A GTGS
e
a
rc

h
T

im
e

(u
s
.)

t (o'clock)

(e) Time vs. t

Fig. C.15: Result on Real Data

TDR as 8 and 60%, respectively, according to the real-world use of the mall. It takes
around 3.53 hours to construct IT-INDEX in a size of 14.3 MB for the whole space.
We randomly select five pairs of ps and pt such that the distances between each pair
is roughly s2t = 1500m. The default query time t is fixed to 12:00.

Effect of |T | on Index Size. We modify the checkpoint set T by adding to or
removing pairs of open and close times from it. Fig. C.15(a) implies that the index
size increases moderately with a larger T . When |T | is 16, the size of IT-INDEX is
16.6 MB. The indoor space in the real data contains more doors and partitions. Thus,
the index size is larger than that in the synthetic data.

Effect of TDR on Index Size. We also modify the fraction of doors with temporal
variations in the real data from 20% to 100%. Referring to Fig. C.15(b), the results
are consistent with the counterparts reported in Fig. C.8(b). The index sizes increase
first as TDR increases. When TDR grows to a certain extent, the temporal variations
of doors tend to be consistent and less life interval information needs to be maintained
in the distance cubes.

Effect of |T | on Search Time. We also investigate different methods’ search
efficiency by varying |T |. The search time is reported Fig. C.15(c). ITI outperforms
others significantly, whereas GTG performs the worst in terms of the search time. The
search time of each method is insensitive to |T | as the queries are issued at 12:00, a
time nearly all doors are open.

Effect of TDR on Search Time. Referring to Fig. C.15(d), all methods’ search
time stays stable as a complete graph is used at default query time 12:00. ITI can

149

Paper C.

return the shortest path in less than 3ms, clearly outperforming its alternatives. Still,
GTG runs several times slower than the others.

Effect of t on Search Time. Referring to Fig. C.15(e), the search time of each
method increases before t comes to 9:00, stays stable until t comes to 18:00, and then
goes down after that. Note that the search time of ITI only increases slightly when
more doors are added to the graph structure (from 9:00 to 18:00). This indicates that
ITI is not significantly affected by the change of graph topology. Similar trend can be
seen in ITG/S, ITG/A and GTG, but GTG always needs more time than the others.

C.6 Related Work
Indoor Spatial Queries. Indoor spaces feature multiple entities like doors, walls,
and rooms, altogether forming a complex topology that complicates distance-aware
queries. Becker et al. [17] propose an indoor symbolic model with semantic descrip-
tions for indoor entities and study the route planning problem based on the proposed
model. Li et al. [18] propose a lattice-based semantic location model that keeps the se-
mantic relationships and distance in each location-exit lattice to support the navigation
in indoor spaces. Yuan et al. [19] propose a model to construct a wayfinding network
that is based on the geometry of the indoor space and that supports length-dependent
optimal routing. Goetz and Zipf [20] define a weighted indoor routing graph with se-
mantic information to create a detailed and user-adaptive model for route search. Lu et
al. [7] propose a distance-aware indoor space model and an indexing framework to fa-
cilitate distance-aware queries. To speed up distance-aware indoor path finding, Shao
et al. [9] design IP-tree and VIP-tree that enable more aggressive pruning. VIP-tree
also supports indoor trip planning based on neighbour expansion [3]. Luo et al. [21]
study the time-constrained sequenced route query (TCSRQ) in indoor space. The re-
sult of TCSRQ considers the stay-time period and types of indoor locations. Alamri
et al. [22] propose a cell-based index structure (C-tree) to group and manage updates
of indoor moving objects based on hop counts. As it does not support indoor walking
distances, C-tree cannot apply to the shortest path problem studied in this paper. Many
other indoor spatial queries [4, 8, 23, 24] such as range queries and kNN queries have
been also studied for indoor spaces. However, none of these works consider temporal
variation information associated with indoor entities, and thus they all fall short in
solving the problem studied in this paper.

Temporal Graph Queries. Temporal variations have been considered on graph
structure in which the connections between vertices are active at specific times [25].
Huo et al. [13] analyze and evaluate shortest-path queries on evolving social graphs.
Semertzidis et al. [14] study the historical reachability queries on evolving graphs. In
the same setting, Semertzidis et al. [15] study three general types of historical queries,
namely, historical graph queries, historical time queries and historical top-k queries.
Semertzidis et al. [26] use a compressed time neighbourhood and path index to find
the durable matches of an input pattern on the temporal graphs. Akiba et al. [27] study

150

C.7. Conclusion

the shortest-path distance queries on large time-evolving graphs by using two dynamic
indexing schemes. Huang et al. [16] investigate the properties of temporal DFS and
BFS, and propose efficient algorithms for route query in a temporal graph. Hirsch et
al. [28] propose a method for routing of information over dynamic communication
networks. These works, mainly oriented to social graphs or communication networks,
can support the shortest path query by setting the cost as the edge weight.

There are also some temporal graph queries specific to physical spaces. Ding
et al. [29] propose time-dependent algorithms to find the minimum-travel-time path
from a start point ps to an end point pe with the best departure time relative to the
current query time tc. Ardakani et al. [30] propose an adaptive approach to solve
the dynamic shortest path problem. In the same setting, Ardakani et al. [31] design
an A∗ algorithm using the decremental approach to speed up the shortest path query
processing in dynamic networks. Wei et al. [32] propose an efficient distance and path
oracle on dynamic road networks using the randomization technique.

However, these aforementioned techniques cannot resolve ITSPQ directly due to
two reasons. First, those social-graph oriented works [13–16, 26–28] do not support
the impact of travel time in the dynamic graph search, i.e., when an object arrives at a
node (a door in our setting) at a particular time, the node may already be invalid. As
a matter of fact, the existing techniques make use of a static snapshot of the evolving
graph for query processing. Second, none of the aforementioned techniques [29–32]
consider the indoor semantic information (e.g., private/public partitions and doors)
that further complicates the query processing. We might model the indoor building
as the aforementioned general temporal graph (time-evolving graph), i.e., all doors
are modeled as nodes labeled with type (private or public) and active time intervals,
and each edge is labeled with distance. However, this way falls short in our problem
setting. It fails to represent the door directionality information directly. Also, such
a general temporal graph results in many door-to-door edges for the same partition,
which will render the graph based search inefficient.

C.7 Conclusion
In this paper, we study the shortest path queries for indoor venues with temporal
variations. Given a start point ps, a target point pt , and a current time t, an indoor
temporal-variation aware shortest path query ITSPQ(ps, pt , t) returns the valid short-
est path from ps to pt . We present a set of techniques to answer ITSPQ efficiently.
First, we propose a graph structure (IT-GRAPH) that integrates the indoor temporal
variations of doors into the indoor topology and design a Dijkstra-based framework to
answer ITSPQ with IT-GRAPH. Under the framework, two different versions of al-
gorithms are devised to check doors accessibility synchronously and asynchronously.
Furthermore, we propose an index structure (IT-INDEX) that extends the state-of-the-
art index significantly by storing dynamic door-to-door distances in a compact dis-
tance cube associated with tree nodes. An IT-INDEX based algorithm is also devised

151

References

to answer ITSPQ. The extensive experiments demonstrate that our IT-INDEX based
method is the most efficient for processing ITSPQ as it materializes partial but critical
shortest distance information in the corresponding tree nodes.

For future work, it is relevant to consider allowing waiting times for the doors to
open while minimizing the total time to the destination. It is interesting to support
other practical issues such as service time and capacity of elevators. Also, it is useful
to support other query types (e.g., range query and distance-aware join) using our
indoor temporal-variation aware structures.

Acknowledgement
This work was supported by Independent Research Fund Denmark (No. 8022-00366B),
Australian Research Council (No. FT180100140 and DP180103411), Hong Kong
RGC Projects (No. 12200817 & C6030-18GF), and Guangdong Basic and Applied
Basic Research Foundation (No. 2019B1515130001).

References
[1] M. A. Cheema, “Indoor location-based services: challenges and opportunities,”

SIGSPATIAL Special, vol. 10, no. 2, pp. 10–17, 2018.

[2] H. Li, H. Lu, L. Shou, G. Chen, and K. Chen, “Finding most popular indoor
semantic locations using uncertain mobility data,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 31, no. 11, pp. 2108–2123, 2018.

[3] Z. Shao, M. A. Cheema, and D. Taniar, “Trip planning queries in indoor venues,”
The Computer Journal, vol. 61, no. 3, pp. 409–426, 2018.

[4] X. Xie, H. Lu, and T. B. Pedersen, “Distance-aware join for indoor moving ob-
jects,” IEEE Transactions on Knowledge and Data Engineering, vol. 2, no. 27,
pp. 428–442, 2015.

[5] H. Li, H. Lu, L. Shou, G. Chen, and K. Chen, “In search of indoor dense regions:
An approach using indoor positioning data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 8, pp. 1481–1495, 2018.

[6] Z. Feng, T. Liu, H. Li, H. Lu, L. Shou, and J. Xu, “Indoor top-k keyword-aware
routing query,” in 2020 IEEE 36th International Conference on Data Engineer-
ing (ICDE). IEEE, 2020, pp. 1213–1224.

[7] H. Lu, X. Cao, and C. S. Jensen, “A foundation for efficient indoor distance-
aware query processing,” in 2012 IEEE 28th International Conference on Data
Engineering. IEEE, 2012, pp. 438–449.

152

References

[8] X. Xie, H. Lu, and T. B. Pedersen, “Efficient distance-aware query evaluation on
indoor moving objects,” in 2013 IEEE 29th International Conference on Data
Engineering (ICDE). IEEE, 2013, pp. 434–445.

[9] Z. Shao, M. A. Cheema, D. Taniar, and H. Lu, “Vip-tree: an effective index for
indoor spatial queries,” Proceedings of the VLDB Endowment, vol. 10, no. 4, pp.
325–336, 2016.

[10] T. Liu, Z. Feng, H. Li, H. Lu, M. A. Cheema, H. Cheng, and J. Xu, “Shortest
path queries for indoor venues with temporal variations,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 2020, pp. 2014–
2017.

[11] https://en.wikipedia.org/wiki/Walking.

[12] https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406.

[13] W. Huo and V. J. Tsotras, “Efficient temporal shortest path queries on evolving
social graphs,” in Proceedings of the 26th International Conference on Scientific
and Statistical Database Management, 2014, pp. 1–4.

[14] K. Semertzidis, E. Pitoura, and K. Lillis, “Timereach: Historical reachability
queries on evolving graphs.” in EDBT, vol. 15, 2015, pp. 121–132.

[15] K. Semertzidis and E. Pitoura, “Time traveling in graphs using a graph database.”
in EDBT/ICDT Workshops, 2016, p. 96.

[16] S. Huang, J. Cheng, and H. Wu, “Temporal graph traversals: Definitions, algo-
rithms, and applications,” arXiv preprint arXiv:1401.1919, 2014.

[17] C. Becker and F. Dürr, “On location models for ubiquitous computing,” Personal
and Ubiquitous Computing, vol. 9, no. 1, pp. 20–31, 2005.

[18] D. Li and D. L. Lee, “A lattice-based semantic location model for indoor naviga-
tion,” in The Ninth International Conference on Mobile Data Management (mdm
2008). IEEE, 2008, pp. 17–24.

[19] W. Yuan and M. Schneider, “inav: An indoor navigation model supporting
length-dependent optimal routing,” in Geospatial thinking. Springer, 2010,
pp. 299–313.

[20] M. Goetz and A. Zipf, “Formal definition of a user-adaptive and length-optimal
routing graph for complex indoor environments,” Geo-Spatial Information Sci-
ence, vol. 14, no. 2, pp. 119–128, 2011.

[21] W. Luo, P. Jin, and L. Yue, “Time-constrained sequenced route query in indoor
spaces,” in Asia-Pacific Web Conference. Springer, 2016, pp. 129–140.

153

https://en.wikipedia.org/wiki/Walking
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406

References

[22] S. Alamri, D. Taniar, K. Nguyen, and A. Alamri, “C-tree: efficient cell-based
indexing of indoor mobile objects,” Journal of Ambient Intelligence and Hu-
manized Computing, pp. 1–17, 2019.

[23] B. Yang, H. Lu, and C. S. Jensen, “Probabilistic threshold k nearest neighbor
queries over moving objects in symbolic indoor space,” in Proceedings of the
13th international conference on extending database technology, 2010, pp. 335–
346.

[24] W. Yuan and M. Schneider, “Supporting continuous range queries in indoor
space,” in 2010 Eleventh International Conference on Mobile Data Manage-
ment. IEEE, 2010, pp. 209–214.

[25] O. Michail, “An introduction to temporal graphs: An algorithmic perspective,”
Internet Mathematics, vol. 12, no. 4, pp. 239–280, 2016.

[26] K. Semertzidis and E. Pitoura, “Top-k durable graph pattern queries on temporal
graphs,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 1,
pp. 181–194, 2018.

[27] T. Akiba, Y. Iwata, and Y. Yoshida, “Dynamic and historical shortest-path dis-
tance queries on large evolving networks by pruned landmark labeling,” in Pro-
ceedings of the 23rd international conference on World wide web, 2014, pp.
237–248.

[28] M. J. Hirsch, A. Sadeghnejad, and H. Ortiz-Peña, “Shortest paths for routing
information over temporally dynamic communication networks,” in MILCOM
2017-2017 IEEE Military Communications Conference (MILCOM). IEEE,
2017, pp. 587–591.

[29] B. Ding, J. X. Yu, and L. Qin, “Finding time-dependent shortest paths over
large graphs,” in Proceedings of the 11th international conference on Extend-
ing database technology: Advances in database technology, 2008, pp. 205–216.

[30] M. K. Ardakani and L. Sun, “Decremental algorithm for adaptive routing in-
corporating traveler information,” Computers & operations research, vol. 39,
no. 12, pp. 3012–3020, 2012.

[31] M. K. Ardakani and M. Tavana, “A decremental approach with the A* algorithm
for speeding-up the optimization process in dynamic shortest path problems,”
Measurement, vol. 60, pp. 299–307, 2015.

[32] V. J. Wei, R. C.-W. Wong, and C. Long, “Architecture-intact oracle for fastest
path and time queries on dynamic spatial networks,” in Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, 2020, pp.
1841–1856.

154

Paper D

Towards Crowd-aware Indoor Path Planning

Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, Lidan
Shou

The paper has been published in
Proceedings of the VLDB Endowment, 14(8), pp. 1365–1377, 2021.

© 2021 VLDB
Reprinted, with permission, from Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir
Cheema, and Lidan Shou, “Towards crowd-aware indoor path planning,” Proc. VLDB
Endow. (PVLDB), vol. 14, no. 8, pp. 1365–1377, 2021.
The layout has been revised.

D.1. Introduction

Abstract
Indoor venues accommodate many people who collectively form crowds. Such crowds
in turn influence people’s routing choices, e.g., people may prefer to avoid crowded
rooms when walking from A to B. This paper studies two types of crowd-aware indoor
path planning queries. The Indoor Crowd-Aware Fastest Path Query (FPQ) finds a
path with the shortest travel time in the presence of crowds, whereas the Indoor Least
Crowded Path Query (LCPQ) finds a path encountering the least objects en route. To
process the queries, we design a unified framework with three major components.
First, an indoor crowd model organizes indoor topology and captures object flows be-
tween rooms. Second, a time-evolving population estimator derives room populations
for a future timestamp to support crowd-aware routing cost computations in query
processing. Third, two exact and two approximate query processing algorithms pro-
cess each type of query. All algorithms are based on graph traversal over the indoor
crowd model and use the same search framework with different strategies of updating
the populations during the search process. All proposals are evaluated experimentally
on synthetic and real data. The experimental results demonstrate the efficiency and
scalability of our framework and query processing algorithms.

D.1 Introduction
Indoor route planning queries are among the most fundamental queries underlying
indoor location-based services (LBS) [1–5]. Such queries can facilitate people in need.
For example, in an airport or a train station, passengers prefer to find the fastest path
from their current position to the boarding gate. In addition to the shortest or fastest
paths, indoor routing supports many variations that meet practical needs. For instance,
customers in a shopping mall would like to find a path that can cover some given
keywords like a coffee shop and shoes [6]. Meanwhile, indoor venues accommodate
many people who collectively form crowds that may in turn influence people’s routing
choices. For example, crowds may influence one’s moving speed, which will have an
effect on the travel time of a path. In some places like an airport where passengers are
sensitive to travel time, a topologically shortest path may still incur the too long time
and result in missing flight if the path fails to consider the effect of crowds. In other
scenarios, people en route may prefer to encounter fewer people. For example, during
the COVID-19 pandemic, people would like to find a path to avoid human contact as
much as possible. As another example, autonomous objects (e.g., driverless cars in an
airport) also prefer a path with fewer people en route to mitigate the interference and
inconvenience caused by contact with people.

In this paper, we formulate and study two crowd-aware indoor path planning
queries. Referring to Fig. D.1, given a source point ps, a target point pt , and a query
time t, an Indoor Crowd-Aware Fastest Path Query (FPQ) returns a path with the short-
est travel time in the presence of crowds, whereas an Indoor Least Crowded Path

157

Paper D.

Query (LCPQ) returns a path that encounters the least objects en route. As an indoor
path is essentially a series of indoor partitions (basic topological units like rooms),
FPQ’s routing cost is partition-passing time, whereas an LCPQ’s is partition-passing
contact.

v1

v2

v3 v6

v4

v5

v7

d5

d7

d2

d4

door
directionality

doors

R-partition

Q-partition

ps
d1 d4

d1

v4

v1
Pt

d3 d6

d8

object

d9

v8

(distance, time
cost, contact)

(20, 120, 15)(4, 6, 0)

(4, 6, 0)
(8, 12, 0)

(5, 12, 2)

(3, 6, 1)(3, 6, 1)

(16, 24, 0)

(5, 12, 2)(20, 30, 2)

(20, 72, 2)
(3, 6, 1)
d9

d5

d7

d2

d4

ps

d1

Pt
d3

d6

d8

Fig. D.1: An Example of Floorplan at Query Time tq

We consider two types of indoor partitions. A Queue Partition (Q-partition) re-
quests objects to enter and exit in a line, e.g., a security-check line in an airport or a
ticketing entrance in a theater. A Random Partition (R-partition) refers to a more gen-
eral case where there is no restriction on how to pass the partition but one’s movement
slows down when encountering a crowd. Due to the different topological natures of
the Q-partitions and R-partitions, partition-passing time for FPQ and partition-passing
contact for LCPQ should be defined differently for the two partition types.

Existing techniques cannot handle the novel FPQ and LCPQ. First, techniques for
outdoor route planning [7–14] do not work for indoor spaces with distinct entities like
doors, walls, and rooms, altogether forming a complex topology. Second, the existing
indoor route planning methods [1, 2, 6, 15] do not consider the effect of crowds,
lacking the modeling foundation for FPQ and LCPQ. Third, some works study indoor
flow and density [16, 17], but they do not touch upon route planning.

To solve FPQ and LCPQ efficiently, we design a crowd-aware query processing
framework. The framework is composed of three layers. First, the indoor crowd
model is the foundation layer of the framework. The model can handle three kinds
of information, namely indoor topology, indoor geometry, and crowd-evolution. A
time-evolving population estimator derives the future flows and populations for indoor
partitions. The estimated values are used as basic routing costs in FPQ and LCPQ.

158

D.2. Preliminaries

The query processing layer consists of two parts. In part one, two functions, namely
partition-passing time function and partition-passing contact function, calculate the
routing cost for FPQ and LCPQ, respectively. Again, the differences in routing costs for
different partition types are unified into a single computing process. On top of that,
part two provides two exact and two approximate path search algorithms that each can
process both query types. One of the exact searches uses a global estimator, whereas
the other uses an estimator that only estimates a partition’s population by looking
up its upstream partitions’ flows. The two approximate algorithms speed up query
processing at the cost of query accuracy. One of them only derives populations for
partial partitions, and the other derives populations only when necessary. All proposed
techniques are experimentally evaluated on synthetic and real data. The experimental
results demonstrate the efficiency and scalability of the proposed framework and query
processing algorithms. The results also show the two approximate search algorithms
achieve good routing accuracy.

This paper makes the following key contributions.

• We formulate Indoor Crowd-Aware Fastest Path Query (FPQ) and Indoor Least
Crowded Path Query (LCPQ), and propose a unified processing framework for these
queries (Section D.2).

• We design an indoor crowd model that organizes indoor topology and captures in-
door partition flows and densities (Section D.3).

• We devise a time-evolving population estimator to derive future time-dependent
flows and populations for partitions (Section D.4).

• We design two exact and two approximate query processing algorithms that each
can process both query types (Section D.5).

• We conduct extensive experiments on synthetic and real datasets to evaluate our
proposals (Section D.6).

In addition, Section D.7 reviews the related work and Section D.8 concludes the paper.

D.2 Preliminaries
Table D.1 lists the notations frequently used in this paper.

D.2.1 Indoor Crowds

An indoor space is divided by walls and doors into indoor partitions. A Queue Par-
tition (Q-partition) requests objects to enter and leave sequentially, while a Random
Partition (R-partition) has no such a restriction and objects can enter and leave it ran-
domly. Note that the type of partition is usually fixed and will change only when the

159

Paper D.

Table D.1: Notations
Symbol Meaning
v, d, p Partition, door, and indoor point
o, O Object, object set
C Indoor crowd
to.C, tC.o The times o joins and leaves C
RT(di) The sequence of di’s report timestamps
UTI(vk) The set of vk’s unit (update) time intervals
δtx,tx+1(vk) vk’s density over [tx, tx+1]
ρ(vk, tc) vk’s lagging coefficient at time tc
T (di,d j,vk, tc) The time to pass vk from di to d j at tc
κ(di,d j,vk, tc) The object contact to pass vk from di to d j at tc

space layout is redesigned. The issue of topological change is out of the scope of this
paper.

Within a partition, moving objects (e.g., persons) may form a crowd. Correspond-
ing to the partition types, we formally define an indoor crowd as follows.

Definition 1 (Indoor Crowd). An indoor crowd Cts,te(vk)
1 is a set of moving objects

in a partition vk during a certain time interval [ts, te]. C.τ denotes the type of crowd C.

1) In a Queue Crowd (Q-crowd), objects join and leave the crowd in the first-in-first-
out (FIFO) manner. Formally, ∀oi,o j ∈ Ck ∧Ck.τ = Q, toi.Ck ≤ to j.Ck ⇒ tCk.oi ≤
tCk.o j , where toi.Ck and tCk.oi is the time oi joins and leaves Ck, respectively.

2) In a Random Crowd (R-crowd), objects join and leave the crowd without any or-
dering restrictions. Formally, ∃oi,o j ∈Ck∧Ck.τ = R, toi.Ck < to j.Ck , tCk.oi ≥ tCk.o j .

A crowd changes as objects join and leave from time to time. In other words, the
object population and density of a partition are time-varying, rendering an object’s
routing cost passing the partition to change as well. Therefore, for crowd-aware rout-
ing, it is of fundamental importance to know a crowd’s dynamic population or density.
This demands dynamic data from a localization system.

However, a localization system may not record the exact trajectory or join/leave
time of each individual object due to computing/storage limitations and location pri-
vacy concerns. Alternatively, a system may maintain the current number of objects
in each partition (or a crowd) and records the number of objects joining and leav-
ing during a time interval. This can be easily achieved, e.g., by installing a counter
at a door. In our setting, each door counter reports objects’ joining and leaving at
a predefined frequency. This means that the object numbers in a crowd are updated
at a number of discrete timestamps. Specifically, we use a time-ordered sequence
RT(di) = (ti1, . . . , tin) to denote the report timestamps of the counter at door di. As
a result, the update timestamps relevant to a partition vk is a time-ordered sequence

1When time is not of particular interest, we use Ck to denote vk’s associated crowd.

160

D.2. Preliminaries

UT(vk) =
⋃

d j∈P2D(vk)
RT(d j) where P2D(vk) refers to all doors of partition vk. Each

two consecutive timestamps in the sequence UT(vk) forms an unit (update) time
interval. The set of all such intervals from UT(vk) is denoted by UTI(vk).

At the routing query time, it is necessary to know the flows in the future. However,
future exact object numbers from door counters are unavailable at that moment. To
this end, we employ door flow functions to model the crowd-evolution (detailed in
Section D.3.2).

We define a partition’s time-parameterized density as follows.

Definition 2 (Time-Parameterized Density). Given a partition vk and its unit time
interval [tx, tx+1]∈UTI(vk), its time-parameterized density over [tx, tx+1] is δtx,tx+1(vk)
= |Ck|/Area(vk), where |Ck| is vk’s population over [tx, tx+1] and Area(vk) is vk’s area.

The population and density in this paper are time-parameterized unless mentioned
otherwise. A partition vk’s density at an arbitrary timestamp tc is estimated with re-
spect to the unit time interval covering tc. Specifically, we have δtc(vk) = δtx,tx+1(vk)
where tx ≤ tc < tx+1, [tx, tx+1] ∈ UTI(vk).

D.2.2 Problem Formulation

In an indoor routing problem, a basic step is to move from one door to another through
their in-between partition. To measure the cost to pass a partition, the intra-partition
door-to-door distance [6] for two doors di and d j is

d2d(di,d j) =

{
|di,d j|E , if D2PA(di)∩D2P@(d j) 6= ∅;

∞, otherwise.
(D.1)

where D2PA(di) gives the set of partitions that one can enter through door di and
D2P@(d j) gives those that one can leave through door d j. Therefore, D2PA(di)∩
D2P@(d j) 6= ∅ means di and d j share a common partition that one can enter via
di and leave via d j. In this case, the Euclidean distance is used between di and d j.
Otherwise, the distance between them is set to infinite.

Definition 3 (Indoor Path). An indoor path from the source ps to the target pt is
φ = (ps,dx, . . . ,dy, pt), where (dx, . . . ,dy) is a door sequence, dx is a leaveable door
of ps’s host partition, dy is an enterable door of pt ’s host partiton, and each two
consecutive doors dn,dn+1 (x ≤ n < y) on φ have D2PA(dn) ∩D2P@(dn+1) 6= ∅.
Each two consecutive path nodes form a path segment. The distance of φ is computed
as distφ = |ps,dx|E +∑

y−1
n=x d2d(dn,dn+1)+ |dy, pt |E .

When there is no crowd, the basic time cost of passing an in-between partition
vk from di to d j can be estimated based on the average object moving speed s̄, i.e.,

161

Paper D.

T (b)(di,d j) = d2d(di,d j)/s̄. To reflect a crowd’s impact, we use the lagging coeffi-
cient ρ(vk, tc) that takes into account the crowd’s density and type as follows.

ρ(vk, tc) =

{
1+ eδtc (vk)/Dmax

k , if Ck.τ = Q;

1+ e(δtc (vk)/Dmax
k)2

, otherwise.
(D.2)

where δtc(vk) is vk’s density at time tc and Dmax
k corresponds to the maximum density2

of vk. For a Q-partition, the ratio δtc(vk)/Dmax
k is applied to reflect the crowding

degree. We modify the speed-density model [18] to calculate the lagging coefficient
in Equation D.2 which reflects real-world scenarios, e.g., in common sense, a crowd
usually impacts people’s moving speed and results in longer travel time. Equation D.2
guarantees that the coefficient is always greater than 1 and it increases monotonically
as vk’s density increases. For an R-partition, the square of the ratio is used because
R-crowds incur less lagging effect.

Note that other forms of lagging coefficients can be defined and supported within
our framework, e.g., lagging can be multiplied by the object number for a queue
crowd. Since the lagging coefficient is not our research focus, we simply apply Equa-
tion D.2 in this study.

Using the lagging coefficient, we can calculate our crowd-aware and time- depen-
dent partition-passing time as follows.

T (di,d j,vk, tc) = T (b)(di,d j) ·ρ(vk, tc) (D.3)

An object needs longer time to pass a more crowded partition.
As a special case, we replace di with ps or replace d j with pt in Equation D.3, to

estimate the cost of a path segment starting with ps or ending with pt . Accordingly,
vk is the host partition of ps or pt .

With the partition-passing time, we can plan the fastest indoor path for users to
avoid undesirable congestion caused by indoor crowds. An indoor path φ ’s overall
travel time Tφ is computed as the sum of the time of passing the partition between
each path segment on φ . The fastest path query problem is defined as follows.

Problem 1 (Indoor Crowd-Aware Fastest Path Query FPQ). Given a source ps and
a target pt , an indoor crowd-aware fastest path query FPQ(ps, pt , t) returns a path
φ (ps,di, . . . ,d j, pt) such that a) the overall travel time Tφ is minimized and b) φ is the
shortest among all satisfying a). Formally, @φ ′ 6= φ , Tφ ′ ≤ Tφ ∧distφ ′ < distφ .

Note that the partition-passing time is determined by the time one arrives at that
partition, while the arrival time, in turn, is dependent on the partition-passing time
of the previous partition. This calls for on-the-fly computation during the search to
obtain the overall travel time Tφ , which is to be detailed in Section D.5.

2The maximum capacity (and therefore the maximum density) of a partition is usually known, such as
the room capacity for fire safety.

162

D.2. Preliminaries

Example D.2.1 (An Example of Indoor Crowd-Aware Fastest Path Query)
Fig. D.1 illustrates an indoor space at time tq. The query time and crowd-evolution
snapshot are considered. We indicate the distance, partition-passing time and ob-
ject contact on each path segment in the top sketch. We suppose that there are
some events in v7, and v4, v6 and v8 are Q-partitions for ID check before en-
tering v7. Given a query FPQ(ps, pt , tq), there are three candidate paths, namely
φ1(ps,d2,d5,d8, pt), φ2(ps,d1, d3,d6, pt), and φ3(ps,d1,d4,d7,d9, pt). Only consid-
ering the distance but not the impact from crowds, φ1 is the shortest with a length
of 32 meters, while those of φ2 and φ3 are 35 meters and 48 meters, respectively.
However, φ1 is not expected to be the fastest path when crowds are concerned. To
be specific, φ1 goes through a highly crowded R-partition v3, incurring a total travel
time of 144 seconds. For φ2, the low-populated Q-partition v4 with a long queue is
involved, making the total time cost be 96 seconds. Among all, φ3 is expected to
be the fastest with an overall cost of 78 seconds, though it is the longest distance
passing 5 partitions.

Another practically interesting problem is to find the shortest path that contacts
the least objects. E.g., it is useful to find a path that avoids human contact as much
as possible in the COVID-19 case. Given a path segment (di,d j) that goes through a
partition vk, we calculate the partition-passing contact as follows.

κ(di,d j,vk, tc) ={
(|di,d j|E ·w) ·δtc(vk), if Ck.τ = R;

(w/|di,d j|E) · (δtc(vk) ·Area(vk)), otherwise.

(D.4)

Given a partition vk, its enterable door di, and its leaveable door d j, for any object
reaching di at time tc, the partition-passing contact to pass vk and reach d j is defined
in terms of the number of objects covered by the buffer of the path segment. The
contact to pass an R-partition is the partition density multiplied by the buffer area that
is approximated as |di,d j|E ·w where w is the buffer width. The contact to pass a Q-
partition is the objects within the w long queue line centered at the user’s position,
i.e., the proportion w/|di,d j|E of the total objects in the queue. This reflects common
sense. For example, if we pass a random crowd, the close contacts are those who we
meet in the buffer width. If we pass a queue crowd, we only have close distance with
those in front of or behind us.

In our implementation, we set w as the unit distance of 1m. For example, many
countries suggest people keep a physical distance of 1m in the COVID-19 pandemic.
Similar to the computation of the overall travel time Tφ , an indoor path φ ’s overall
contact κφ is computed as the sum of the partition-passing contacts of path segments
on φ . Likewise, Equation D.4 applies to the path segment starting with ps and ending
with pt . Accordingly, we formulate the least crowded path query as follows.

163

Paper D.

Problem 2 (Indoor Least Crowded Path Query LCPQ). Given a source ps and a tar-
get pt , an indoor least crowded path query LCPQ(ps, pt , t) returns a path φ (ps,di, . . . ,
d j, pt) such that a) the overall contact is the least, and b) φ is the shortest among all
satisfying a). Formally, @φ ′ 6= φ , κφ ′ ≤ κφ ∧distφ ′ < distφ .

Example D.2.2 (An Example of Indoor Least Crowded Path Query)
Consider a query LCPQ(ps, pt , tq) in Fig. D.1, the candidates φ1, φ2 and φ3 involve
18, 3 and 5 contacts from the partitions which they pass, respectively. The query
returns φ2 since it contacts the fewest objects.

D.2.3 Solution Framework

We propose a crowd-aware query processing framework as illustrated in Fig. D.2.

LCPQ
Partition-Passing Contact

Time-evolving Population Estimator
(Section 4, Alg.1 and Alg.2)

Indoor Topology
door directionality, partition connectivity/accessibility

Indoor Geometry
partition shape, door-to-door distance

Indoor Crowd-Evolution
absolute population, door flows

FPQ
Partition-Passing Time

call call

Exact Search
(Alg.3 + Alg.2)

Query Processing (Section 5)

apply to

Indoor Crowd Model (Section 3)

(Alg.4)

Exact Search

Global
(Alg.3 + Alg.1)

Approx.

Search PP
(Strategy 1)

Approx.

Search NT
(Strategy 2)

Fig. D.2: Crowd-Aware Path Planning Framework

In the bottom, an indoor crowd model (cf. Section D.3) maintains the following
aspects of an indoor space: Indoor Topology that captures the directionality of doors
and connectivity/accessibility of partitions, Indoor Geometry that records the shapes
of partitions and walking distances between two doors, and Indoor Crowd-Evolution
that models the objects joining and leaving the crowds.

Enabled by the indoor crowd model, a time-evolving population estimator in the
middle layer derives populations (and densities) of partitions at a future time and pro-

164

D.3. Indoor Crowd Model

vides them to the query algorithms. The population estimation process will be detailed
in Section D.4.

In the top layer, crowd-aware search algorithms process FPQ and LCPQ. Both al-
gorithms are based on graph traversal over the indoor crowd model. To expand to the
next path node with the minimum cost, FPQ’s algorithm estimates the partition-passing
time, while LCPQ search algorithm estimates the partition-passing contact. Both costs
are estimated based on the time-evolving populations derived in the middle layer. For
both queries, two exact and two approximate search algorithms are proposed. Their
main difference lies in the strategy of updating population(s) during the search. All
search algorithms will be presented in Section D.5. Thanks to modular construction,
our framework can be easily extended or reduced. For example, to support regular
path planning, we only need the components Indoor Topology and an appropriate
query processing algorithm that can be a variant of Algorithm 17.

D.3 Indoor Crowd Model

D.3.1 Model Structure

As an extension of the accessibility graph [19], the indoor crowd model is a directed,
labeled graph G(V ,E,LV ,LE) where

1) V is the set of vertices, each for an indoor partition.

2) E is the set of directed edges such that each edge e(vi,v j,dk) ∈ E means one can
reach v j from vi through a door dk, i.e., vi ∈ D2P@(dk) and v j ∈ D2PA(dk).

3) LV is the set of vertex labels. Each label in LV is attached to a partition and cap-
tured as a five tuple [vi,Area(vi),Md2d,τ , (Pi

tl , tl)]. In particular, vi identifies the
associated partition, Area(vi) is vi’s area, Md2d is a matrix that stores the intra-
partition distance (See Equation D.1) between each pair of doors of vi. In addition,
τ ∈ {R,Q} indicates the type of vi’s crowd and (Pi

tl , tl) means that vi’s absolute
population at a latest timestamp tl is known as Pi

tl . In practice, the model can
record the populations at historical timestamps, though only the latest population
is relevant to a query.

4) LE is the edge label set. For an edge (vi,v j,dk) ∈ E, its label consists of a door
flow function f (vi,v j,dk) that models the dynamic object flows from vi to v j via
dk and a local array F[t] storing the actual object flows at each update timestamp t.

Figure D.3 depicts the indoor crowd model corresponding to the space in Fig-
ure D.1. Unlike a general time-dependent graph (GTG) [10, 20], our model represents
doors as edges and partitions as vertices. A GTG may model doors as vertices and
partitions as edges and capture time-varying populations or distances as edge weights,
but this way falls short in solving our problem. First, GTG’s vertices fail to capture

165

Paper D.

v1
v6

v7

f(v2 , v5 , d4), F[t]

f(v5 , v2 , d4), F[t]

f(v2, v4, d3), F[t]

f(v
1,

v 2
, d

1)
, F

[t
]

f(v2, v1, d1), F[t]

f(v4, v7, d6
), F[t]

f(v8, v5, d7), F[t]

f(v5, v8, d7), F[t]

f(v
8,

v 7
, d

9)
, F

[t]

f(v7, v8, d9), F[t]

f(v
7,

v 6
, d

8)
, F

[t
]

f(v6, v7, d8), F[t]

f(v6, v3, d5), F[t]

f(v3, v6, d5), F[t]
f(v1, v3, d2)

, F[t]

v8

v3

v4

v5

v2

Area 90m2

Md2d [(d1, d2, 5),
(d2, d1, 5)]

𝛕 R

(P, t) (0, 10:01)

Fig. D.3: An Example of Indoor Crowd Model

the door directionality (e.g., unidirectional security check doors) directly. Referring
to Figure D.1, d2 is unidirectional such that one can only go through d2 from v1 to
v3. In a GTG, the edges cannot be directed because each edge connects two doors
and one can always go from one door to any other door in the same room. E.g., one
cannot go through d2 from v3 to v1, but she can go to any door in v1 from d2 if she
is in v1. The directionality information can be added in each node, e.g., that for node
d2 can be {(v1, v3)}, and that for node d1 can be {(v1, v2), (v2,v1)}. However, it will
result in considerably more space and search costs. Second, a GTG will result in many
door-to-door edges for the same partition, which will render the graph-based search
inefficient. The experimental comparison with GTG is reported in Section D.6.

The time-evolving function f (vi,v j,dk) models the number of objects flowing
from vi to v j at each report time interval of dk. In practice, it can be implemented
as a time-series prediction model driven by historical data such as ARIMA [21] and
LSTM [22], or it can be approximated by a queueing distribution function. For the
ease of presentation, in this paper, we employ a specific queueing distribution func-
tion to predict the door flows (Section D.3.2). Nevertheless, the door flow function
can be replaced by other appropriate models or functions, which entails no change to
any of the other parts in the overall computation framework (Figure D.2).

D.3.2 Door Flow Function

Following the classic Poisson distribution in queueing theory [23], we design the fol-
lowing door flow function:

f (vi,v j,dk) : t 7→ Pt , t ∈ RT(dk),Pt ∼ Poisson(λ) (D.5)

where t ∈ RT(dk) is a report timestamp of dk, Pt is the population that flows from vi to
v j between t and dk’s next report timestamp, and λ is the expected value of Pt under
Poisson distribution.

The door flow function is parameterized by λ and fitted based on a recent period

166

D.4. Time-evolving Populations

of historical records in a format of (t ′,Pt ′). In practice, for each door counter, the most
recent timestamps’ flows can be accessed from the local array F in the graph edge. An
independent thread estimates λ upon such most recent records. Note that the focus of
this paper is not to estimate λ based on historical data. For its technical details, we
refer readers to a previous work [24]. In our setting, at any query time, an up-to-date
door flow function is ready to predict flows for future report timestamps.

D.4 Time-evolving Populations

D.4.1 Rectifying Door Flows

At a query time tq, we can access a partition vk’s latest population Pk
tl at an earlier time

tl ≤ tq from the indoor crowd model. To enable the cost estimation for routing, we
need to derive vk’s time-evolving population and its future inflows/outflows based on
Pk

tl .
Let [t0, t1] ∈ UTI(vk) be the unit time interval covering tl . We have Pk

t0,t1 = Pk
tl ,

meaning that vk’s population over [t0, t1] is equal to Pk
tl . Subsequently, for a future unit

time interval [tx, tx+1] ∈ UTI(vk), we compute its population as

Pk
tx,tx+1

= Pk
tx−1,tx −out(vk, tx)+ in(vk, tx), x = 1,2, . . . (D.6)

where out(vk, tx) and in(vk, tx) are vk’s estimated outflow and inflow at update times-
tamp tx, respectively.

Suppose that all relevant door flow functions are ready at tq. The inflow and out-
flow at a future update timestamp can be directly estimated based on the expected
values λ . Formally,

out(vk, tx) = ∑
di∈P2D@(vk)∧tx∈RT(di)

∑
vp∈D2PA(di)

f (vk,vp,di).λ

in(vk, tx) = ∑
d j∈P2DA(vk)∧tx∈RT(d j)

∑
vq∈D2P@(d j)

f (vq,vk,d j).λ

where di (resp. d j) is a leaveable (resp. enterable) door updated at time tx and vp ∈
D2PA(di) (resp. vq ∈ D2P@(di)) is its enterable (resp. leaveable) partition.

However, the estimated flows may be contrary to the real situation such that a parti-
tion’s current population (Pk

tx−1,tx in Equation D.6) cannot satisfy its outflow (out(vk, tx)
in Equation D.6). In this case, flows at doors should be rectified.

A basic idea is to rectify the expected outflow at each step such that it is not larger
than the partition vk’s current population. Meanwhile, vk’s inflow is naturally rectified
as it is derived from the outflows of its adjacent partitions at the previous step. In
general, a dependency exists between partitions. It demands a suitable way to rectify
the relevant outflows at the update timestamps.

167

Paper D.

v1 v2 v3
v1 3 4 2
v2 2 7 0
v3 0 1 4

(a) original matrix at tx

v1’ s expected outflows

v1’ s
expected
inflows

v1’ s
population
over [tx-1, tx]

fill-in expected inflows and outflows at tx+1 and get original matrix at tx+1

v1 v2 v3
v1 3 2 1
v2 2 7 0
v3 0 1 4

v1’ s rectified outflows

v1 v2 v3
v1 2
v2 8
v3 4

v1’ s population over [tx, tx+1]

rectify merge

v2’ s
population
over [tx, tx+1]

(b) rectified matrix at tx (c) merged populations at tx+1

no changes

Fig. D.4: An Example of Rectifying Flows Globally

An example is depicted in Figure D.4, which rectifies the door flows globally. To
ease the presentation, at each particular update timestamp tx we put the absolute pop-
ulations and door flows in a |V | × |V | matrix M, where |V | corresponds to the total
number of partitions. In particular, M[i, i] refers to partition vi’s absolute population
over unit time interval [tx−1, tx], while M[i, j] (i 6= j) means the flow value from par-
tition vi to v j over the next unit time interval [tx, tx+1]. Referring to Figure D.4(a),
partition v1’s population over [tx−1, tx] is 3 and that of v2 is 7. Besides, v1’s expected
outflows to v2 and v3 are 4 and 2, respectively; v2’s inflow from v1 and v3 are 4 and
1, respectively. Considering the space efficiency, in the implementation, we store the
absolute populations on the graph nodes and the estimated flows on graph edges. That
is, the space complexity at each update timestamp is |V +E|.

A rectification is then applied to each row of the original matrix as exemplified
in Figure D.4(b). Specifically, v1’s current population (i.e., 3) is less than the sum-
mation of its subsequent outflows (i.e., 4+ 2 = 6). In this case, we scale down the
outflows at all doors to ensure that the actual number of objects outflowing is ex-
actly equal to the current population. That is, M′[1,2] = M[1,2] · (3/6) = 2 and
M′[1,3] = M[1,3] · (3/6) = 1, where M and M′ represent the original and rectified
matrix, respectively. Note that non-integer values may appear in the rectification. For
the computation precision, we use non-integer values in the whole iterative derivation
process. Intuitively, the values in the matrix are a probability estimate, i.e., how likely
an object will appear in or move to a certain partition.

After the rectification, each partition’s population over the next interval [tx, tx+1]
is computed based on Equation D.6. In particular, partition vi’s new population is
obtained by deducting the overall outflows at the i-th row of M′ and then adding the
overall inflows at the i-th column of M′. Referring to Figure D.4(c), v1’s new popula-
tion is 3−3+2 = 2 while v2’s is 7−2+3 = 8. After the merges on each partition, we
fill in the matrix inflows and outflows at the timestamp tx+1, and derive the populations
iteratively.

D.4.2 Implementation of Population Estimator

This section presents two versions of population estimators. The global estimator
estimates all partitions’ populations globally (corresponding to the example in Fig-

168

D.4. Time-evolving Populations

ure D.4), whereas the local estimator only estimates a relevant partition’s population
by looking up its upstream partitions flows.

Algorithm 15 POPULATIONGLOBAL (future timestamp ta, indoor crowd model G)

1: get the latest update timestamp tG
l from G

2: UTG←
⋃

d j∈G.D RT(d j)

3: A← toArray({tc | tc ∈ UTG∧ tc ≥ tG
l ∧ tc ≤ ta})

4: for tc ∈ A do
5: for e(vi,v j,dk) ∈ G.E do
6: if tc ∈ RT(dk) then e.F[tc]← f (vi,v j,dk).λ
7: else e.F[tc]← 0
8: for vi ∈V do
9: for dk ∈ P2D@(vi) do

10: outi← outi +(vi,v j,dk).F[tc]
11: get vi’s latest population record (Pi

t , t) from G
12: if Pi

t −outi < 0 then
13: for dk ∈ P2D@(vi) do
14: (vi,v j,dk).F[tc]← (vi,v j,dk).F[tc] ·Pi

t /outi

15: for vi ∈V do
16: for dk ∈ P2D@(vi) do
17: outi← outi +(vi,v j,dk).F[tc]
18: for dk ∈ P2DA(vi) do
19: ini← ini +(v j,vi,dk).F[tc]
20: Pi

tc ← Pi
t −outi + ini; add (Pi

tc , tc) to G.vi

The global estimator (Algorithm 15) takes the indoor crowd model G as input and
derives the populations from the latest update timestamp in G to a future timestamp
ta ≥ tq. In the beginning, the globally latest update timestamp tG

l over all partitions
is obtained (line 1). Then, the set UTG of all doors’ report timestamps is obtained
(line 2) and the period of interest is extracted out of UTG and organized into an array
A (line 3). The algorithm then progressively derives the populations for each times-
tamp in A (lines 4–20). For each timestamp tc ∈ A, the algorithm iterates on each
edge e(vi,v j,dk). If the corresponding door dk updates at tc, e’s flow value at tc, i.e.,
e.F[tc], is assigned with the estimated flow of the corresponding flow function (line 6).
Otherwise, the flow value e.F[tc] is assigned with 0 (line 7). Here e.F is a local array
to maintain the rectified flow at each timestamp. Subsequently, the algorithm goes
through each partition vi and aggregates its expected outflow outi (lines 8–10). If outi

is greater than the population Pi
t at the latest update timestamp, the estimated flows at

edges need to be rectified following the example in Figure D.4 (lines 11–14). After-
wards, the current timestamp tc’s population for each partition is computed according
to Equation D.6 and added to G (lines 15–20). Once the process is finished, all parti-
tions’ populations at each timestamp can be accessed from the edge nodes of G.

169

Paper D.

Algorithm 15 needs to update the populations for all partitions. This incurs much
unnecessary computation since a path planning search at a particular time only con-
cerns a number of relevant partitions and their populations. If these partitions’ popula-
tions and flows can be precisely derived without a global update, the overall updating
cost can be reduced substantially.

Algorithm 16 POPULATIONLOCAL (partition vi, future timestamp ta, indoor crowd
model G)

1: get vi’s latest update timestamp tl from G
2: UTG←

⋃
d j∈G.D RT(d j)

3: A← toArray({tc | tc ∈ UTG∧ tc ≥ tl ∧ tc ≤ ta}), tmax← A.max()
4: while A is not empty do
5: tc← A.max(); A← A\ tc
6: if tc = tl then
7: get vi’s latest population record (Pi

tl , tl) from G
8: Pi

tc ← Pi
tl

9: else Pi
tc ← POPULATIONLOCAL (vi, tc, G)

10: for dk ∈ P2D@(vi) do
11: if (vi,v j,dk).F[tc] is null then
12: (vi,v j,dk).F[tc]← f (vi,v j,dk).λ
13: outi← outi +(vi,v j,dk).F[tc]
14: if Pi

tc −outi < 0 then
15: for dk ∈ P2D@(vi) do
16: (vi,v j,dk).F[tc]← (vi,v j,dk).F[tc] ·Pi

tc /outi

17: outi← Pi
tc

18: for dk ∈ P2DA(vi) do
19: if (v j,vi,dk).F[tc] is null then
20: POPULATIONLOCAL (v j, tc, G)
21: ini← ini +(v j,vi,dk).F[tc]
22: Pi

tc ← Pi
tl −outi + ini

23: t← tmax
24: return Pi

t

The local estimator is formalized in Algorithm 16. It derives a specific partition’s
population in a recursive manner. Its preparation (lines 1–3) is almost the same as the
counterpart in Algorithm 15, except that the latest update timestamp tl in line 1 is with
respect to the input partition vi.

Next, the algorithm derives vi’s population in reverse temporal order (lines 4–
24). Specifically, the newest update timestamp tc in A is archived and removed from
A (line 5). If tc just equals tl , the population is directly obtained from G (lines 6–
8). Otherwise, tc is an earlier timestamp to tl , and the algorithm recursively calls

170

D.5. Query Processing Algorithms

Algorithm 16 to obtain vi’s population Pi
tc at tc (line 9).

Once Pi
tc is derived, the expected flow from each upstream door flow function (see

lines 10-12) is compared to vi’s population. Note that the intermediate results are
maintained in each edge’s local array F[t] to avoid repeated computations (line 11). If
an expected outflow is larger than Pi

tc , a rectification is performed (lines 14–16). In
this case, the rectified outflow is assigned with Pi

tc (line 17). Then, the inflows from
all enterable doors are also derived (lines 18-22). For each enterable door dk, if its
inflow has not been derived, Algorithm 16 is recursively called to get the adjacent
partition v j’s population at time tc (line 18-20). Note that the inflow from v j to vi will
be rectified in this recursion. After that, vi’s overall inflow is obtained (line 21) and
its population is computed (line 22). The last two lines of Algorithm 16 return the
population nearest to the input time ta.

Once the partition’s population at a particular arrival time is derived, the corre-
sponding partition-passing cost (time or contact) can be computed easily according to
Equation D.3 or D.4. Both global and local population estimators can be utilized by
the exact search presented in Section D.5.1 (see line 17 in Algorithm 17).

D.5 Query Processing Algorithms

D.5.1 Exact Algorithms for FPQ and LCPQ

On top of the indoor crowd model (Section D.3), we propose an indoor path search
process in Algorithm 17. Following the spirit of Dijkstra’s algorithm, our algorithm
can handle both FPQ and LCPQ, as long as a cost measure corresponding to a specific
query type is set as the routing cost of the graph traversal. Algorithm 17 returns an
indoor path φ from the source ps to the target pt that satisfies the query type QT for a
particular query time tq.

The algorithm starts with initializing a priority queue Q (line 1) whose priority is
the minimum travel time for FPQ and the minimum contact for LCPQ. Also, an array
prev is initialized to record each path node’s previous node in the search (lines 2–3).
Then, the full set UTG of the report timestamps over all doors are obtained (line 4).
With respect to the query time tq, the latest update timestamp in UTG is found and
assigned to tl (line 5). Variable tl is the latest population derivation time in the search.
Next, the cost of the current search is initialized (line 6). The cost for LCPQ consists of
overall travel distance, overall travel time, and overall contact value. The cost for FPQ
only contains the first two. The source and initial cost are put into a stamp S0, and S0
is pushed into Q and maintained in an array AS as well (lines 7–8).

After the preparation, the algorithm explores the next path node towards pt in an
order controlled by Q (lines 9–22). Specifically, the stamp Si with the lowest cost is
popped from Q, and the corresponding path node di is obtained (line 10). If di is pt ,
i.e., the searched is complete, the algorithm calls a function GETPATH(pt , prev, ps) to
return the reverse path from pt to ps (line 11). Otherwise, the algorithm explores the

171

Paper D.

Algorithm 17 SEARCH (source ps, target pt , query time tq, indoor crowd model G,
query type QT)

1: initialize a priority queue Q
2: for each door di ∈ G.D do prev[di]← null
3: prev[ps]← null; prev[pt]← null
4: UTG←

⋃
d j∈G.D RT(d j)

5: tl ←max{t ∈ UTG | t ≤ tq}; ta←∅ . latest update time tl and arrival time ta

6: if QT= LCPQ then cost0← (0,0,0) else cost0← (0,0) . (distance, time,
contact) for LCPQ and (distance, time) for FPQ

7: S0← (ps,cost0) . S(node, cost)
8: AS[ps]← S0; Q.push(S0)
9: while Q is not empty do

10: Si← Q.pop(); di← Si.node
11: if di = pt then return GETPATH(pt , prev, ps)
12: if di = ps then v← host(ps)

13: else v← D2PA(di)\ di’s previous partition
14: mark di as visited
15: ta←max{t ∈ UTG | t ≤ tq + Si.cost.time}
16: if ta > tl then . further derive populations
17: POPULATION(ta,G)
18: tl ← ta

19: if di ∈ P2DA(host(pt)) then
20: EXPAND(di, pt ,G,v, ta,Si,QT) . towards target pt

21: for each unvisited door d j ∈ P2D@(v) do
22: EXPAND(di,d j,G,v, ta,Si,QT)

next path node as follows.
First, if the current node is the source ps, the current partition v is obtained as

the host of ps (line 12). Otherwise, v is assigned as di’s enterable partition3 (line 13).
Then, di is marked as visited (line 14). Next, the estimated cost to pass v is obtained as
Si.cost.time and it is added to the query time tq to get the arrival time ta to the next path
node (line 15). An alignment to the update timestamps in UTG is needed for ta. The
algorithm then determines if the population needs to be derived to meet the next arrival
time ta (lines 16–18). If the latest derivation time tl is earlier than ta, a population
estimator is invoked to get v’s derived populations up to ta (line 17). Here, either the
global (Algorithm 15) or local estimator (Algorithm 16) can be used. The performance
difference of these two ways will be experimentally studied in Section D.6.

Afterward, it expands to the next node from the current node di. If di is an enterable
door of pt ’s host partition, the expansion goes towards pt (lines 19-20). Regardless of

3To ease presentation, here we only show the case that a door connects two partitions. A complex space
can be handled by maintaining a collection of enterable partitions.

172

D.5. Query Processing Algorithms

whether the current path reaches pt ’s host partition, the expansion should also reach
each unvisited leaveable door of the current partition v (lines 21–22). This ensures that
the planned path can leave and re-enter pt ’s host partition when the host is currently
too crowded.

The function EXPAND is formalized in Algorithm 18, which expands from the
current node p1 to the next possible node p2 through partition v. First, it estimates
the cost to reach p2 from p1 through an inline function COST (see lines 7–16). In
particular, the distance between p1 and p2 is obtained as the door-to-door distance if
both are doors, or Euclidean distance if either is an indoor point (lines 8–10). Then,
the population of the partition vk to pass is obtained from G (line 11), and the partition-
passing time and contact are computed based on Equations D.3 and D.4, respectively
(lines 12 and 14). The corresponding cost is then returned according to the query type
QT (lines 13 and 15–16).

Back to EXPAND in Algorithm 18, once the cost to pass v is obtained, it is added
to the current stamp Si’s cost to get the overall cost in the current expansion, i.e., costc

(line 1). The tuple-form cost is summed in an element-wise way. Next, the estimated
cost to reach p2 so far is obtained from the array AS (line 2). The algorithm compares
the current estimated cost costc to the previously recorded cost costpre. If costpre does
not exist or costc is lower, a valid expand is performed (lines 3–6). Specifically, a new
stamp S′ is formed with the next path node p2 and the new cost costc. It is then pushed
to Q. If an old stamp exists with the same node, the old stamp is updated by S′ (line 5).
Then, S′ is inserted into AS and p2’s previous path node is recorded as p1.

In the exact search, the time-evolving populations are rectified and computed
rigidly timestamp by timestamp. This may result in a bottleneck in the graph traversal.
We intend to reduce the workload for population derivation by approximation. On the
one hand, the severity of population derivation can be skipped for those less important
partitions, e.g., those far away from the current partition to pass. On the other hand,
some of the update timestamps in the iterative derivation can be skipped if the popula-
tion changes within that iteration period is relatively stable. We proceed to introduce
two approximate search algorithms for FPQ and LCPQ.

D.5.2 Approximate Algorithms for FPQ and LCPQ

We design two strategies to derive approximate populations.
Strategy 1: Population Derivation for Partial Partitions (PP). Recall that the pop-
ulation derivation in Algorithm 16 (see line 20) recursively obtains its adjacent parti-
tion’s population to ensure the overall derivation is fully precise. This recursion ter-
minates when the outflows of all relevant partitions at all relevant update timestamps
have been rectified. In fact, the door flows from a long distance or at a very old times-
tamp only have a slight impact on a partition’s current population. Therefore, one
option is to rectify only the outflows of the current relevant partition without strictly
processing the outflows of its upstream partitions (i.e., the inflows to the current rel-
evant partition). To this end, only a minor change is made to Algorithm 16: line 20

173

Paper D.

Algorithm 18 EXPAND (start node p1, end node p2, indoor crowd model G, partition
v, arrival time ta, stamp Si, query type QT)

1: costc← Si.cost+COST(p1, p2,v, ta,G) . element-wise
2: costpre← AS[p2].cost
3: if costpre is null or costc < costpre then
4: S′← (p2,costc)
5: Q.push(S′) . update if exists
6: AS[p2]← S′; prev[p2]← p1

7: function COST(p1, p2, vk, ta, G)
8: dist←∅
9: if p1, p2 are both doors then dist← vk.Md2d(p1, p2)

10: else dist← |p1, p2|E
11: get Pk

ta from G
12: time← T (p1, p2,vk, ta) . Equation D.3
13: if QT= LCPQ then
14: contact← κ(p1, p2,vk, ta) . Equation D.4
15: return (dist, time,contact)
16: else return (dist, time)

is modified to (v j,vi,dk).F[tc]← f (v j,vi,dk).λ . That is, the outflow of an adjacent
partition v j is directly obtained from the corresponding door flow function.
Strategy 2: Population Derivation at Necessary Timestamps (NT). To further speed
up the population derivation for individual partitions, we consider reducing the work-
load by only calling Algorithm 16 at some necessary timestamps. The general idea is
that when we observe that the historical flows of a partition are relatively stable, we
skip the iterative population computations and directly estimate its population at the
arrival time ta. Note that here Strategy 2 is used in combination with Strategy 1 to
achieve the maximum effect of acceleration.

In particular, when the search visits a partition vk, the mean µ and standard devia-
tion σ of its flow difference (i.e., inflow deducts outflow) in the historical timestamps
are computed as follows.

µ =
(
∑tx∈UTpast

(
in(vk, tx)−out(vk, tx)

))
/|UTpast|

σ =
((

∑tx∈UTpast
(in(vk, tx)−out(vk, tx)−µ)2)/|UTpast|

)1/2

where UTpast is a set of the historical update timestamps of vk. The update timestamps
in UTpast will be obtained from the local array that we maintain for fitting door flow
function in Section D.3.2.

If σ is smaller than a pre-defined threshold value η , it indicates that vk’s historical
flows change only slightly. Thus, we directly estimate vk’s population according to its

174

D.6. Experiments

historical trend as follows.

Pk
ta = Pk

tl + µ · |{t ∈ UT(vk) | tl < t ∧ t ≤ ta}| (D.7)

where tl = max{tx ∈ UTG | tx ≤ tq} is the latest population update time as in line 5
of Algorithm 17, µ is the mean of historical flow differences, and |{t ∈ UT(vk) | tl <
t∧t ≤ ta}| is the number of skipped update timestamps from tl to ta. In our experiment,
η = 3 achieves the best performance approaching exact search results.

Otherwise, the search has to call Algorithm 16 (applied with Strategy 1) to derive
population for vk.

D.5.3 Complexity Analysis

The main difference of the four algorithms’ complexity is related to population deriva-
tion. Therefore, we focus on comparing the four ways of population derivation. As-
sume that we estimate a partition’s population at a future timestamp, and the derivation
involves k unit time intervals.

The time complexity of the global population estimator (Algorithm 15) is k|V | ·u,
where u is the unit computational cost for a partition at an update timestamp. For
the local estimator (Algorithm 16) which only considers the current partition and its
upstream partitions, its time complexity is

(
k|V | − ((k− 1)nk +(k− 2)nk−1 + · · ·+

n2)
)
·u, where n is the average number of enterable door per partition.

For two approximate strategies, PP rectifies only the outflows of the current certain
partition without strictly processing the outflows of its upstream partitions, so the time
complexity of PP’s population derivation per partition is only ku. NT omits population
estimations for some partitions with the relatively stable flow. Thus for a partition in
consideration, the time complexity depends on its flow stability. That is, if it is stable,
we do not estimate the population; otherwise, the complexity is also ku.

D.6 Experiments
For either FPQ or LCPQ, we implement four search algorithms. Specifically, *PQ is
Algorithm 17 calling Algorithm 16, *PQ-G is Algorithm 17 calling Algorithm 15,
*PQ-PP is the approximate search using Strategy PP, and *PQ-NT is the approximate
search using Strategy NT. All algorithms are implemented in Java and run on a PC
with a 2.30GHz Intel i5 CPU and 16 GB memory.

D.6.1 Results on Synthetic Data

175

Paper D.

Settings

Indoor Space. Using a real-world floorplan4, we generate a multi-floor indoor space
where each floor takes 1368m × 1368m. The irregular hallways are decomposed into
smaller but regular partitions following the decomposition algorithm in [25]. As a
result, we obtain 141 partitions and 216 doors on each floor. We duplicate the floorplan
3, 5, 7, or 9 times to simulate different indoor spaces. All parameter settings are listed
in Table D.2 with default values in bold. The four staircases of each two adjacent
floors are connected by stairways, each being 20m long. On each floor, we randomly
pick 14 out of all those partitions having two doors as the Q-partitions while regarding
all others as R-partitions.

Table D.2: Parameter Settings
Parameters Description Settings

floor Floor number 3, 5, 7, 9
|o| Partition’s maximum object number 300, 600, 900, 1200, 1500

TI (s) Time interval 5, 10, 15, 20
s2t (m) The shortest distance from ps to pt 900, 1100, 1300, 1500, 1700

Populations and Flows. We generate each partition’s population at an initial time
randomly from 0 to |o| (see Table D.2). We set the max capacity of a partition v as
Area(v) · β (β is 1 per m2 in this paper). Note that the initial population will not
exceed the max capacity. The parameter λ of each door flow function is varied from
0 to 3 5. We use a variable TI (5, 10, 15, or 20 seconds) to control the length of the
unit update time interval of partitions. To this end, all doors’ initial report timestamps
are aligned and they only report the flows in every n · TI seconds (n = 1,2, . . . ,5 is
randomly decided for each door counter).

Query Instances. We use a parameter s2t to control the shortest distance from
the source point ps and the target point pt . First, we randomly select a point ps from
the indoor space. Second, we find a door d whose indoor distance to ps approximates
s2t. Then, we expand from d to find a random point pt whose indoor distance to ps

approaches s2t. For each s2t value, we generate 100 different pairs to form query
instances.

Baseline Methods. We use a general time-dependent graph (GTG) to form a
baseline. Each vertex in GTG represents a door and the weight of each edge is the
cost between two doors, i.e., the time cost for FPQ or the contact for LCPQ. To be
fair, we employ a Dijkstra-based algorithm (*PQ-GTG) without precomputation and
combine it with our exact population estimator to process queries. Since GTG fails
to represent the door directionality directly, we assume all doors are bidirectional in
comparative experiments. Another baseline is the adaptive method based on the indoor

4https://longaspire.github.io/s/fp.html (Last accessed date: 2021/04/16)
5The value is set according to our analysis of real data. The door flow of a hallway/staircase is relatively

more than that of a room.

176

https://longaspire.github.io/s/fp.html

D.6. Experiments

Table D.3: Comparison of Algorithms for FPQ on Synthetic Data (best result in bold)
FPQ FPQ-G FPQ-PP FPQ-NT FPQ-GTG FPQ-A

Running Time (ms) 584 585 208 25 2857 189
Memory (KB) 115 112 111 12 278 14
Hit Rate (%) 98 98 98 95 98 94
Relative Error 4.37E-08 4.37E-08 4.37E-08 8.09E-08 4.37E-08 0.1233

crowd model (*PQ-A) that keeps updating and recomputing the optimal route at every
node until the user gets to the target point.

Performance Metrics. To compare the efficiency of different search algorithms,
we run each query instance ten times and measure their average running time and
memory cost. We also look into the accuracy of the four searches. In particular, the
query hit rate is the fraction of query instances whose search result equals its gold
standard result among all 100 instances. The gold result is returned by searching over
the detailed simulated trajectories. Moreover, we measure the relative error of the
estimated routing cost against the gold result. The estimated cost refers to overall
travel time Tφ for FPQ and overall contact κφ for LCPQ. Taking FPQ as an example, the

relative error is γ = |T (E)
φ
−T (G)

φ
|/T (G)

φ
where T (E)

φ
and T (G)

φ
is the overall travel time

corresponding to the exact search and gold result, respectively.

Search Performance of FPQ

Comparison in default setting. The measures of different FPQ algorithms are re-
ported in Table D.3. FPQ-NT performs the best in terms of the running time and
memory because it skips the iterative population computations and directly estimates
its population at the arrival time in each node. FPQ and FPQ-G perform similarly as
two exact searches, implying that the two exact estimators achieve similar efficiency
in the default setting. Besides, they are the best in terms of hit rate and relative error.
The baseline FPQ-GTG uses the exact estimator that we propose, so its accuracy is the
same as FPQ and FPQ-G. However, FPQ-GTG incurs the highest time and memory costs
due to the large size of GTG (cf. Section D.3). FPQ-PP works as accurately as the
exact algorithms, which reflects the effectiveness of Strategy PP. Also, FPQ-PP saves
some time and memory. FPQ-NT and FPQ-A perform worse in terms of hit rate and
relative error. FPQ-NT skips some intermediate update timestamps, making its popu-
lation derivation less accurate. FPQ-A expands to next nodes by reevaluation, making
its result only optimal locally rather than globally. Note that the running time (and
memory) of FPQ-A is the sum of that at all nodes in a path. Indeed, FPQ-A keeps
updating until a user gets to the target point, while other methods return the path be-
fore departure. We omit FPQ-GTG and FPQ-A in the subsequent experiments as the
comparison results show a similar trend to that here.

Effect of s2t. We vary the distance s2t between ps and pt from 900m to 1700m
and test the four FPQ algorithms. Referring to Figure D.5, all algorithms’ running
time increases linearly with the source-target distance, since a larger s2t involves a

177

Paper D.

larger expansion range as well as more candidate path nodes. Among all algorithms,
FPQ-NT runs fastest because it skips the iterative population computation and directly
estimates its population at the arrival time in each node. Moreover, the time costs of
approximate searches FPQ-PP and FPQ-NT increase very slowly as s2t increases. In
contrast, the exact searches FPQ and FPQ-G are sensitive to s2t because they need to
compute more population.

Figure D.6 reports on the memory consumption. The memory use of FPQ and
FPQ-G grows faster than the others due to an extra cost of rigid population deriva-
tion. Contrary to our intuition, FPQ incurs more memory cost than FPQ-G. In our test,
the search framework needs to explore a large number of partitions. FPQ-G’s global
population derivation shares intermediate results across all partitions. For a large s2t,
FPQ-G may find more shared intermediate results, and thus consumes less memory
than FPQ.

Figure D.7 reports on the relative errors, for FPQ, FPQ-PP and FPQ-NT.6 For differ-
ent s2t values, FPQ achieves a lower error. As a sacrifice for search efficiency, FPQ-NT
skips some intermediate update timestamps, so its accuracy of population derivation
drops more significantly. As s2t increases, FPQ-NT deteriorates rapidly while FPQ and
FPQ-PP perform quite stably. A larger s2t leads to more updated timestamps to derive
populations. As a result, FPQ-NT’s relatively aggressive strategy of skipping times-
tamps incurs more estimation errors. In contrast, FPQ and FPQ-PP derive populations
timestamp by timestamp, and so the impact of s2t is slight.

Effect of TI. According to Figure D.8, all four algorithms run faster with a larger
update time interval TI. Still, FPQ-NT performs best in both measures as it approxi-
mates population derivation in both time and space aspects. We omit the result of the
memory cost because it has a similar trend with the running time. On the other hand,
referring to Figure D.9, FPQ-NT’s relative error decreases as all doors’ TI enlarges.
This shows that one may consider skipping more timestamps when the flow update at
doors is not that frequent.

Effect of floor. We vary the floor number to test the scalability of our algorithms.
Referring to Figure D.10, all algorithms’ search time increases steadily with more
floors since more candidate path nodes are involved. FPQ-PP and FPQ-NT run faster
than FPQ and FPQ-G. Moreover, the running time of the two approximate searches
grows more slowly. Figure D.11 reports the memory cost of the four algorithms.
FPQ-NT needs less memory and is more scalable since it skips some timestamps. We
omit the results of relative errors. In the tests, both measures are insensitive to the
floor number since the returned path stays unchanged for a given query instance.

We omit the results of varying |o| on FPQ because different initial object numbers
have little impact on the search performance.

6We exclude FPQ-G as its accuracy is the same with FPQ.

178

D.6. Experiments

900 1100 1300 1500 1700
s2t (m)

0
200
400
600
800

1000

R
un

ni
ng

 T
im

e
(m

s)

FPQ
FPQ-G
FPQ-PP
FPQ-NT

Fig. D.5: FPQ Time vs. s2t

900 1100 1300 1500 1700
s2t (m)

0
50

100
150
200
250

M
em

or
y

(K
B

)

FPQ
FPQ-G

FPQ-PP
FPQ-NT

Fig. D.6: FPQ Mem. vs. s2t

900 1100 1300 1500 1700
s2t (m)

10 11
10 10
10 9
10 8
10 7
10 6
10 5

R
el

at
iv

e
Er

ro
r FPQ

FPQ-PP
FPQ-NT

Fig. D.7: FPQ’s γ vs. s2t

5 10 15 20
TI (s)

0
300
600
900

1200

R
un

ni
ng

 T
im

e
(m

s)

FPQ
FPQ-G

FPQ-PP
FPQ-NT

Fig. D.8: FPQ Time vs. TI

5 10 15 20
TI (s)

10 15

10 13

10 11

10 9

10 7

R
el

at
iv

e
Er

ro
r FPQ FPQ-PP FPQ-NT

Fig. D.9: FPQ’s γ vs. TI

3 5 7 9
floor

0

400

800

1200

R
un

ni
ng

 T
im

e
(m

s) FPQ
FPQ-G
FPQ-PP
FPQ-NT

Fig. D.10: FPQ Time vs. floor

3 5 7 9
floor

0
50

100
150
200
250
300

M
em

or
y

(K
B

)

FPQ
FPQ-G

FPQ-PP
FPQ-NT

Fig. D.11: FPQ Mem. vs. floor

900 1100 1300 1500 1700
s2t (m)

0

200

400

600

800

R
un

ni
ng

 T
im

e
(m

s)

LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Fig. D.12: LCPQ Time vs. s2t

Search Performance of LCPQ

Comparison in default setting. The resulting trend of LCPQ is similar to that of FPQ.
As reported in the right part of Table D.4, LCPQ-NT is the best in terms of running
time and memory due to its skipping strategy, while LCPQ-GTG incurs the highest time

179

Paper D.

and memory costs due to the large graph size. LCPQ-A gets the best hit rate while the
exact searches achieve a better result on the relative error. Different from FPQ, LCPQ
is highly sensitive to populations. A little error in population derivation can lead to a
very different returned path. Hence, the accuracy performance is slightly unstable for
the tested algorithms.

Table D.4: Comparison of Algorithms for LCPQ on Synthetic Data (best result in bold)
LCPQ LCPQ-G LCPQ-PP LCPQ-NT LCPQ-GTG LCPQ-A

Running Time (ms) 446 461 131 20 2532 163
Memory (KB) 182 192 144 7 257 8
Hit Rate (%) 83 83 83 60 83 87
Relative Error 0.0128 0.0128 0.0129 0.1113 0.0128 0.1256

Effect of s2t. Referring to Figure D.12, the running time of each algorithm grows
as s2t increases. In terms of memory, the results in Figure D.13 show that LCPQ and
LCPQ-G need more memory than the other two. LCPQ-NT uses the least memory since
it skips intermediate timestamps to reduce workload.

900 1100 1300 1500 1700
s2t (m)

0
50

100
150
200
250

M
em

or
y

(K
B

)

LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Fig. D.13: LCPQ Mem. vs. s2t

900 1100130015001700
s2t (m)

0.0
0.03
0.06
0.09
0.12
0.15

R
el

at
iv

e
Er

ro
r LCPQ

LCPQ-PP
LCPQ-NT

Fig. D.14: LCPQ’s γ vs. s2t

5 10 15 20
TI (s)

0

200

400

600

800

R
un

ni
ng

 T
im

e
(m

s)

LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Fig. D.15: LCPQ Time vs. TI

5 10 15 20
TI (s)

0

100

200

300

400

M
em

or
y

(K
B

) LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Fig. D.16: LCPQ Mem. vs. TI

Figure D.14 reports on the relative errors of exact and approximate searches. Com-
pared to LCPQ and LCPQ-PP, LCPQ-NT incurs significantly higher errors. As we men-
tioned before, LCPQ query is highly sensitive to the population. A little error in pop-
ulation derivation can lead to a very different returned path. Therefore, LCPQ-NT
performs poorly when a larger s2t is used.

Effect of TI. Referring to Figures D.15 and D.16, all algorithms incur less time
and memory costs as TI increases since a larger TI leads to fewer callings of popula-
tion derivation. The approximate approaches LCPQ-PP and LCPQ-NT always perform

180

D.6. Experiments

better in search efficiency. Referring to Figure D.17, all algorithms’ search effective-
ness deteriorates with an increasing TI. As less flow information is observed when
TI becomes larger, the relative errors accumulate. Likewise, LCPQ’s search effective-
ness is worse than that of FPQ, due to its more stringent requirements on population
derivation.

Effect of |o|. We test different initial object numbers on LCPQ query processing.
As an observation, the running time and memory cost are almost insensitive to |o|,
since the algorithms do not process each individual object. So we omit the results here.
Interestingly, increasing |o| will affect the result accuracy. Referring to Figure D.18,
as more objects are involved, all methods achieve a lower relative error. We attribute
it to that a larger population base is less affected by the flow estimation error and leads
to a smaller relative error.

We omit the result about different floor numbers because it exhibits a trend similar
to the counterpart of FPQ searches.

5 10 15 20
TI (s)

0.0
0.04
0.08
0.12
0.16

0.2

R
el

at
iv

e
Er

ro
r LCPQ

LCPQ-PP
LCPQ-NT

Fig. D.17: LCPQ’s γ vs. TI

300 600 900 12001500
O

0.0
0.04
0.08
0.12
0.16

0.2
R

el
at

iv
e

Er
ro

r LCPQ
LCPQ-PP
LCPQ-NT

Fig. D.18: LCPQ’s γ vs. O

900 1100 1300 1500 1700
s2t (m)

0

1000

2000

3000

R
un

ni
ng

 T
im

e
(m

s)

FPQ
FPQ-G

FPQ-PP
FPQ-NT

Fig. D.19: FPQ Time vs. s2t (Real)

900 1100 1300 1500 1700
s2t (m)

0
100
200
300
400
500

M
em

or
y

(K
B

)

FPQ
FPQ-G

FPQ-PP
FPQ-NT

Fig. D.20: FPQ Mem. vs. s2t (Real)

D.6.2 Results on Real Data

We collect a real dataset from a seven-floor, 2700m× 2000m shopping mall in Hangz
hou, China. There are ten staircases each being roughly 20m long, and 977 par-
titions connected by 1613 doors7. The max capacity of a partition v is Area(v) ·

7We assume that there is no Q-partition in this shopping mall. We varied the fraction of Q-partitions/R-
partitions on synthetic data, but it shows little impact on all algorithms.

181

Paper D.

1 per m2. We collected 1,598 object trajectories with totally more than 90,000 po-
sitioning records on 2017/01/05. Nearly 12% of two consecutive locations are not
topologically-connected, i.e., not in the same partition or two adjacent partitions. The
object movements in-between are uncertain. To count flows against uncertainty, we
applied a proven probabilistic method [16] as follows. First, for every two consecu-
tive locations not topologically-connected, a set Φ of valid sub-paths are found. Those
sub-paths longer than twice the shortest sub-path are excluded as the object unlikely
took them. Second, the probability that the object took sub-path φi ∈ Φ is computed
as P(φi) =

1/length(φi)
∑φk∈Φ 1/length(φk)

. This way, a shorter sub-path has a higher probability to

be taken. Finally, the flow of a door d is the sum of P(φi)s for all φis through d. On
top of the low-level flow computing, we sampled each door’s flow every 10 seconds
and used the samples to construct our indoor crowd model.

m1(t1)

m1(t2) m1(t3)

m1(t4)
m2(t1)

m2(t2)

m2(t3)

m2(t4)

d1

d2

d3

d4

d5

v1 v2

v3

v4

v5
t1’ t2’ t3’ t4’ t5’ t6’

t1 t2 t3 t4

t2

t2

t1 t3

t1 t3

t4

t4

d1 d3 d5

d1 d2 d4

d2 d4

𝜙1(m1)
𝑃 𝜙! = 0.556

𝜙2(m1)
𝑃 𝜙" = 0.444

𝜙(m2)

Time Index

Fig. D.21: An Example of the Trajectory Data

Figure D.21 exemplifies a few trajectories, where mi(t j) denotes the position-
ing location of a MAC address mi at time t j. For m1(t3) and m1(t4) that are not
topologically-connected, two possible in-between paths are found, namely φ1(m1(t3),
d3,d5), m1(t4)) of 20m long and φ2(m1(t3),d2,d4),m1(t4)) of 25m long. Their proba-
bilities are P(φ1) =

1/20
1/20+1/25 ≈ 0.556 and P(φ2) =

1/25
1/20+1/25 ≈ 0.444. We sampled

door flows as shown in the right part of Figure D.21. E.g., door d4’s flow during [t ′4, t ′5]
is 1+ 0.444 = 1.444 (m2 with a probability of 1 and m1 with a probability of 0.444).

Comparison in default setting. We compare different methods for FPQ and LCPQ
using real data and report the results in Tables D.5 and D.6. In terms of the running
time and memory, *PQ-NT performs best while *PQ-GTG is the worst. This is because
*PQ-NT skips the iterative population computations while *PQ-GTG uses an exact es-
timator but involves more nodes than does our indoor crowd model. In terms of hit
rate and relative error, the results are similar to the counterparts in synthetic data.

Effect of s2t. Figures D.19 and D.20 report on running time and memory use of
different FPQ searches. All incur more time and memory costs as s2t increases. Com-
pared to FPQ-PP and FPQ-NT, FPQ and FPQ-G are more memory- and time-consuming.
Compared to the counterparts on synthetic data, the search costs are higher since the
shopping mall is of a larger scale. Referring to Figure D.22, FPQ-PP/FPQ-NT’s search

182

D.6. Experiments

Table D.5: Comparison of Algorithms for FPQ on Real Data (best result in bold)
FPQ FPQ-G FPQ-PP FPQ-NT FPQ-GTG FPQ-A

Running Time (ms) 1900 1997 67 11 25559 53
Memory (KB) 367 393 61 1 669 2
Hit Rate (%) 99 99 99 98 99 98
Relative Error 1.86E-15 1.86E-15 1.86E-15 4.38E-14 1.86E-15 0.1492

Table D.6: Comparison of Algorithms for LCPQ on Real Data (best result in bold)
LCPQ LCPQ-G LCPQ-PP LCPQ-NT LCPQ-GTG LCPQ-A

Running Time (ms) 992 1047 28 10 13895 45
Memory (KB) 307 341 30 1 568 2
Hit Rate (%) 88 88 88 67 88 90
Relative Error 0.0546 0.0546 0.0546 0.6606 0.0546 0.062

accuracy deteriorates with a larger s2t.
The results in Figures D.23 and D.24 exhibit similar trends as those in Figures D.19

and D.20. LCPQ-NT’s relative error is much higher than that of LCPQ and LCPQ-PP,
and it grows faster—more update timestamps involved due to a greater s2t lead to less
accurate cost estimates. Compared to FPQ, LCPQ has higher relative errors as reported
in Figure D.25. As defined, partition-passing contact is more sensitive to the derived
populations than the partition-passing time.

900 1100130015001700
s2t (m)

10 16

10 15

10 14

10 13

R
el

at
iv

e
Er

ro
r

FPQ
FPQ-PP
FPQ-NT

Fig. D.22: FPQ’s γ vs. s2t (Real)

900 1100 1300 1500 1700
s2t (m)

0

500

1000

1500

2000

R
un

ni
ng

 T
im

e
(m

s)

LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Fig. D.23: LCPQ Time vs. s2t (Real)

900 1100 1300 1500 1700
s2t (m)

0
100
200
300
400

M
em

or
y

(K
B

)

LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Fig. D.24: LCPQ Mem. vs. s2t (Real)

900 1100130015001700
s2t (m)

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
Er

ro
r

LCPQ
LCPQ-PP
LCPQ-NT

Fig. D.25: LCPQ’s γ vs. s2t (Real)

183

Paper D.

D.6.3 Summary of Results

First, in terms of running time and memory, the two approximate searches perform
better than the two exact counterparts as workloads reduce. Besides, Strategy NT costs
less time and memory than Strategy PP since NT further utilizes historical information
to skip timestamps. For hit rate and relative error, PP outperforms NT in that NT skips
many timestamps on the basis of PP, further decreasing the accuracy of intermediate
results.

Second, the two approximate searches for FPQ perform better than those for LCPQ
in terms of hit rate and error rate. The reason is that the partition-passing time is less
sensitive to the populations compared to the partition-passing contact.

Third, a larger s2t leads to more time and memory consumptions but worse re-
sult accuracy, while a larger TI exhibits an almost opposite trend. In general, a larger
s2t or a smaller TI means more timestamps for which we need to derive populations.
This is critical to the cost estimation. More floors mean more doors/partitions to ex-
plore, which lowers the search efficiency. More initial objects render the population
derivation spatially more uniform and thus leads to a higher hit rate and lower relative
error.

Fourth, for the two baselines, *PQ-GTG performs poorly on efficiency because
GTG contains more nodes to process. *PQ-A seems good in terms of both efficiency
and effectiveness. However, a user of *PQ-A cannot obtain the path before departure
because *PQ-A needs to keep updating during expansion.

In general, the results show that the search algorithm with Strategy PP performs
best. It costs relatively less time and memory and achieves good query result accuracy.
Strategy NT applies well to the cases where door flows are updated frequently. In such
a case, skipping some timestamps can improve efficiency without causing excessive
errors in population estimates. More experimental results are available in an extended
version [26].

D.7 Related Work
Outdoor Time-Dependent Routing. In this setting, public transportation networks [7–
9] and road networks [10–14] are modeled as discrete and continuous time-dependent
graphs, respectively. Solutions for public transportation networks cannot solve our
problem because they are mainly for a time-dependent graph with a static timetable
for each station. On the other hand, approaches for road networks do not work for
indoor spaces because road network models do not support entities like doors, walls
and rooms that together form a complex topology.

From an algorithmic perspective, the solutions for outdoor time-dependent routing
are mainly Dijkstra-based algorithms [8, 10, 20, 27], A∗ algorithms [12, 13], label-
based methods [9, 28–30] (mainly for time-dependent graphs with timetables), and
adaptive approaches [11, 13, 31]. Most of these works do not consider crowds that

184

D.8. Conclusion and Future Work

influence people’s routing choices.
Traffic-aware Routing. Some works [12, 32, 33] prepare the traffic information

by mining historical trajectory data and assume it is known when routing. Shang et
al. [34] study traffic-aware fastest path query using a traffic-aware spatial network.
Some adaptive approaches [11, 13, 31] can also solve traffic-aware routing problems
through continuous reevaluation. Although these works consider the traffic impact,
none of them estimates the traffic in the near future when processing a query.

Indoor Routing. Lu et al. [1] propose a distance-aware indoor space model to
facilitate indoor shortest path query. To speed up distance-aware indoor pathfinding,
Shao et al. [2] design IP/VIP-tree that enable more aggressive pruning. VIP-tree also
supports trip planning based on neighbour expansion [15]. Feng et al. [6] study indoor
top-k keyword-aware routing query that finds k routes that have optimal ranking scores
integrating keyword relevance and distance cost. Other works [3, 4, 35–37] consider
more constraints for indoor routing. However, none of these aforementioned works
considers dynamic crowds that are essential to LCPQ and FPQ.

Flows, Crowds and Density. Some existing works study the estimation of flows
[38, 39], crowds [40, 41], or dense regions [42, 43] outdoors. However, they all fall
short in indoor spaces mainly for two reasons. First, indoor positioning techniques
are usually RFID, Wi-Fi, and Bluetooth, which make coarser-grained location data
than outdoor GPS data. Second, the indoor topology is so different from the out-
door topology that indoor crowd modeling must consider carefully the connectivity
among doors and partitions. Some existing works consider flows and densities in in-
door venues. Ahmed et al. [44] propose two graph-based indoor movement models
to map raw tracking records into records with object entry and exit times in particular
locations. Li et al. propose to find the top-k popular indoor semantic locations [16]
with the highest flow values using probabilistic location samples, and the currently
top-k indoor dense regions [17] by considering the uncertainty of online positioning
reports. However, all these works [16, 17, 44] are different from our work. First, our
density analysis is based on coarse-grained flow values reported at door counters, not
the point-based localization results count for individual moving objects. Second, our
work focuses on path planning in the presence of indoor crowds, while the previous
works aim to find interesting location patterns.

D.8 Conclusion and Future Work
We study two types of crowd-aware indoor path planning queries. The FPQ returns a
path with the shortest travel time in the presence of crowds; the LCPQ returns a path
encountering the least objects en route. To solve FPQ and LCPQ, we design a unified
framework that consists of 1) an indoor crowd model that organizes indoor topology
and captures indoor flows and densities; 2) a time-evolving population estimator that
derives future time-dependent flows and populations for relevant partitions; 3) two
exact and two approximate query processing algorithms that each can process both

185

References

query types. We conduct extensive experiments to evaluate our proposals. The results
demonstrate the efficiency and scalability of the proposals and disclose the perfor-
mance differences among all four algorithms.

There exist several directions for future research. First, it is interesting to consider
other crowd models, e.g., learning crowd distributions and functions from historical
data. Also, it is relevant to further speed up query processing by using an index, e.g.,
combining the object layer in the composite indoor index [25, 45] with a modified
IP/VIP-Tree [2] whose distance matrices are extended with time attributes. Last but
not least, it is possible to extend our proposals to support continuous monitoring of
the fastest or least crowded paths.

Acknowledgement
This work was supported by IRFD (No. 8022-00366B), ARC (No. FT180100140 and
DP180103411), the Key R&D Program (Zhejiang, China) (No. 2021C009) and NSFC
(No. 62050099). Huan Li and Hua Lu are the corresponding authors.

References
[1] H. Lu, X. Cao, and C. S. Jensen, “A foundation for efficient indoor distance-

aware query processing,” in 2012 IEEE 28th International Conference on Data
Engineering. IEEE, 2012, pp. 438–449.

[2] Z. Shao, M. A. Cheema, D. Taniar, and H. Lu, “Vip-tree: an effective index for
indoor spatial queries,” Proceedings of the VLDB Endowment, vol. 10, no. 4, pp.
325–336, 2016.

[3] W. Luo, P. Jin, and L. Yue, “Time-constrained sequenced route query in indoor
spaces,” in Asia-Pacific Web Conference. Springer, 2016, pp. 129–140.

[4] Y. Zhou, H. Chen, Y. Huang, Y. Luo, Y. Zhang, and X. Xie, “An indoor route
planning method with environment awareness,” in IGARSS 2018-2018 IEEE
International Geoscience and Remote Sensing Symposium. IEEE, 2018, pp.
2906–2909.

[5] H. Li, H. Lu, F. Shi, G. Chen, K. Chen, and L. Shou, “Trips: A system for trans-
lating raw indoor positioning data into visual mobility semantics,” Proceedings
of the VLDB Endowment, vol. 11, no. 12, pp. 1918–1921, 2018.

[6] Z. Feng, T. Liu, H. Li, H. Lu, L. Shou, and J. Xu, “Indoor top-k keyword-aware
routing query,” in 2020 IEEE 36th International Conference on Data Engineer-
ing (ICDE). IEEE, 2020, pp. 1213–1224.

186

References

[7] R. W. Hall, “The fastest path through a network with random time-dependent
travel times,” Transp. Sci., vol. 20, no. 3, pp. 182–188, 1986.

[8] G. S. Brodal and R. Jacob, “Time-dependent networks as models to achieve fast
exact time-table queries,” ENTCS, vol. 92, pp. 3–15, 2004.

[9] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou, “Efficient route planning on
public transportation networks: A labelling approach,” in SIGMOD, 2015, pp.
967–982.

[10] B. Ding, J. X. Yu, and L. Qin, “Finding time-dependent shortest paths over
large graphs,” in Proceedings of the 11th international conference on Extend-
ing database technology: Advances in database technology, 2008, pp. 205–216.

[11] M. K. Ardakani and L. Sun, “Decremental algorithm for adaptive routing in-
corporating traveler information,” Computers & operations research, vol. 39,
no. 12, pp. 3012–3020, 2012.

[12] G. Nannicini, D. Delling, D. Schultes, and L. Liberti, “Bidirectional A* search
on time-dependent road networks,” Networks, vol. 59, no. 2, pp. 240–251, 2012.

[13] M. K. Ardakani and M. Tavana, “A decremental approach with the A* algorithm
for speeding-up the optimization process in dynamic shortest path problems,”
Measurement, vol. 60, pp. 299–307, 2015.

[14] V. J. Wei, R. C.-W. Wong, and C. Long, “Architecture-intact oracle for fastest
path and time queries on dynamic spatial networks,” in Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, 2020, pp.
1841–1856.

[15] Z. Shao, M. A. Cheema, and D. Taniar, “Trip planning queries in indoor venues,”
The Computer Journal, vol. 61, no. 3, pp. 409–426, 2018.

[16] H. Li, H. Lu, L. Shou, G. Chen, and K. Chen, “Finding most popular indoor
semantic locations using uncertain mobility data,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 31, no. 11, pp. 2108–2123, 2018.

[17] ——, “In search of indoor dense regions: An approach using indoor positioning
data,” IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 8,
pp. 1481–1495, 2018.

[18] M. VIRKLER and S. ELAYADATH, “Pedestrian speed-flow-density relation-
ships: Pedestrians and pedestrian facilities,” Transportation research record, no.
1438, pp. 51–58, 1994.

[19] C. S. Jensen, H. Lu, and B. Yang, “Graph model based indoor tracking,” in
MDM, 2009, pp. 122–131.

187

References

[20] Y. Yuan, X. Lian, G. Wang, Y. Ma, and Y. Wang, “Constrained shortest path
query in a large time-dependent graph,” PVLDB, vol. 12, no. 10, pp. 1058–1070,
2019.

[21] J. Contreras, R. Espinola, F. J. Nogales, and A. J. Conejo, “ARIMA models
to predict next-day electricity prices,” T-PWRS, vol. 18, no. 3, pp. 1014–1020,
2003.

[22] Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng, “Geoman: Multi-level atten-
tion networks for geo-sensory time series prediction,” in IJCAI, 2018, pp. 3428–
3434.

[23] P. C. Consul and G. C. Jain, “A generalization of the poisson distribution,” Tech-
nometrics, vol. 15, no. 4, pp. 791–799, 1973.

[24] M. T. Boswell et al., “Estimating and testing trend in a stochastic process of
poisson type,” AMS, vol. 37, no. 6, pp. 1564–1573, 1966.

[25] X. Xie, H. Lu, and T. B. Pedersen, “Distance-aware join for indoor moving ob-
jects,” IEEE Transactions on Knowledge and Data Engineering, vol. 2, no. 27,
pp. 428–442, 2015.

[26] T. Liu, H. Li, H. Lu, M. A. Cheema, and L. Shou, “Towards crowd-aware indoor
path planning (extended version),” arXiv preprint arXiv:2104.05480, 2021.

[27] K. L. Cooke and E. Halsey, “The shortest route through a network with time-
dependent internodal transit times,” JMAA, vol. 14, no. 3, pp. 493–498, 1966.

[28] K. Nachtigall, “Time depending shortest-path problems with applications to rail-
way networks,” EJOR, vol. 83, no. 1, pp. 154–166, 1995.

[29] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems in temporal
graphs,” PVLDB, vol. 7, no. 9, pp. 721–732, 2014.

[30] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and time-based path
queries in temporal graphs,” in ICDE, 2016, pp. 145–156.

[31] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag, “Adaptive fastest
path computation on a road network: a traffic mining approach,” in VLDB, 2007,
pp. 794–805.

[32] U. Demiryurek, F. Banaei-Kashani, C. Shahabi, and A. Ranganathan, “Online
computation of fastest path in time-dependent spatial networks,” in SSTD, 2011,
pp. 92–111.

[33] Y. Wang, G. Li, and N. Tang, “Querying shortest paths on time dependent road
networks,” PVLDB, vol. 12, no. 11, pp. 1249–1261, 2019.

188

References

[34] S. Shang, H. Lu, T. B. Pedersen, and X. Xie, “Finding traffic-aware fastest paths
in spatial networks,” in SSTD, 2013, pp. 128–145.

[35] L. Liu, S. Zlatanova, B. Li, P. van Oosterom, H. Liu, and J. Barton, “Indoor rout-
ing on logical network using space semantics,” ISPRS INT J GEO-INF, vol. 8,
no. 3, p. 126, 2019.

[36] D.-H. Kim, B. Jang, and J. W. Kim, “Privacy-preserving top-k route computation
in indoor environments,” IEEE Access, vol. 6, pp. 56 109–56 121, 2018.

[37] T. Liu, Z. Feng, H. Li, H. Lu, M. A. Cheema, H. Cheng, and J. Xu, “Shortest
path queries for indoor venues with temporal variations,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 2020, pp. 2014–
2017.

[38] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias, “Spatio-temporal aggre-
gation using sketches,” in ICDE, 2004, pp. 214–225.

[39] C. Tang, J. Sun, Y. Sun, M. Peng, and N. Gan, “A general traffic flow prediction
approach based on spatial-temporal graph attention,” IEEE Access, vol. 8, pp.
153 731–153 741, 2020.

[40] G. Castellano, C. Castiello, C. Mencar, and G. Vessio, “Crowd detection in aerial
images using spatial graphs and fully-convolutional neural networks,” IEEE Ac-
cess, vol. 8, pp. 64 534–64 544, 2020.

[41] S. Wang, Y. Lu, T. Zhou, H. Di, L. Lu, and L. Zhang, “SCLNet: Spatial context
learning network for congested crowd counting,” Neurocomputing, vol. 404, pp.
227–239, 2020.

[42] X. Huang and H. Lu, “Snapshot density queries on location sensors,” in MobiDE,
2007, pp. 75–78.

[43] X. Hao, X. Meng, and J. Xu, “Continuous density queries for moving objects,”
in MobiDE, 2008, pp. 1–7.

[44] T. Ahmed, T. B. Pedersen, and H. Lu, “Finding dense locations in symbolic
indoor tracking data: modeling, indexing, and processing,” GeoInformatica,
vol. 21, no. 1, pp. 119–150, 2017.

[45] X. Xie, H. Lu, and T. B. Pedersen, “Efficient distance-aware query evaluation on
indoor moving objects,” in 2013 IEEE 29th International Conference on Data
Engineering (ICDE). IEEE, 2013, pp. 434–445.

189

Tia
n

tia
n

 Liu
Spatia

l Q
u

er
ies fo

r
 In

d
o

o
r

 Lo
c

atio
n

-b
a

sed
 Ser

vic
es

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-938-7

	Omslag_TL.pdf
	PHD_TL_TRYK.pdf
	Kolofon_TL.pdf
	Thesis_TiantianLiu.pdf
	Front page
	Abstract
	Resumé
	Contents
	Acknowledgement
	Thesis Details
	I Thesis Summary
	1 Introduction
	1.1 Background and Motivation
	1.2 Thesis Structure

	2 Experimental Study on Indoor Spatial Queries
	2.1 Motivation and Background
	2.2 Techniques of Indoor Spatial Query
	2.2.1 Indoor Spatial Query Types
	2.2.2 Indoor Models and Indexes
	2.2.3 Comparison

	2.3 Experimental Evaluation
	2.3.1 Benchmark
	2.3.2 Performance Analysis

	3 Indoor Keyword-aware Routing Query
	3.1 Problem Motivation and Statement
	3.2 Ranking Relevant Routes
	3.2.1 Spatial Distance
	3.2.2 Keyword Relevance
	3.2.3 Ranking Score for Routes

	3.3 Query Processing Algorithms
	3.3.1 Pruning Rules for Expansion
	3.3.2 Query Processing Algorithms for IKRQ

	3.4 Experimental Evaluation
	3.4.1 Comparable Methods
	3.4.2 Datasets and Settings
	3.4.3 Performance Analysis

	4 Indoor Temporal-variation aware Routing Query
	4.1 Problem Motivation and Statement
	4.2 ITSPQ using Temporal-variation Graph
	4.2.1 Indoor Temporal-Variation Graph
	4.2.2 IT-Graph based ITSPQ Processing

	4.3 ITSPQ using Temporal-variation Index
	4.3.1 Indoor Temporal-Variation Index
	4.3.2 IT-Index based ITSPQ Processing

	4.4 Experimantal Evaluation
	4.4.1 Datasets and Settings
	4.4.2 Performance Analysis

	5 Indoor Crowd-aware Routing Query
	5.1 Problem Motivation and Statement
	5.2 Crowd-Aware Path Planning Framework
	5.2.1 Indoor Crowd Model
	5.2.2 Time-evolving Populations

	5.3 Query Processing Algorithms
	5.3.1 Exact Algorithms for FPQ and LCPQ
	5.3.2 Approximate Algorithms for FPQ and LCPQ

	5.4 Experimantal Evaluation
	5.4.1 Datasets and Settings
	5.4.2 Performance Analysis

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	References

	II Papers
	A Indoor Spatial Queries: Modeling, Indexing, and Processing
	A.1 Introduction
	A.2 Indoor Spatial Queries
	A.2.1 Indoor Space Concepts
	A.2.2 Indoor Spatial Query Types
	A.2.3 Related Work

	A.3 Model and Indexes
	A.3.1 Indoor Distance-Aware Model
	A.3.2 Indoor Distance-Aware Index
	A.3.3 Composite Indoor Index
	A.3.4 IP-Tree and VIP-Tree

	A.4 Query Processing
	A.4.1 Algorithmic Comparison
	A.4.2 Complexity Analysis
	A.4.3 Extensibility Analysis

	A.5 Benchmark
	A.5.1 Datasets
	A.5.2 Object/Query Workload Generation
	A.5.3 Model/Index Settings
	A.5.4 Performance Evaluation Procedure

	A.6 Results Analysis
	A.6.1 Model/Index Construction
	A.6.2 Query Processing
	A.6.3 Summary of Findings

	A.7 Conclusion and Future Work
	References

	B Indoor Top-k Keyword-aware Routing Query
	B.1 Introduction
	B.2 Problem Formulation
	B.2.1 Preliminaries
	B.2.2 Principles and Definition of Routing Query

	B.3 Ranking Relevant Routes for IKRQ
	B.3.1 Organization of Indoor Space Keywords
	B.3.2 Keyword Relevance between Query Keywords and Routes
	B.3.3 Ranking Score for Routes

	B.4 Search Algorithms for IKRQ
	B.4.1 Pruning Rules for Expansion
	B.4.2 Overall Search Framework
	B.4.3 Topology-oriented Expansion (ToE)
	B.4.4 Keyword-oriented Expansion (KoE)

	B.5 Experimental Studies
	B.5.1 Results on Synthetic Data
	B.5.2 Results on Real Data

	B.6 Related Work
	B.7 Conclusion
	References

	C Towards Indoor Temporal-variation aware Shortest Path Query
	C.1 Introduction
	C.2 Preliminaries
	C.2.1 Differentiation of Indoor Entities
	C.2.2 Problem Definition
	C.2.3 Indoor Shortest Distance/Path Query Techniques

	C.3 ITSPQ using Temporal-Variation Graph
	C.3.1 Indoor Temporal-Variation Graph
	C.3.2 IT-Graph based ITSPQ Processing

	C.4 ITSPQ using Temporal-Variation Index
	C.4.1 Indoor Temporal-Variation Index
	C.4.2 IT-Index based ITSPQ Processing
	C.4.3 Complexity Analysis

	C.5 Experimental Studies
	C.5.1 Results on Synthetic Data
	C.5.2 Results on Real Data

	C.6 Related Work
	C.7 Conclusion
	References

	D Towards Crowd-aware Indoor Path Planning
	D.1 Introduction
	D.2 Preliminaries
	D.2.1 Indoor Crowds
	D.2.2 Problem Formulation
	D.2.3 Solution Framework

	D.3 Indoor Crowd Model
	D.3.1 Model Structure
	D.3.2 Door Flow Function

	D.4 Time-evolving Populations
	D.4.1 Rectifying Door Flows
	D.4.2 Implementation of Population Estimator

	D.5 Query Processing Algorithms
	D.5.1 Exact Algorithms for FPQ and LCPQ
	D.5.2 Approximate Algorithms for FPQ and LCPQ
	D.5.3 Complexity Analysis

	D.6 Experiments
	D.6.1 Results on Synthetic Data
	D.6.2 Results on Real Data
	D.6.3 Summary of Results

	D.7 Related Work
	D.8 Conclusion and Future Work
	References

	Blank Page

	Omslag_TL
	Blank Page
	Blank Page

